71 research outputs found

    Hamster and Murine Models of Severe Destructive Lyme Arthritis

    Get PDF
    Arthritis is a frequent complication of infection in humans with Borrelia burgdorferi. Weeks to months following the onset of Lyme borreliosis, a histopathological reaction characteristic of synovitis including bone, joint, muscle, or tendon pain may occur. A subpopulation of patients may progress to a chronic, debilitating arthritis months to years after infection which has been classified as severe destructive Lyme arthritis. This arthritis involves focal bone erosion and destruction of articular cartilage. Hamsters and mice are animal models that have been utilized to study articular manifestations of Lyme borreliosis. Infection of immunocompetent LSH hamsters or C3H mice results in a transient synovitis. However, severe destructive Lyme arthritis can be induced by infecting irradiated hamsters or mice and immunocompetent Borrelia-vaccinated hamsters, mice, and interferon-gamma- (IFN-γ-) deficient mice with viable B. burgdorferi. The hamster model of severe destructive Lyme arthritis facilitates easy assessment of Lyme borreliosis vaccine preparations for deleterious effects while murine models of severe destructive Lyme arthritis allow for investigation of mechanisms of immunopathology

    Use of optical mapping to sort uropathogenic Escherichia coli strains into distinct subgroups

    Get PDF
    Optical maps were generated for 33 uropathogenic Escherichia coli (UPEC) isolates. For individual genomes, the NcoI restriction fragments aligned into a unique chromosome map for each individual isolate, which was then compared with the in silico restriction maps of all of the sequenced E. coli and Shigella strains. All of the UPEC isolates clustered separately from the Shigella strains as well as the laboratory and enterohaemorrhagic E. coli strains. Moreover, the individual strains appeared to cluster into distinct subgroups based on the dendrogram analyses. Phylogenetic grouping of these 33 strains showed that 32/33 were the B2 subgroup and 1/33 was subgroup A. To further characterize the similarities and differences among the 33 isolates, pathogenicity island (PAI), haemolysin and virulence gene comparisons were performed. A strong correlation was observed between individual subgroups and virulence factor genes as well as haemolysis activity. Furthermore, there was considerable conservation of sequenced-strain PAIs in the specific subgroups. Strains with different antibiotic-resistance patterns also appeared to sort into separate subgroups. Thus, the optical maps distinguished the UPEC strains from other E. coli strains and further subdivided the strains into distinct subgroups. This optical mapping procedure holds promise as an alternative way to subgroup all E. coli strains, including those involved in infections outside of the intestinal tract and epidemic strains with distinct patterns of antibiotic resistance

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Microbial mercury resistance and potential methylation rates in the Upper Wisconsin River

    No full text
    Microbial mercury resistance and potential mercury methylation rates were examined in water, sediment-floc, and sediment cores from the Upper Wisconsin River. Mercury (II) resistance was quantified using aerobic and anaerobic heterotrophic media containing 0-75 Hg/ml pg+2. Methylation activity was determined by measuring CH32O3Hg+ formation from 203Hg(N03)2. Sediment incubations were carried out under strict anaerobic conditions. Aerobic and anaerobic heterotrophic bacteria were highly resistant to 14 pg/ml Hg+2. Anaerobic heterotrophic bacteria were more resistant to higher concentrations of Hg+2 than aerobic heterotrophic bacteria. Mercury methylation activity was near background in the water, highest in surface sediments, and decreased with increasing sediment depth. More than 98% of the added 203Hg was bound to sediments within 4 hrs of inoculation, while more than 3% was methylated during a 10-day incubation. As much as 7% of the added 203Hg was methylated in other experiments. This suggests that bound Hg+2 was available for methylation. Organical1y enriched sediments exhibited higher methylation actiity than less eutrophic sediments. The addition of peptone to sediments caused highly significant (p < 0.01) increases in methylation activity, while vitamin B12 and sewage sludge caused significant (p < 0.05) increases. The presence of oxygen in sediments inhibited methylation activity. This indicates that mercury methylation in the Upper Wisconsin River is primarily an anaerobic process. The optimum temperature for methylation was 35degreesC, although the maximum in situ temperature was 24degreesC. A seasona1 summer peak in methylation activity was observed in water, f1oc, and sediments. These data suggest that the Upper Wisconsin River sediments have the potential to release large amounts of toxic methylmercury to the overlying water

    Borreliacidal OspC Antibodies Specific for a Highly Conserved Epitope Are Immunodominant in Human Lyme Disease and Do Not Occur in Mice or Hamsters

    No full text
    Humans produce highly specific borreliacidal antibodies against outer surface protein C (OspC) shortly after infection with Borrelia burgdorferi sensu stricto. We previously demonstrated the epitope recognized by immunoglobulin M (IgM) and IgG OspC borreliacidal antibodies was located within the 50 amino acids nearest the carboxy (C) terminus. In this study, we show the immunodominant epitope is located in the highly conserved region within the seven C-terminal amino acids. Six early Lyme disease sera that contained borreliacidal activity and IgM and/or IgG OspC antibodies were chosen randomly and adsorbed with truncated OspC containing the 16 or 7 amino acids nearest the C terminus. Adsorptions with each truncated protein abrogated the borreliacidal activity completely. In addition, only small concentrations of OspC antibodies remained detectable by enzyme-linked immunosorbent assay and Western blotting. Moreover, borreliacidal OspC antibodies were not induced in laboratory mice or hamsters despite heavy infections with B. burgdorferi spirochetes. These findings confirm that borreliacidal antibodies comprise the majority of the IgM and IgG OspC antibody response in human Lyme disease and that the epitope is located in the highly conserved C terminus. In addition, rodent animal models appear to be inappropriate subjects for assessing the effectiveness of the epitope for serodiagnosis or as a human Lyme disease vaccine

    C-Terminal Region of Outer Surface Protein C Binds Borreliacidal Antibodies in Sera from Patients with Lyme Disease

    No full text
    Borreliacidal antibodies specific for outer surface protein C (OspC) are induced shortly after infection with Borrelia burgdorferi. In this study, we identified the region of OspC recognized by immunoglobulin M (IgM) and IgG borreliacidal antibodies. Sera from patients with early Lyme disease were screened for borreliacidal activity specific for B. burgdorferi 50772 and OspC antibodies. Seven sera that contained similarly high titers of each response were then chosen randomly and adsorbed with OspC or a truncated OspC (OspC-Dra) containing the 50 amino acids nearest the carboxy terminus. Adsorption with OspC or OspC-Dra completely eliminated the borreliacidal activity in six (86%) of seven sera and significantly decreased the activity in the remaining serum (titer of 10,240 to 1,280). Moreover, OspC antibodies were no longer detected by OspC enzyme-linked immunosorbent assay or in a Western blot that contained native OspC. The findings confirmed that sera from patients with early Lyme disease contain high concentrations of IgM or IgG borreliacidal antibodies that bind a conserved region of OspC
    corecore