1,499 research outputs found

    4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations

    Get PDF
    Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source 4U2206+54, previously proposed to be a Be star system, show the X-ray flux to be modulated with a period of approximately 9.6 days. If the modulation is due to orbital variability then this would be one of the shortest orbital periods known for a Be star X-ray source. However, the X-ray luminosity is relatively modest whereas a high luminosity would be predicted if the system contains a neutron star accreting from the denser inner regions of a Be star envelope. Although a 392s pulse period was previously reported from EXOSAT observations, a reexamination of the EXOSAT light curves does not show this or any other periodicity. An analysis of archival RXTE Proportional Counter Array observations also fails to show any X-ray pulsations. We consider possible models that may explain the properties of this source including a neutron star with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa

    The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504

    Full text link
    A probable binary period has been detected in the optical counterpart to the X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504 in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul 2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is coincident with an Optical Gravitational Lensing (OGLE) object in the lightcurves of which several optical outburst peaks are visible at ~ 268 day intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99% significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s pulse-period has revealed detections which correspond closely with predicted or actual peaks in the optical data. The relationship between this orbital period and the pulse period of 504s is within the normal variance found in the Corbet diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure

    Evidence for a very slow X-ray pulsar in 2S0114+650 from RXTE All-Sky Monitor Observations

    Full text link
    Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM) observations of the X-ray binary 2S0114+650 show modulations at periods close to both the optically derived orbital period (11.591 days) and proposed pulse period (~ 2.7 hr). The pulse period shows frequency and intensity variability during the more than 2 years of ASM observations analyzed. The pulse properties are consistent with this arising from accretion onto a rotating neutron star and this would be the slowest such period known. The shape of the orbital light curve shows modulation over the course of the entire orbit and a comparison is made with the orbital light curve of Vela X-1. However, the expected phase of eclipse, based on an extrapolation of the optical ephemeris, does not correspond with the observed orbital minimum. The orbital period derived from the ASM light curve is also slightly longer than the optical period.Comment: To be published in the Astrophysical Journal, 1999, volume 511. 9 figure

    The development of Bitcoin futures : exploring the interactions between cryptocurrency derivatives

    Get PDF
    We utilise a high-frequency analysis to investigate the period surrounding the establishment of two new futures contracts based on the performance of Bitcoin. Our analysis shows that there have been significant pricing effects sourced from both fraudulent and regulatory unease within the industry. While analysing breakpoints in efficiency, we verify the view that Bitcoin futures dominate price discovery relative to spot markets. However, we add to this research by finding that CBOE futures are found to be the leading source of informational flow when compared directly to their CME equivalent

    The Orbital Solution and Spectral Classification of the High-Mass X-Ray Binary IGR J01054-7253 in the Small Magellanic Cloud

    Full text link
    We present X-ray and optical data on the Be/X-ray binary (BeXRB) pulsar IGR J01054-7253 = SXP11.5 in the Small Magellanic Cloud (SMC). Rossi X-ray Timing Explorer (RXTE) observations of this source in a large X-ray outburst reveal an 11.483 +/- 0.002s pulse period and show both the accretion driven spin-up of the neutron star and the motion of the neutron star around the companion through Doppler shifting of the spin period. Model fits to these data suggest an orbital period of 36.3 +/- 0.4d and Pdot of (4.7 +/- 0.3) x 10^{-10} ss^{-1}. We present an orbital solution for this system, making it one of the best described BeXRB systems in the SMC. The observed pulse period, spin-up and X-ray luminosity of SXP11.5 in this outburst are found to agree with the predictions of neutron star accretion theory. Timing analysis of the long-term optical light curve reveals a periodicity of 36.70 +/- 0.03d, in agreement with the orbital period found from the model fit to the X-ray data. Using blue-end spectroscopic observations we determine the spectral type of the counterpart to be O9.5-B0 IV-V. This luminosity class is supported by the observed V-band magnitude. Using optical and near-infrared photometry and spectroscopy, we study the circumstellar environment of the counterpart in the months after the X-ray outburst.Comment: 12 pages, 13 figures and 3 tables. This paper has been accepted for publication in MNRA

    Investigating the Dynamics between Price Volatility, Price Discovery, and Criminality in Cryptocurrency Markets

    Get PDF
    This paper identifies several stylised facts relating to the volatility and price discovery process from eight cryptocurrencies utilising an empirical analysis of intra-day trading data to uncover four main results. First, cryptocurrencies exhibit weekend-volatility effects while intra-day volatility is found to be influenced by international trading times, periods of substantial volatility in the markets for oil, and GBP/USD and cybercrime events. Secondly, a thorough investigation of recent cybercriminality identifies that cryptocurrency hacks are found to increase both the volatility of the currency hacked and the correlations across the hacked currency and other cryptocurrencies. Thirdly, hacks significantly reduce price discovery sourced within the hacked currency relative to other cryptocurrencies. Finally, there are abnormal returns associated with the hacks observed in the hours prior to the actual hacking event, which reverts to zero at the time of the public announcement of the hack

    XMM-Newton discovery of transient X-ray pulsar in NGC 1313

    Full text link
    We report on the discovery and analysis of the transient X-ray pulsar XMMU J031747.5-663010 detected in the 2004 November 23 XMM-Newton observation of the spiral galaxy NGC 1313. The X-ray source exhibits pulsations with a period P~765.6 s and a nearly sinusoidal pulse shape and pulsed fraction ~38% in the 0.3-7 keV energy range. The X-ray spectrum of XMMU J031747.5-663010 is hard and is well fitted with an absorbed simple power law of photon index ~1.5 in the 0.3-7 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 20 mag allow us to identify XMMU J031747.5-663010 as an accreting X-ray pulsar located in NGC 1313. The estimated absorbed 0.3-7 keV luminosity of the source L~1.6\times 10^{39} ergs/s, makes it one of the brightest X-ray pulsars known. Based on the relatively long pulse period and transient behaviour of the source, we classify it as a Be binary X-ray pulsar candidate. XMMU J031747.5-663010 is the second X-ray pulsar detected outside the Local Group, after transient 18 s pulsating source CXOU J073709.1+653544 discovered in the nearby spiral galaxy NGC 2403.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS. Updated to match the accepted versio

    Inferring macro-ecological patterns from local presence/absence data

    Get PDF
    Biodiversity provides support for life, vital provisions, regulating services and has positive cultural impacts. It is therefore important to have accurate methods to measure biodiversity, in order to safeguard it when we discover it to be threatened. For practical reasons, biodiversity is usually measured at fine scales whereas diversity issues (e.g. conservation) interest regional or global scales. Moreover, biodiversity may change across spatial scales. It is therefore a key challenge to be able to translate local information on biodiversity into global patterns. Many databases give no information about the abundances of a species within an area, but only its occurrence in each of the surveyed plots. In this paper, we introduce an analytical framework (implemented in a ready‐to‐use R code) to infer species richness and abundances at large spatial scales in biodiversity‐rich ecosystems when species presence/absence information is available on various scattered samples (i.e. upscaling). This framework is based on the scale‐invariance property of the negative binomial. Our approach allows to infer and link within a unique framework important and well‐known biodiversity patterns of ecological theory, such as the species accumulation curve (SAC) and the relative species abundance (RSA) as well as a new emergent pattern, which is the relative species occupancy (RSO). Our estimates are robust and accurate, as confirmed by tests performed on both in silico‐generated and real forests. We demonstrate the accuracy of our predictions using data from two well‐studied forest stands. Moreover, we compared our results with other popular methods proposed in the literature to infer species richness from presence to absence data and we showed that our framework gives better estimates. It has thus important applications to biodiversity research and conservation practice

    Species Abundance Patterns in Complex Evolutionary Dynamics

    Full text link
    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. I. The nature of the companion star

    Get PDF
    Context: The INTEGRAL hard X-ray observatory has revealed an emerging population of highly obscured X-ray binary systems through multi-wavelength observations. Previous studies have shown that many of these sources are high-mass X-ray binaries hosting neutron stars orbiting around luminous and evolved companion stars. Aims: To better understand this newly-discovered population, we have selected a sample of sources for which an accurate localisation is available to identify the stellar counterpart and reveal the nature of the companion star and of the binary system. Methods: We performed an intensive study of a sample of thirteen INTEGRAL sources, through multi-wavelength optical to NIR photometric and spectroscopic observations, using EMMI and SofI instruments at the ESO NTT telescope. We performed accurate astrometry and identified candidate counterparts for which we give the optical and NIR magnitudes. We detected many spectral lines allowing us to determine the spectral type of the companion star. We fitted with stellar black bodies the mid-infrared to optical spectral energy distributions of these sources. From the spectral analysis and SED fitting we identified the nature of the companion stars and of the binary systems. (abridged).Comment: A&A in press; The official date of acceptance is 15/12/2007; 25 pages, 6 figures, 8 tables. New version with language editing required by edito
    • 

    corecore