948 research outputs found
Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit
We present the first experimental realization of a widely frequency tunable,
non-degenerate three-wave mixing device for quantum signals at GHz frequency.
It is based on a new superconducting building-block consisting of a ring of
four Josephson junctions shunted by a cross of four linear inductances. The
phase configuration of the ring remains unique over a wide range of magnetic
fluxes threading the loop. It is thus possible to vary the inductance of the
ring with flux while retaining a strong, dissipation-free, and noiseless
non-linearity. The device has been operated in amplifier mode and its noise
performance has been evaluated by using the noise spectrum emitted by a voltage
biased tunnel junction at finite frequency as a test signal. The unprecedented
accuracy with which the crossover between zero-point-fluctuations and shot
noise has been measured provides an upper-bound for the noise and dissipation
intrinsic to the device.Comment: Accepted for Physical Review Letters. Supplementary material can be
found in the source packag
Mapping the optimal route between two quantum states
A central feature of quantum mechanics is that a measurement is intrinsically
probabilistic. As a result, continuously monitoring a quantum system will
randomly perturb its natural unitary evolution. The ability to control a
quantum system in the presence of these fluctuations is of increasing
importance in quantum information processing and finds application in fields
ranging from nuclear magnetic resonance to chemical synthesis. A detailed
understanding of this stochastic evolution is essential for the development of
optimized control methods. Here we reconstruct the individual quantum
trajectories of a superconducting circuit that evolves in competition between
continuous weak measurement and driven unitary evolution. By tracking
individual trajectories that evolve between an arbitrary choice of initial and
final states we can deduce the most probable path through quantum state space.
These pre- and post-selected quantum trajectories also reveal the optimal
detector signal in the form of a smooth time-continuous function that connects
the desired boundary conditions. Our investigation reveals the rich interplay
between measurement dynamics, typically associated with wave function collapse,
and unitary evolution of the quantum state as described by the Schrodinger
equation. These results and the underlying theory, based on a principle of
least action, reveal the optimal route from initial to final states, and may
enable new quantum control methods for state steering and information
processing.Comment: 12 pages, 9 figure
Precision on leptonic mixing parameters at future neutrino oscillation experiments
We perform a comparison of the different future neutrino oscillation
experiments based on the achievable precision in the determination of the
fundamental parameters theta_{13} and the CP phase, delta, assuming that
theta_{13} is in the range indicated by the recent Daya Bay measurement. We
study the non-trivial dependence of the error on delta on its true value. When
matter effects are small, the largest error is found at the points where CP
violation is maximal, and the smallest at the CP conserving points. The
situation is different when matter effects are sizable. As a result of this
effect, the comparison of the physics reach of different experiments on the
basis of the CP discovery potential, as usually done, can be misleading. We
have compared various proposed super-beam, beta-beam and neutrino factory
setups on the basis of the relative precision of theta_{13} and the error on
delta. Neutrino factories, both high-energy or low-energy, outperform
alternative beam technologies. An ultimate precision on theta_{13} below 3% and
an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a
neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure
Towards a unique formula for neutrino oscillations in vacuum
We show that all correct results obtained by applying quantum field theory to
neutrino oscillations can be understood in terms of a single oscillation
formula. In particular, the model proposed by Grimus and Stockinger is shown to
be a subcase of the model proposed by Giunti, Kim and Lee, while the new
oscillation formulas proposed by Ioannisian and Pilaftsis and by Shtanov are
disproved. We derive an oscillation formula without making any relativistic
assumption and taking into account the dispersion, so that the result is valid
for both neutrinos and mesons. This unification gives a stronger
phenomenological basis to the neutrino oscillation formula. We also prove that
the coherence length can be increased without bound by more accurate energy
measurements. Finally, we insist on the wave packet interpretation of the
quantum field treatments of oscillations.Comment: 30 pages, 1 figure; the proof that plane wave oscillations do no
exist is extended to stationary models; the influence of dispersion is
explained in more detail
Neutrino physics at accelerators
Present and future neutrino experiments at accelerators are mainly concerned
with understanding the neutrino oscillation phenomenon and its implications.
Here a brief account of neutrino oscillations is given together with a
description of the supporting data. Some current and planned accelerator
neutrino experiments are also explained.Comment: 23 pages, 24 figures. Talk given at the Corfu Summer Institute on
Elementary Particle Physics 200
The Offline Software Framework of the Pierre Auger Observatory
To be published in the ProceedingsInternational audienceThe Pierre Auger Observatory is designed to unveil the nature and the origins of the highest energy cosmic rays. The large and geographically dispersed collaboration of physicists and the wide-ranging collection of simulation and reconstruction tasks pose some special challenges for the offline analysis software. We have designed and implemented a general purpose framework which allows collaborators to contribute algorithms and sequencing instructions to build up the variety of applications they require. The framework includes machinery to manage these user codes, to organize the abundance of user-contributed configuration files, to facilitate multi-format file handling, and to provide access to event and time-dependent detector information which can reside in various data sources. A number of utilities are also provided, including a novel geometry package which allows manipulation of abstract geometrical objects independent of coordinate system choice. The framework is implemented in C++, and takes advantage of object oriented design and common open source tools, while keeping the user side simple enough for C++ novices to learn in a reasonable time. The distribution system incorporates unit and acceptance testing in order to support rapid development of both the core framework and contributed user code
Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector
Cosmic rays extensive air showers (EAS) are associated with transient radio
emission, which could provide an efficient new detection method of high energy
cosmic rays, combining a calorimetric measurement with a high duty cycle. The
CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is
investigating this phenomenon in the 10^17 eV region. One challenging point is
the understanding of the radio emission mechanism. A first observation
indicating a linear relation between the electric field produced and the cross
product of the shower axis with the geomagnetic field direction has been
presented (B. Revenu, this conference). We will present here other strong
evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz,
Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde
The MSW Effect in Quantum Field Theory
We show in detail the general relationship between the Schr\"{o}dinger
equation approach to calculating the MSW effect and the quantum field
theoretical S-matrix approach. We show the precise form a generic neutrino
propagator must have to allow a physically meaningful ``oscillation
probability'' to be decoupled from neutrino production fluxes and detection
cross-sections, and explicitly list the conditions---not realized in cases of
current experimental interest---in which the field theory approach would be
useful.Comment: 20 page REVTeX file, submitted to Phys. Rev.
- …
