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Abstract 

This paper presents a formulation of the multiple user class, variable demand, probit stochastic user 

equilibrium model. Sufficient conditions are stated for differentiability of the equilibrium flows of this 

model. This justifies the derivation of sensitivity expressions for the equilibrium flows, which are 

presented in a format that can be implemented in commercially available software. A numerical example 

verifies the sensitivity expressions, and that this formulation is applicable to large networks. 
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1. Introduction 

In many network-based techniques for transport planning, design and estimation, there is a key role 

played by the implicit relationship between the data input to a traffic assignment model and the 

predictions of equilibrium network flows based on those data. For example, in equilibrium-based trip 

matrix estimation, the �data� in question are the unknown trip matrix elements, which when assigned 

according to an equilibrium model are required to give predicted link flows that reproduce⎯to some 

given level, according to some distance metric⎯flows that have actually been observed on a subset of 

links (Yang et al. 1992). A second common application arises in the equilibrium-based network design 

problem, the �data� reflecting some policy measure under the control of the planner (e.g. link capacities, 

road tolls, signal timings), where the objective is to optimize some measure of system/economic 

performance while anticipating the equilibrium response of travellers on the network (MagnantiWong 

1984; PatrikssonRockafellar 2002; YangBell 1997). A third application is in the field of network 

reliability assessment, where the vulnerability of origin-destination/system performance to unreliable 

capacity or demand conditions can be imputed from the impact such input changes may have on the 

equilibrium state (Bell et al. 1999; Chen et al. 2002; DuNicholson 1997). A final application is in the area 

of error estimation, where the impact of sampling errors in the estimated input data (e.g. trip matrix 

elements, parameters of the link travel time functions) on errors in the forecast network evaluation 

measures can be deduced from the implicit equilibrium relationship (BellIida 1997; Leurent 1998). 

In such applications, it is commonly necessary to deal with the implicit equilibrium relationship as a sub-

problem during the course of some overall, master solution algorithm, and it is therefore only natural to 

consider ways of either approximating this relationship and/or of computing its gradients or sub-

gradients, should they exist. This is the role of sensitivity analysis, a technique with a substantial history 

both in non-linear programming generally and in the transportation network field specifically. As 

illustration of its significance, all of the references cited in the paragraph above were chosen not only to 

illustrate the application areas in which implicit equilibrium problems arise, but also because they all 

propose algorithms based on sensitivity analysis.  

Aside from its importance for applied problems, the prominence of sensitivity analysis has been 

magnified in recent years from a technical perspective, due to the work of Patriksson & Rockafellar 

(2002; 2003), who brought into question the whole basis and validity of the seminal transportation paper 

by Tobin & Friesz (1988) upon which many of the subsequent applications were based. The technical 

problems and their ramifications continue to be debated, yet it is important to appreciate that these are 

problem-specific in the sense that they relate crucially to the choice of Wardrop deterministic user 

equilibrium as the network flow model. While these difficulties may be described in a number of different 

guises, on a simple level there are two main facets of this model that require careful handling. These are 

namely: i) non-uniqueness of the equilibrium path flows in general networks even for fixed input data; 

and ii) problems of �complementarity� due to the active equilibrium path set (even if it were unique!) 
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changing as the input data to the model are changed, the latter meaning that even directional derivatives 

of the equilibrium flows may not exist at certain points.  

The nature of these difficulties has meant that it has been only natural to consider embedding alternative 

network flow models in the application problems mentioned above. Specifically, Davis (1994) and Ying 

& Miyagi (2001) describe the computation of sensitivity analysis for the logit Stochastic User 

Equilibrium (SUE) model, which may be observed to exist everywhere (and be efficiently computable) 

under mild conditions. The disadvantage of this approach is that one is then left with a question of 

plausibility of the adopted model, in the light of the well-known deficiencies of the logit model in being 

unable to represent correlated alternatives, of which the routes in a network are one of the most natural 

examples. The SUE approach is, however, sufficiently general to admit a range of alternative behavioural 

assumptions, through the form of joint distribution assumed for the stochastic path error terms. Examples 

of such models include the C-logit (Cascetta et al. 1996), nested logit (GentilePapola 2001), cross-nested 

logit (VovshaBekhor 1998), paired combinatorial logit (Gliebe et al. 1999; PrashkerBekhor 1999), mixed 

logit (Nielsen et al. 2002), and probit (DaganzoSheffi 1977). To this end, Clark & Watling (2002a) 

describe a computational procedure for sensitivity analysis of the probit SUE. In the probit case, given 

that the choice proportions are not expressible in closed form but are rather the result of a 

multidimensional integral, a key practical factor in this latter work is seen to be deducing the sensitivity 

analysis expressions in such a way that the relevant Jacobian matrices are computable by analytic means, 

without resort to the vagaries and errors of finite difference approximation.  

Part of the analyst�s role is to determine the appropriate balance between generality, accuracy and 

efficiency when choosing a modelling approach. In the light of the recent work on sensitivity analysis 

reported above, it is our contention that probit-SUE increasingly affords the best compromise for network 

modelling, particularly within the wider context of network design optimisation problems. Our aim in this 

paper is to justify this claim by presenting a formulation of the probit-SUE that admits individuals of 

different classes, and allows them to choose not to travel (elastic demand). We derive gradient 

information for this general formulation of the probit-SUE, showing that many of the analytical pitfalls 

detailed by Patriksson & Rockafellar are avoided, with the equilibrium flows varying smoothly with the 

design parameters. This may be contrasted with the DUE model, in which the systematically non-smooth 

variation of the equilibrium flows in the design parameters makes problems such as equilibrium-based 

network design extremely difficult. Even if one is careful to follow the techniques described by 

Patriksson and Rockafellar (2002, 2003), one must still face the prospect that even directional derivatives 

will not exist at some points in the design space. In any case, it is not difficult to make case that drivers do 

not know precisely, nor perceive identically, the travel costs they will experience on any journey, 

implying that some form of stochastic model would be more appropriate. Furthermore, in the whole 

family of equilibrium models mentioned above, the probit SUE has a claim to maximum generality in 

being able to approximate all such models by appropriate choice of the error distribution. These appealing 

features of the probit-SUE are achieved at a cost; computation and analysis of the probit-SUE flows are 

comparatively difficult and time consuming. Part of the purpose of this paper is to show that these 

obstacles are diminishing. 

Specifically, in the present paper, our original contributions are to extend the work of Clark & Watling 

(2002a) in several key ways: 

• The underlying probit SUE model is generalised from the single user class, fixed demand case to a 

case with multiple user classes and elastic demand. 

• A formal proof is provided of the existence of the sensitivity analysis for this model. 

• An improved computational procedure is described (even for the single user class, fixed demand 

case) for computing the base equilibrium solution and the choice probability Jacobian, which both 

improves the efficiency of the method and avoids the difficulties in interpreting Monte Carlo error 

(Monte Carlo techniques are not used). 

• Explicit formulae are presented to allow the straightforward implementation of the method in widely 

available matrix-based mathematical languages, such as MATLAB. 

• A practical application of the methods to a toll-pricing problem is reported for a realistic-sized 

network. 

 

The structure of the paper is as follows. In Section 2 the necessary notation is introduced, and our 

particular formulation of elastic demand probit SUE presented. Differentiability of the equilibrium flows 

is established in Section 3, providing conditions to ensure existence of the sensitivity analysis. In Section 

4 sensitivity expressions are derived for the equilibrium flows. Implementation and computational issues 

are described in section 5, and numerical experiments reported in Section 6, before presenting the 

conclusions in Section 7. 

 



2. Definitions, Notation and Assumptions 

We consider the road network represented by a directed graph consisting of Z nodes, with the set of 

connecting links labelled .The origin-to-destination (OD) movements on the network are 

labelled  and the user classes 

Na ,...,1=
Rr ,...,1= Mm ,...,1= . The [NM x 1] vector of disaggregate link flows is 

ordered by class 
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m
ax  is the flow of class m on link a. While we have assumed here that all links are available to all user 

classes, it is a trivial change to disallow certain links to individual classes. Users on link a of class m 

experience a generalized cost  that may depend on the flows of any user class, anywhere on the 

network. We assume that 

( )x
m
at

A1. The link cost functions are single valued and continuously differentiable. 

This does not require the link cost functions to be monotonic, separable nor that the Jacobian, , be 

symmetric. 

tx∇

The set of simple paths available to class m on the r-th OD movement is of size ; each class may 

have a different path-set. The total number of paths is

rmK ,

∑ ∑=
m r

rmKK , . An assignment of flows to all 

paths is denoted by the [K x 1] vector f, whose elements are ordered by class and sub-ordered by OD 

movement: 
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with . The [MR x 1] OD demand vector, , is similarly ordered by class and OD 

movement, with entry representing the total potential travel demand by user-class m for the r-th OD 

movement. 

krmf rm
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The path flow assignment  is feasible for demand  if and only if, for each constituent class and OD 

movement, .
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Ψ is the [MR x K] demand-path incidence matrix, such that 

fq ⋅Ψ=� .           (3) 

The set of feasible path flows is closed and convex. 

The [MN x K] block-diagonal link path incidence matrix ǻ, whose elements are Kronecker delta 

functions , denotes the links comprising each path, for every class and OD pair. The vector of 

disaggregate link flows, (1), is therefore given by 
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where is the [N x 
rm,∆ rmK ,

] component link-path incidence matrix for class m on the r-th OD 

movement. The path costs are the summed constituent link costs: c = ǻT
·t so that 
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a
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and hence the path cost vector, c, has entries ordered as for f. 

2.1  The variable demand and choice models 

Individuals are motivated to travel by the utility they gain from getting to their desired destination; they 

choose between travelling to their desired destination on one of the available routes, or not travelling (or 

going later or by a different mode that is outside of the road network).  For each individual, the benefit of 



travelling, as they perceive it, is weighed against the perceived cost of making their journey, specifically, 

the (perceived) minimum route cost. We assume that if the individual perceives no overall gain in utility 

from making their desired journey, they will choose not to travel. 

For each OD pair, the option of �no travel� is represented in the network by a pseudo-link that provides 

drivers with another choice of OD route; this link thus comprises a pseudo-path. We note that although 

our terminology is similar, the method we describe should not be confused with the conventional way of 

implementing elastic demand DUE problems by the excess demand formulation (Gartner, 1980), which 

requires a separate demand function to be specified and inverted. In our case, the specification of the 

demand function is integral to the probit model as an additional choice alternative. Without loss of 

generality, we can assume that for each class and for each OD movement, the pseudo-path is . With 

this formulation of variable demand, every driver is assigned to the network; those choosing not to travel 

are assigned to the pseudo-path connecting the relevant OD pair. We will assume that congestion on a 

�real� network does not depend on the number of potential travellers staying at home i.e. costs on the 

�real� links depend only on the flows on the �real� links, and not on the pseudo-link flows. 

rmf ,

1

The motivation to travel is not the same for all users, even within a single class. For users of class m let 

the mean utility of travelling (across the population of class m) on the r-th OD movement be . The 

initial motivation to make a particular OD movement does not depend on the state of the network; the 

cost of travel (due to the network flows) determines the net gain in utility and hence whether or not an 

individual decides to travel. Therefore is a constant. 

rmV ,

rmV ,

Following discrete choice theory we assume that, for users of class m, the perceived utility of the r-th OD 

movement on route k is the random variable, dependent on : x

( ) rm
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k
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where is the flow-independent (mean) utility of travelling, and are the deterministic, flow-

dependent path costs defined in (5) above. We assume that 

rm,υ )(,
x

rm
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A2. The stochastic terms have a non-degenerate joint probability density function that is continuous, 

strictly positive, and independent of the deterministic path costs. 

rm
k

,ε

We assign the opportunity cost of not travelling (the utility gained by travelling) to the pseudo-

link: , so that the utility of not travelling has zero mean. The constant cost on the pseudo-path 

also represents the fact that there is no congestion effect on the �no travel� alternative (this assumption 

can be relaxed and the results to be derived still follow⎯indeed, the constant cost assumption is more 

problematic, as seen in section 3, but is chosen so as to be more consistent with conventional 

implementations of elastic demand problems). It will be convenient to define the vector of deterministic 

path utilities, , with elements 

rmrmc ,,

1 υ=

)(xu ( ) ( )xx
rm

k
rmrm
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and on the pseudo-paths, . 
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Drivers from class m, on OD movement r choosing the k-th path are those who perceive this to maximise 

their utility (given the current mean path costs for their class: ). The corresponding choice probability 

is defined to be 

m
c

( ) ( )mrm
j

rm
k

mrm
k jUUP uu |Pr ,,, ∀≥= .      (7) 

The [K x 1] vector of path choice probabilities is denoted P. Note that since , then 

 and so we can readily work in terms of either utility of cost derivatives. The choice 

model thus defined is single-valued and continuously differentiable (GentilePapola 2001) in the 

deterministic path utilities (equivalently in the path costs), and hence (using A1) in the path and link 

flows. 

)()( cȣPuP −=
PP cu −∇=∇

Daganzo (1982) shows that the choice probabilities are continuously differentiable, based on the slightly 

different assumption that the joint probability density function is regular everywhere rather than being 

strictly positive. 

This variable demand model is a natural extension of the fixed demand case (with no pseudo-links) and is 

based on the same underlying principles of discrete choice theory used to model drivers� route choice 

behaviour. A demand function is implicitly defined by the choice model; for the m-th class on the r-th OD 

movement this is 

( ) ( )[ ]( )rmrm
k

rmrmrmrm
travel KkUUqDq ,,,

1

,,, ,...,1Pr1)( =∀≤−⋅== xxx .   (8) 

In this formulation of variable demand, the demand function is determined by an integrated demand and 

path-choice probability function, and a different demand function prototype cannot be freely chosen (in 



contrast, for example, with the conventional manner of defining elastic demand DUE problems). While 

for a given joint probability distribution the demand function is of a fixed type, the variance-covariance 

matrix allows the cross elasticities to be defined, in particular for the no travel option. 

2.2 The Stochastic User Equilibrium 

The Stochastic User Equilibrium (SUE) is defined to be a feasible set of flows such that: 

At SUE, no driver can improve his or her perceived travel cost by unilaterally changing route. 

An SUE is a solution to the fixed-point problem (Sheffi 1985): 

( ))( fuPqf ∆⋅= ,                 (9) 

for feasible path flows, path choice probabilities, and OD demands. Here ( )qq �diag TΨ=  is the matrix-

expanded version of the potential demand vector, such that each constituent class-specific OD movement 

comprises 
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A solution to (9) is denoted , with the corresponding link flow solution denoted . By 

assumption (A1) and following Rosa (Rosa 2003), it is clear that, at equilibrium, there is a one-to-one 

mapping between a disaggregate path flow SUE and its corresponding disaggregate link flow 

representation, from path to link flows through 

f
~

fx
~~ ∆=

fx~
~

∆= , and from link to path flows through via the 

sequence of relationships: disaggregate link flows ⇒ disaggregate link costs ⇒ disaggregate path costs 

⇒ disaggregate path choice probabilities ⇒ disaggregate path flows, i.e. . ))~((
~

xuPqf ⋅=

It remains to solve the fixed-point problem (9) in order to calculate the equilibrium flows for a given 

network. Fortunately, with this variable demand model, it is no more difficult than calculating the fixed 

demand SUE flows, methods for which have been extensively discussed elsewhere (Fisk 1980; 

MaherHughes 1997; Rosa 2003; Sheffi 1985; SheffiPowell 1981). 

2.3 The Probit Model 

The probit model is a particular instance of the formulation described above, in which for each user-class 

m and O-D movement r the joint distribution of the vector of path error terms ⎯which has elements 

 for ⎯follows a Multivariate Normal distribution with zero mean and covariance 

matrix . Many structures are possible for this covariance matrix; for example, a diagonal matrix 

with identical diagonal entries would allow us to approximate the i.i.d. assumption of the multinomial 

logit. Alternatively, as the magnitude of the terms in  becomes small, so it is well known that the 

SUE model increasingly approximates the DUE. As a further alternative, Yai et al (1997) propose a 

structure incorporating path-specific error terms. However, the most commonly adopted and arguably 

most natural assumption is to impute  from constituent link cost components, with the joint 

distribution of the link cost error components itself Multivariate Normal.  Given that the Multivariate 

Normal assumption is preserved under linear transformation (from the link to path cost domain), such link 

error component models do indeed imply a probit path choice model, provided that the implied path cost 

error covariance matrix is well-conditioned (an important point to which we return in section �). While 

the link error component assumption also permits link error correlations to be specified, a simplification is 

to neglect these correlations and assume independent Normal link cost error distributions for each link. In 

this latter, simplest case, if the link cost error distribution for link a as perceived by user-class m on O-D 

movement r is Normal with zero mean and variance , then the network structure gives the required 

components of  as: 
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Hence the joint distribution of error terms  is known in order to apply (6), and which (it is supposed) 

satisfies assumption A2. Note that since the perceived utilities of the travel alternatives (6) are MVN 

distributed, the path choice probabilities, (7), and hence the demand function, (8), cannot be written in 

closed form. 

rm ,İ

 



2.4 Properties of the SUE flows 

Existence of a solution to the SUE problem defined is guaranteed by Brouwer�s theorem since, by A1 and 

A2, the fixed-point condition (9) is a continuous function of the flows, being a continuous composition of 

continuous mappings, and the feasible region is closed and convex. A sufficient condition for the 

uniqueness of this solution (Cantarella 1997) is that the link cost function, ( )xt , is monotone, non-

decreasing. 

2.5 Design Parameters 

We wish to consider changes to the design parameters, [ ]TSss ,...,1=s , that define the network; namely, 

the OD demands and the parameters in the link cost functions. Davis (1994) remarked that  

��if the link use probabilities can be expressed as differentiable functions of the capacity increases and 

of the link volumes [the design parameters], which is the case for both logit and probit models, the NDP 

with SUE assignment becomes a differentiable optimization problem with a manageable number of 

differentiable constraints.� 

This implies that the probit SUE flows are differentiable in the design parameters, though Davis provides 

no formal proof of this statement. In the next section, we determine sufficient conditions for the 

equilibrium flows to be differentiable in the design parameters, in the case of our variable demand 

multiple user class network model. Differentiability of the equilibrium flows is required to justify the 

concomitant derivation of sensitivity expressions for these flows as the design parameters are perturbed. 

3. Differentiability of the Equilibrium Flows 

Sufficient conditions for the differentiability of the equilibrium disaggregate link flows will be established 

using the implicit function theorem that states: 

Consider , a continuously differentiable, vector valued function 

mapping on an open set 
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Then there exists an S-dimensional neighbourhood W of s0 and a unique, continuously differentiable 

function  such that 
NRW →:g

( ) 00 xsg =  and ( ) 0ttgd =);(  for all W∈t .      

In the light of the SUE fixed-point condition, (9), consider the gap function for the link flows 

( ) ( ) ( )[ ]sxuPsqxsxd ;; ⋅⋅∆−= .      (11) 

Clearly for design parameters, s, the link flows x~ are a solution to the SUE if and only if ( ) 0;~ =sxd . 

For every point, , where the Jacobian is non-singular,0s ( )( ) 0;~
00 ≠∇ ssxdx , the implicit function 

theorem therefore states that the equilibrium flows are continuously differentiable as a function of the 

design parameters (in some neighbourhood of ). 0s

Note that, by assumptions (A1) and (A2), the gap function is differentiable with respect to the link flows, 

giving 

( ) ( )sxuPsqId xux ;∇⋅∇⋅⋅∆−=∇ .      (12) 

However, this does not mean that the equilibrium flows are a continuously differentiable function of the 

design parameters because there is no guarantee that the Jacobians in (13) are invertible. In fact, the 

constant cost pseudo-paths arising from our variable demand model contribute zero rows to , which 

is therefore rank deficient and hence non-invertible. 

ux∇

To proceed, we consider a reduced formulation of the network flows, by removing the flows on the 

pseudo-paths and links. Using similar notation to that of Bellei et al. (2002), the [K-MR x K] matrix I 
- is 

constructed by removing from the [K x K] identity matrix the MR rows that correspond to the pseudo-

paths . Therefore the reduced vector of path flows, with the flow on alternatives corresponding to 

the pseudo-paths removed, is  

rmf ,
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fIf
−− = .         (13) 

The [K x 1] vector I-T
f has correct entries for the �real� path flows, but all pseudo-path flows appear as 

zero. The [MR x 1] vector of removed path flows are 

fIf
11 = ,         (14) 

where I
1 is derived from the identity matrix with all rows deleted except those corresponding to the 

pseudo-paths. 

For each class/OD movement only one of the constituent flows has been removed from f to obtain . 

Flow conservation therefore allows us to retrieve the full path flow vector from the reduced path flow 

vector, . 

−
f

−
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Where is defined in (3). Consequently, the full path flow vector is Ψ
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.      (16) 

Let be the link path incidence matrix with those rows and columns removed that correspond to the 

pseudo-links and pseudo-paths. The reduced link flow vector, with the flows on pseudo-links removed, is  

−∆

−−− ∆= fx          (17) 

The reduced path utility vector can be calculated from the set of link costs, , without the pseudo-links 

included 

−
t

( )sxtIu ;−−−−− ⋅∆−Ψ= TTυ       (18) 

Note that the full vector of deterministic path utilities can be retrieved since pre-multiplying by I-T
 inserts 

zeros at the positions of the removed paths and, by construction, the removed pseudo-paths have zero 

utility. Therefore 

−−= uIu
T

.         (19) 

The fixed-point condition for the reduced path flows is obtained by pre-multiplying (9) by I-

( )−−−− ⋅⋅= uIPqIf
T

       (20) 

The argument of the choice model is the full path utility vector so the correct proportions of flow are 

assigned to all paths. The full demand matrix is used. This fixed-point condition is equivalent to (9) 

because the reduced flows uniquely determine the flows on each of the pseudo-paths. The reduced link 

flow fixed-point SUE condition is 

( ) ( ){ }[ ]sxtIIPsqIx ;−−−−−−−− ∆−Ψ⋅⋅∆= TTT υ      (21) 

We apply the implicit function theorem to the gap function 

( ) ( ) ( )[ ]sxuPsqIxsxd ;; −−−−−− ⋅⋅∆−=        (22) 

d
-(.) is single-valued and C1 because (by A1 and A2) the link cost functions and the choice model are C1. 

It remains to show that the Jacobian Determinant (with respect to x-) is non-zero  

( ) ( )[ ]( )sxuPsqIId
xx

;−−−− ⋅⋅∆∇−=∇ −− .      (23) 

Using (18) and (19) this gives 

( ) ( ) ( ) ( ) ( )( )sxtIPsqIId
xux

;−−−−−−
−− ∇⋅∆⋅∇⋅⋅∆+=∇

T
    (24) 

The choice probability Jacobian is positive semi-definite (Daganzo 1979). Assume that: Pu∇

A3.  The Jacobian ( )sxt
x

;−−
−∇  is positive definite (and hence invertible). 

Pre-multiplying (25) by this reduced link cost Jacobian gives 

( ) ( ) ( ) ( ) ( ) ( ) (( )sxtIPqIsxtsxtdsxt
xuxxxx

;;;; −−−−−−−−−−−−−
−−−−− ∇⋅∆⋅∇⋅⋅∆∇+∇=∇∇

TTTT )
The first term on the right hand side is positive definite by (A3). The second term is positive semi-definite 

since it is a quadratic form applied to a positive semi-definite matrix. This term is multiplied by the 

demand matrix that is positive definite since the demands are positive and the matrix diagonal. The entire 



right hand side is therefore the sum of a positive semi-definite matrix and a positive definite matrix and is 

hence positive definite. 

On the left hand side,  is therefore positive definite and hence invertible. In 

addition, is invertible (by A3). Finally then, 

( ) dsxt
xx −− ∇∇ −− T

;

( )Tsxt
x

;−−
−∇ d

x−
∇  is invertible, with 

[ ] ( )[ ] ( )TT
sxtdsxtd

xxxx
;;

1
1 −−

−
−−−

−−−− ∇∇∇=∇ .     (25) 

Consider a setting of the design parameters 0ss = and the corresponding SUE link flows, . 

Application of the implicit function theorem gives us that there is an open neighbourhood W of , and a 

continuously differentiable function g such that 

−
0

~x

0s

( ) −= 00
~xsg  and ( ) −= xsg ~

 for all  i.e. 

. This implies that the full vector of disaggregate SUE link flows is a continuously 

differentiable function of the design parameters, since all disaggregate link flows are uniquely specified 

by a continuously differentiable function of the reduced link flows 

W∈s

[ ]( ) 0ssgd =− ,

( ) ( ){ }[ ]sxtIIPsqx ;−−−−− ∆−Ψ⋅⋅∆= TTT υ .     (26) 

4. Link Based Sensitivity Analysis of the Equilibrium Flows 

Standard optimisation algorithms need gradient information to find minima/maxima. For the SUE flows, 

computation of the relevant Jacobian matrices by numerical differencing requires many SUE evaluations 

and is prone to error due to the amplification of inaccuracies in the calculation of the SUE flows (see 

Connors et al. 2003). A sensitivity analysis of the SUE flows provides analytical expressions for the 

Jacobian of link flows that, in turn, are required to derive Jacobian matrices describing the gradients of 

any objective function in a network design optimisation (see MagnantiWong 1984). 

Sensitivity analysis for the elastic demand UE case can be found in Yang (Yang 1997), for logit SUE in 

Davis (1994) and for single user class, fixed demand probit SUE in Clark & Watling (ClarkWatling 

2002b). In this section, we calculate the sensitivity expressions for the multiple user-class variable 

demand probit SUE link flows. 

The Taylor series expansion of the gap function (11) about the equilibrium flows at some initial setting, 

s0, of the design parameters is 

( ) ( )( ) ( )( ) ( )( )[ ] ( )( )( )[ ]0;~0;~00
0000

~;~; ssdsxxdssxdsxd
ssxdsssxdx −∇+−∇+≈   (27) 

We denote the �link flow Jacobian� by Jx and the �design parameter Jacobian� by Js; both are evaluated at 

the initial equilibrium flows. Evaluating d(.) with the network flows at (the new) equilibrium, ( )sxx ~= , 

by definition of the gap function, gives ( )( ) 0ssxd =,~
and, invoking the results of the previous section, 

the equilibrium flows at s can be expressed in terms of those at s0 as 

( ) ( ) ( )0

1

0
~~ ssJJsxsx sx −⋅−≈ −

.         (28) 

This approximation is accurate in the neighbourhood of  where the neglected (curvature) terms in the 

Taylor expansion of  remain small. This approximation should be expected to break down where 

the variation in flows displays high curvature. 

0s

);( sxd

4.1 The link cost function prototype 

In order to present explicit sensitivity expressions, the link cost functions that will be used in this paper 

(see DaganzoSheffi 1977) are of the form 

( )xa
mm

a
m
a tt βτ += .          (29) 

Here,  is the common link cost. The parameter is the value of time for user-class m and is a 

constant cost (toll) specific to this link and this user-class. The corresponding path costs are 

( ).at
mβ m

aτ

( ) ( )[ ] rm
ka

a
a

mm
a

a

rm
ka

m
a

rm
k ttc ,

,

,

,

, δβτδ ⋅+== ∑∑ xx .      (30) 



For convenience (and to reduce the matrix sizes for numerical computation), we split the design 

parameters into various types: demand, class specif c fixed link costs (tolls), value of time parameters and 

common link cost function parameters, so that 

i

[ ]tq sssss ,,, βτ=  and 

( ) ( ) ( ) ( ) ( ttqq tq
ssdssdssdssdssd sssss −⋅ )∇+−⋅∇+−⋅∇+−⋅∇=−⋅∇ 0000 ββττ βτ

 (31) 

4.2 Link Flow Jacobian 

We begin by invoking the chain rule to write cPqIJ xcx ∇⋅∇⋅⋅∆−= MN . We assume no inter-class 

nor inter-OD dependence of the path choice probabilities, i.e. 0,, =∂∂ sn
j

rm
k cP unless n = m and r = s. 

This gives a block diagonal structure to the path choice probability Jacobian Pc∇ by class, within which 

it is block diagonal by OD movement. 
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This allows us to write  as xJ
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The path costs are defined to be . With the function prototype (29), the link cost Jacobian 

comprises terms like 
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T∆=
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The [MN x MN] link cost Jacobian is therefore 
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In the case of separable link costs that are functions of the total link flow (summed across classes) 
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a
m
a txt ′=∂∂ βx  for all classes j=1,�,M, and the off-diagonal terms are zero. 
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4.3 Class-Specific Link Constant (link toll) Jacobian 

For those design parameters, , changing the class-specific link constants, the [MN x L] 

Jacobian is  

[ Lss ,...,1=s ]
cPqJ c ττ ∇⋅∇⋅⋅∆−=
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The [MN x L] matrix, [ ] [ ]m
jaj

m
a st ,δ=∂∂=∇ ts , where when the design 

parameter corresponds to the class-specific link constant, , for class m on link a; each column has 

only one non-zero entry.  Therefore the L columns of are those picked by 

1, =m
jaδ

js m
aτ

τJ ts∇ directly from the block-

diagonal matrix in (35).  

 

4.4 Value of Time Jacobian 

For those design parameters, , changing values of time for certain classes, the [MN x L] 

Jacobian is 

[ Lss ,...,1=s ]
cPqJ c ββ ∇⋅∇⋅⋅∆−= , as in (35). Here 
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In each MN length column of , the vector of common link travel times,ts∇ [ ]TNtt ,...,1=t , occurs in the 

row-block of the class specified by the design parameter.  

 

4.5 Common Link Cost Jacobian 

For those design parameters, , changing constants in the shared link cost functions, the 

[MN x L] Jacobian is 

[ Lss ,...,1=s ]
cPqJ c tt ∇⋅∇⋅⋅∆−= , as in (35). Here 
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4.6 Demand Jacobian 

For ease of notation, we rewrite the gap function, using (3), so that the OD demands appear as a vector: 

( ) ( ) ( )q
T

q diag sqPxsxd �; ⋅Ψ⋅⋅∆−=     (36) 

On differentiating with respect to the OD demands, [ ]Lss ,...,1=s , we find that the demand Jacobian,  

is composed of class-blocks 
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The design parameters simply designate those OD/class demands that are being perturbed and so the last 

matrix comprises zeros and ones, and simply picks out the path choice probabilities for the relevant class-

OD pairs. 

 

4.7 Gradient of the Equilibrium Link Flows 

The Jacobians Jx and Js describe the sensitivity of the SUE aggregate link flows to the network design 

parameters and hence provide gradient information for the NDP optimisation. From the sensitivity 

analysis, it easily follows that 

( ) SIJJsx sxs

1~ −−≈∇  

where IS is the identity matrix (of size equal to the number of design parameters). 

 

5. Implementation and Computational Issues 

Numerical computation of the SUE flows, and their sensitivities to changes in the design parameters, 

comprises several stages, each of which can be accomplished using a variety of methods. Given current 

path costs, the probit path choice probabilities need to be calculated. These probabilities are used within 

an iterative optimisation algorithm to determine the equilibrium flows; at each iteration, a search direction 

and step length are required. Once the equilibrium flows are known, the Jacobians must be computed to 

obtain the sensitivity expressions in the previous section. 

There is no closed form expression for the probit path choice probabilities, which must therefore be 

computed either by numerical integration (e.g. Genz 1992), simulation (e.g. Monte Carlo as in 

SheffiPowell 1981), or by analytic approximation (review in Rosa 2003). Approximation by simulation 

(Monte Carlo or otherwise) introduces non-smooth variation in the equilibrium flows (as the design 



parameters are smoothly varied) due to random sampling of the multivariate probability distribution; 

estimating the path choice probabilities via analytic approximation does not introduce such artefacts. In 

this paper, we follow the recommendation of Rosa (Rosa 2003) and use the Mendell-Elston analytic 

approximation method (MendellElston 1974). Monte Carlo simulation is not used anywhere in this paper 

To calculate the equilibrium flows, we use an algorithm based on the �traditional� method of successive 

averages (MSA), (see Wilde 1964). We seek to iteratively reduce the objective function of the SUE 

equivalent optimisation (Sheffi 1985) using the search direction from the MSA algorithm (moving toward 

the auxiliary flows). However, rather than using the prescribed, 1/n, step length of MSA at each iteration, 

we calculate an optimised step length using a quadratic approximation (MaherHughes 1997), augmenting 

this with a bisecting line search when necessary, to ensure improvement at every iteration. 

Once the equilibrium flows have been determined, computation of their sensitivities to changes in the 

design parameters requires calculation of all the Jacobian matrices detailed in the previous section. One 

component in these formulae requires special effort: the Jacobian of path-choice probabilities with respect 

to path costs, . A method to compute this Jacobian, which Daganzo (1979) attributes to McFadden, 

is described in Clark and Watling (2002b). The choice probabilities required within the calculation 

of are calculated using the method of Mendell-Elston. 

Pc∇

Pc∇

The inverse of the path-covariance matrix appears in the definition of the probit path choice probabilities, 

and in the calculation of the path-choice probability Jacobian. Although the path-covariance matrix may 

be singular (see ClarkWatling 2002a) as it is, for example, in the figure-of-eight network, the network 

equilibrium flows are well-behaved and vary smoothly with the design parameters. Moreover, the probit 

model, that is to say the multivariate normal probability density function, can accommodate a singular 

variance-covariance matrix. However, our methods for computing the SUE flows and the sensitivity 

expressions presented in this paper do run into difficulties when the path-covariance matrix is not 

invertible. We therefore adopt a mechanism for avoiding this scenario, and construct the path set to avoid 

any rank deficiencies in the link-path incidence matrix for each OD pair that would result in such a non-

invertible path-covariance matrix. In the standard MSA algorithm (Sheffi 1985), all paths are implicitly 

available. The active paths are generated incrementally, at each iteration, using auxiliary solutions 

generated by a stochastic shortest path method. While in an infinite number of iterations this algorithm 

would generate all conceivable paths, in practice (at the end of a finite number of iterations) the active 

path set simply comprises those paths generated thus far during the procedure. The alternative method for 

calculating probit SUE, as used in this paper, is to define the active path set upfront, avoiding 

degeneracies in the link-path incidence matrix for all OD pairs. The path set is generated heuristically in 

an attempt to include all paths that carry �significant� quantities of flow at equilibrium: this process 

begins with inclusion of the pseudo-links as the no-travel paths, and the shortest free flow path for each 

OD pair. With this initial path set, we iterate as follows: given the current path set, the equilibrium flows 

and resulting path costs are computed under ten times the normal demand, then new shortest and �non-

degenerate� paths are added to the path set (as in the Sheffi MSA). Such iterations continue until no new 

paths are generated under the inflated demand and the resulting path set is then fixed. 

While in theory, the probit model assigns strictly positive flows to every conceivable path in the network, 

in numerical computations this is limited by machine precision, and in reality is restricted by individuals� 

rationality and limited network knowledge. In the standard implementation of MSA, the path set is 

limited in size by the number of iterations, and the set of active paths changes each time to equilibrium 

flows are calculated. Our alternative approach also restricts the size of the path set, although it is 

consistent for all calculations of the SUE flows at different settings of the design parameters. We confirm 

that at the extremes of the tested regime, no new shortest paths become attractive. 

6. Numerical Experiments 

We consider the Headingley network: 73 nodes, 240 OD movements (hence 240 pseudo-links) and 188 

road links, with elastic demand and two user classes that have independent values of time, set to be 5.6 

pence/minute and 10.5 p/m (see Department for Transport 2004). The path set is generated up front as 

described in the previous section, resulting in 1463 paths. 



 

Figure 1: The Headingley Network 

Appropriate costs for the pseudo-paths are calculated from a fixed demand assignment to the real links. 

For each OD movement, the pseudo-link cost is set equal to the maximum path cost. The probit variance 

for each link is set to be a multiple of the free flow time on that link. Since the pseudo-links have constant 

cost, they tend to have higher �free flow� times than other links in the network and hence are accorded 

relatively high variances, representing systematically higher variation in the travel/no travel decision than 

the perceived cost variation between alternative routes. Clearly, any other variance structure could be 

adopted with this model. Though the approach implemented is not substantiated by empirical evidence, it 

is convenient and seems reasonable. 

The test network is shown in Figure 1. Origins and destinations are marked with triangles; the 

corresponding pseudo-links are not displayed in this figure. One scenario is investigated in this paper: a 

flat toll is imposed on the links within the marked area of the network. Sensitivity analysis of the 

equilibrium link flows is calculated at zero toll, and the new equilibrium flows are computed for various 

toll levels from -£5 to +£5. 

 

Figure 2: Variation in demand with toll, by user class. 



 

Figure 3: Variation in travel time with toll, by user class. 

 

In Figures 2 and 3 the solid lines represent the equilibrium state of the network, with the SUE flows 

recomputed at each toll level. The dashed line is evaluated using the equilibrium flows that are predicted 

by the sensitivity analysis for this toll level. The approximations derived from the sensitivity expressions 

are tangential to the �true� (recomputed) equilibrium behaviour at zero toll, where the sensitivity analysis 

was conducted. 

The sensitivity analysis gives a linear approximation to the SUE flows and hence to the total number 

travelling on the real network, since this is simply a sum of certain flows. Therefore, the dashed lines in 

Figure 2 are straight. However, travel time is not a linear function of flow, so the sensitivity analysis 

predictions in Figure 3 are not necessarily straight-line approximations. 

The two user classes are distinguished by their value of time, and the toll imposed in this example is the 

same for all users. Figure 2 shows that demand for travel decreases with toll for users with a low value of 

time, removing congestion on the network, provoking an increase in the number of high value of time 

users choosing to travel. Figure 3 displays the total travel time by user class, calculated from those 

travelling on the real links in the network. As the toll increases, there is a decrease in total travel time for 

low value of time users; this is due to the decrease in number travelling. Similarly the increase in high 

value of time users choosing to travel results in an increases total travel time for this class. 

7. Conclusions 

In this paper we present a probit SUE model with multiple user classes and elastic demand, and establish 

conditions under which it the equilibrium flows are differentiable with respect to the design parameters. 

Sensitivity expressions are derived for the equilibrium flows under changes in demand and changes to the 

network design parameters. The constituent Jacobian matrices provide accurate and smooth gradient 

information regarding the impact of local perturbations to these parameters.  

The method of implementation described, particularly the avoidance of simulation methods, avoids the 

difficulties in interpreting Monte Carlo error and is shown to be applicable to a realistic sized network. 

Acknowledgements 

The research described in this paper was conducted under the financial support of the U.K. Engineering & 

Physical Sciences Research Council. 

Thanks to Mike Maher and Andrea Rosa for valuable discussions regarding the calculation of the probit 

SUE flows. 

References 

Bell, M.G.H., Cassir, C., Iida, Y.Lam, W.H.K. "A sensitivity based approach to network reliability 

assessement." 14th Int. Symp on Transportation and Traffic Theory, 283-300. 

Bell, M.G.H.Iida, Y. (1997). Transportation network analysis., Wiley, Chichester. 

Bellei, G., Gentile, G.Papola, N. (2002). "Network pricing optimization in multi-user and multimodal 

context with elastic demand." Transportation Research Part B: Methodological, 36(9), 779-798. 

Cantarella, G.E. (1997). "A general fixed point approach to multi-mode multi-user equilibrium 

assignment with elastic demand." Transportation Science, 31, 107-128. 



Cascetta, E., Nuzzolo, A., Russo, F.Vitetta, A. "A modified logit route choice model overcoming path 

overlapping problems: Specification and some calibration results for interurban networks." 

Thirteenth International Symposium on Transportation and Traffic Theory, Lyon, France. 

Chen, A., Yang, H., Lo, H.K.Tang, W.H. (2002). "Capacity reliability of a road network: An assessment 

methodology and numerical results." Transportation Research Part B: Methodological, 36(3), 

225-252. 

Clark, S.D.Watling, D.P. (2002a). "Sensitivity analysis of the probit-based stochastic user equilibrium 

assignment model." Transportation Research Part B: Methodological, 36(7), 617-635. 

Clark, S.D.Watling, D.P. (2002b). "Sensitivity analysis of the probit-based stochastic user equilibrium 

assignment model." Transportation Research Part B-Methodological, 36(7), 617-635. 

Connors, R., Sumalee, A.Watling, D. (2003). "Understanding the variable demand probit-based network 

design problem." UTSG 36th Annual Conference, Newcastle-upon-Tyne. 

Daganzo, C.F. (1979). Multinomial probit: The theory and its application to demand forecasting, 

Academic Press, New York. 

Daganzo, C.F. (1982). "Unconstrained extremal formulation of some transportation equilibrium 

problems." Transportation Science, 16(3), 332-360. 

Daganzo, C.F.Sheffi, Y. (1977). "On stochastic models of traffic assignment." Transportation Science, 

11(3), 253-274. 

Davis, G.A. (1994). "Exact local solution of the continuous network design problem via stochastic user 

equilibrium assignment." Transportation Research Part B: Methodological, 28(1), 61-75. 

Du, Z.P.Nicholson, A. (1997). "Degradable transportation systems: Sensitivity and reliability analysis." 

Transportation Research Part B-Methodological, 31(3), 225-237. 

Fisk, C. (1980). "Some developments in equilibrium traffic assignment." Transportation Research Part 
B: Methodological, 14(3), 243-255. 

Gentile, G.Papola, N. (2001). "Network design through sensitivity analysis and singular value 

decomposition." TRISTAN IV, San Miguel, Azores. 

Genz, A. (1992). "Numerical computation of multivariate normal probabilities." Journal of 
Computational and Graphical Statistics, 1, 141-149. 

Gliebe, J.P., Koppelman, F.S.Ziliaskopoulos, A.K. "Route choice using a paired combinatorial logit 

model." Transportation Research Board, Washington D.C. 

Leurent, F. (1998). "Sensitivity and error analysis of the dual criteria traffic assignment model." 

Transportation Research Part B-Methodological, 32(3), 189-204. 

Magnanti, T.L.Wong, R.T. (1984). "Network design and transportation planning: Models and 

algorithms." Transportation Science, 18, 1-55. 

Maher, M.J.Hughes, P.C. (1997). "A probit-based stochastic user equilibrium assignment model." 

Transportation Research Part B: Methodological, 31(4), 341-355. 

Mendell, N.R.Elston, R.C. (1974). "Multifactorial qualitative traits: Genetic analysis and prediction of 

recurrence risks." Biometrics, 30, 41-57. 

Nielsen, O.A., Daly, A.Frederiksen, R.D. (2002). "A stochastic route choice model for car travellers in 

the copenhagen region." Networks and Spatial Economics, 2(4), 327-346. 

Patriksson, M.Rockafellar, R.T. (2002). "A mathematical model and descent algorithm for bilevel traffic 

management." Transportation Science, 36(3), 271-291. 

Patriksson, M.Rockafellar, R.T. (2003). "Sensitivity analysis of aggregated variational inequality 

problems, with application to traffic equilibria." Transportation Science, 37(1), 56-68. 

Prashker, J.N.Bekhor, S. (1999). "Stochastic user-equilibrium formulations for extended-logit assignment 

models." Transportation Research Record, 1676, 145-151. 

Rosa, A. (2003). "Probit based methods in traffic assignment and discrete choice modelling," Napier 

University, Edinburgh. 

Sheffi, Y. (1985). Urban transportation networks: Equilibrium analysis with mathematical programming 
methods, Prentice-Hall, Inc, Englewood Cliffs, New Jersey. 

Sheffi, Y.Powell, W.B. (1981). "A comparison of stochastic and deterministic traffic assignment over 

congested networks." Transportation Research Part B: Methodological, 15(1), 53-64. 

Tobin, R.L.Friesz, T.L. (1988). "Sensitivity analysis for equilibrium network flow." Transportation 
Science, 22(4), 242-250. 



Transport, D.f. (2004). "Economic assessment of road schemes. The coba manual." 

Vovsha, P.Bekhor, S. (1998). "The link-nested logit model of route choice: Overcoming the route 

overlapping problem." Transportation Research Record, 1645, 133. 

Wilde, D.J. (1964). Optimum seeking methods, Prentice-Hall, New Jersey. 

Yang, H. (1997). "Sensitivity analysis for the elastic-demand network equilibrium problem with 

applications." Transportation Research Part B: Methodological, 70(25 Refs). 

Yang, H.Bell, M.G.H. (1997). "Traffic restraint, road pricing and network equilibrium." Transportation 
Research Part B: Methodological, 31(4), 303-314. 

Yang, H., Sasaki, T., Iida, Y.Asakura, Y. (1992). "Estimation of origin-destination matrices from link 

traffic counts on congested networks." Transportation Research Part B: Methodological, 26(6), 

417-434. 

Ying, J.Q.Miyagi, T. (2001). "Sensitivity analysis for stochastic user equilibrium network flows - a dual 

approach." Transportation Science, 35(2), 124-133. 

 

  

 


