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Abstract

This paper identifies several stylised facts relating to the volatility and price discovery process
from eight cryptocurrencies utilising an empirical analysis of intra-day trading data to uncover four
main results. First, cryptocurrencies exhibit weekend-volatility effects while intra-day volatility
is found to be influenced by international trading times, periods of substantial volatility in the
markets for oil, and GBP/USD and cybercrime events. Secondly, a thorough investigation of recent
cybercriminality identifies that cryptocurrency hacks are found to increase both the volatility of
the currency hacked and the correlations across the hacked currency and other cryptocurrencies.
Thirdly, hacks significantly reduce price discovery sourced within the hacked currency relative to
other cryptocurrencies. Finally, there are abnormal returns associated with the hacks observed
in the hours prior to the actual hacking event, which reverts to zero at the time of the public
announcement of the hack.

Keywords: Market Manipulation; Price Volatility; Cryptocurrency; Hacking; Cybercrime;
Cryptocurrencies; Bitcoin; GARCH; Currencies.

"... hacks in the cryptocurrency space are problematic since transactions are irreversible. Since the
network is decentralised and trustless, it doesn’t have a mechanism to discriminate between transactions
that are made with stolen coins or legitimate ones. Without the ability to reverse a transaction, the
protections around preventing illegitimate transactions become incredibly important."

Forbes1, September 27, 2018

1https://www.forbes.com/sites/forbesagencycouncil/2018/09/27/cryptocurrency-how-to-avoid-getting-hacked/
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1. Introduction

Cryptocurrencies involve blockchain, or ‘distributed ledger’, technology. Cryptocurrencies have
become popular because they enable efficient payment systems through a decentralised distributed
ledger, which does not depend on a political process or governmental regulatory system. Blockchain
technology is immutable (that is, the history can be added to but not changed). Blockchain tech-
nology transactions minimise search, legal, and transactions costs, as well as counterfeiting risks
[Harvey, 2017]. Cryptocurrency and blockchain research in its entirety is in its relative youth. Our
research attempts to establish key stylised facts surrounding the source of price volatility in eight
of the largest international cryptocurrencies determined by market capitalisation, while utilising a
number of methodological approaches to analyse the core of the investment product’s price discov-
ery. One such topic that has widely damaged both the confidence and integrity associated with both
these products and exchanges one such topic includes cybercriminality, such as fraud and hacking,
whose risks come in a variety of forms. For example, with access to the public’s credentials, hackers
can steal electronic identities and move funds from legitimate accounts. Hackers may engage in
phishing attacks in which the hacker steals credentials by faking the appearance of trustworthy
sources. Hackers may further steal information through direct security breaches. Concluding our
analysis, we set out to examine the frequency of hacks of the major cryptocurrencies from a recent
12-month period and determine the financial market consequences of these hacking events with
regards to price volatility and price discovery. We regard these hacking events as exogenous and
unexpected to the currency hacked. That is, there is attempted hacking of all cryptocurrencies at
all times, but the success of a hack is rather random and unexpected and subject to inadvertent
security breaches and is no more common for major or minor cryptocurrencies.

We obtained all intra-day trading data from September 2017 to August 2018 for eight major
cryptocurrencies: Bitcoin, Ethereum, Litecoin, Ripple, Stellar, Monero, Cardano, and Bitcoin cash.
Our empirical analysis of intra-day trading data shows the following stylised facts. First, we have
identified that there are substantial differences in cryptocurrency volatility between weekdays and
weekends robust across a number of measures. This is simply denoted as a ‘weekend effect’. Sec-
ondly, we identify that there are substantially elevated levels of cryptocurrency volatility while
United States and European markets are open; however, this volatility is substantially reduced
while Chinese and Japanese markets are operational. Finally, there is evidence of substantially el-
evated cryptocurrency volatility during episodes of stress in GBP/USD and oil markets. However,
we must also note that there is no evidence identified to accept the hypotheses that cryptocurrency
volatility varies based on the times that traditional markets open and indeed; there is no evidence
identified to support the presence of hour-of-the-day effects.

Developing from this evidence, we discover that cryptocurrency hacks not only increase volatil-
ity of the currency hacked but also increase the correlations with the hacked currency and other
currencies. Hence, cryptocurrency hacks are systematically damaging to cryptocurrency markets
generally. The observed changes are very much hack-specific, however, and do not affect all cur-
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rencies equally. Further, we observe changes in the information and component shares of price
discovery generated within the hacked currency, whereby there is a reduction in price discovery
found to be approximately 10-20%. Finally, we find abnormal returns associated with the hacks
of between -2% to -24%, depending on the specific event. The abnormal returns are observed 4
hours prior to the actual hacking event and revert back to zero at the time and announcement of
the hack.

What might uninformed investors assume in the world of cryptocurrencies? They might expect
that the exchange mechanism would be secure, units of currency deposited at an exchange could
be recovered, or, if sold, the payment would be transferred as directed. Furthermore, uninformed
investors would expect prices on the exchange to be the product of transactions between individuals
with no information advantage. These investors would most likely exhibit major behavioural biases,
such as representativeness, which would lead to a concentration of trading in the largest and best
publicised currencies; or, indeed, a trend-chasing bias that would lead to markets exhibiting bubble-
like behaviour, which would then manifest in positive return correlations. If the majority of market
participants are primarily uninformed when news of a hacking event is published, we would expect
a consistent reaction from these investors after the announcement of the hack. In the event of an
exchange hack, uninformed investors would be expected to: 1) trade out of the effected market
and into other currencies and exchanges, leading to an increase in volatility and correlation in the
markets; 2) observe changes in trading behaviour, which would, therefore, also lead to changes in
the information leadership, where the affected market should have reduced leadership relative to
other assets; 3) observed reactions will concentrate major assets; and 4) shift trending behavior
between assets.

In the event of a scam type event, such as an ICO fraud, uninformed investors would be expected
to: 1) lose confidence in all assets, leading to a general negative co-movement across the markets;
2) become uncertain about the value of all assets, leading to a general increase in volatility; and
3) observe that information leadership should be largely unaffected, if the hack is not related to
a single exchange asset combination. When there is a majority of informed traders, it would be
expected in advance of the event to observe persistence in post-event abnormal returns, that both
volatility and information leadership changes in the minor assets. In short, these markets present
evidence of manipulation when exhibiting such behaviour. If these markets are open to such ma-
nipulation, then the argument that they should be used by institutional investors for diversification
purposes is questionable. There are operational risks in these markets that are not captured by the
standard statistical approach to portfolio formation. Prior research, however, has not investigated
the financial market impacts of cryptocurrency hacks. In this paper, we contribute to this new area
of study by examining the effects of cryptocurrency hacks on volatility, asset correlations, price
discovery, and the magnitude and timing of abnormal returns.

This paper is organised as follows. In Section 2, we provide a description of the methodology
used to address these issues. Section 3 introduces the data. Section 4 introduces the selected
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methodologies as separated in three directions of analyses: i) to analyse stylised facts relating to
intra-day cryptocurrency volatility; ii) to analyse the relationship between cryptocurrency volatility
and traditional financial markets; and iii) to analyse the influence of cybercriminality on cryptocur-
rency volatility and price discovery. The results are described in Section 5, with an associated
discussion and suggestions for future work in Section 6. Concluding remarks are offered in Section
7.

2. Previous Research

The continued evolution of cryptocurrencies and the underlying exchanges on which they trade
has generated tremendous urgency to develop our understanding of a product that has been iden-
tified as a potential enhancement of and replacement for traditional cash as we know it. As our
understanding of FinTech evolves (Goldstein et al. [2019]) and the growing value of blockchain
(Chen et al. [2019]), one key area of research focuses on the interactions between cryptocurrencies
and other more traditional financial markets. Urquhart and Zhang [2018] assessed the relationship
between Bitcoin and currencies at the hourly frequency and found that Bitcoin could be an intra-
day hedge for the CHF, EUR, and GBP, though it acts as a diversifier for the AUD, CAD, and
JPY. The authors also found that Bitcoin acts as a safe haven during periods of extreme market
turmoil for the CAD, CHF, and GBP. This supports the results of Sensoy [2018], who found that
both markets have become more informationally efficient over time, which is echoed by the work of
Vidal-Tomás and Ibañez [2018], who examine the semi-strong efficiency of Bitcoin in the Bitstamp
and Mt.Gox. Guesmi et al. [2018] analysed the conditional cross effects and volatility spillovers
between Bitcoin and other financial assets providing evidence that Bitcoin can offer diversification
benefits and hedging opportunities for investors, while Ciaian et al. [2018] employed an Autore-
gressive Distributed Lag model to examine interlinkages within the cryptocurrency market. Using
a dynamic conditional correlation model, Bouri et al. [2017] examined as to whether Bitcoin could
act as a hedge and safe haven for major world stock indices, bond, oil, gold, the general commodity
index and the US dollar index using data between July 2011 and December 2015. They found that
Bitcoin is a poor hedge and is suitable for diversification purposes only. Corbet et al. [2018] and
Corbet et al. [2018] found evidence of the relative isolation of these assets from the financial and
economic assets and that cryptocurrencies may offer diversification benefits for investors with short
investment horizons. Time variation in the linkages reflects external economic and financial shocks.
With regards to the introduction and relationship between cryptocurrencies and cryptocurrency
derivatives, Corbet et al. [2018] claim that the introduction of Bitcoin futures and the ability to
trade these would have resulted in a reduction in the variance of Bitcoin prices, or facilitated hedg-
ing strategies that could have mitigated pricing risk in the spot market. The authors find that it is
possible that the Bitcoin could have acted as a unit of account, moving it closer to being a currency.

Market efficiency can be determined by a number of specific factors; however, cryptocurrencies’
market efficiency can be measured through a host of progressive factors, including the existence
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of a new futures exchange, liquid cross-currency indices, and the relative reduction of intra-day
volatility, although daily volatility remains high. In this section, we separate market inefficiency into
product efficiency, as well as price efficiency. Bouoiyour and Selmi [2015] use ARDL bounds testing
to reveal extremely speculative behaviour of Bitcoin, its partial usefulness in trade transactions
without overlooking its dependence on the Shanghai Stock Market and the hash-rate. The authors
find no evidence of Bitcoin providing a safe haven, while Roth [2015] investigated the architectural
structure of Bitcoin using a functional analysis by employing the Systems Modelling Language
(SysML). Urquhart [2016] was the first to examine the market efficiency of Bitcoin and found
through a battery of tests that Bitcoin was inefficient, although it was becoming less inefficient over
time. With regards to structural efficiency, Biais et al. [2019] identified that forks could lead to
orphaned blocks and persistent divergence, generated by a range of factors including information
delays and software upgrades. The result of the inefficiency of Bitcoin has been supported in
follow-up studies that have used a range of different testing procedures and different data sets,
where examples are Bariviera et al. [2017], Brauneis and Mestel [2018], Sensoy [2018], Tiwari et al.
[2018], and Vidal-Tomás and Ibañez [2018]. Through the use of a significant database spanning
2010 through 2017, Urquhart [2018] found that both realised volatility and the volume of Bitcoin
traded, controlled for Bitcoin fundamentals, are both significant drivers of the next day’s attention
for Bitcoin. Balcilar et al. [2017] show that volume cannot help to predict the volatility of Bitcoin
returns at any point on the conditional distribution, but volume can predict returns, with the
exception of Bitcoin, bull, and bear market regimes. Further, Corbet et al. [2017] while utilising
the bubble identification methodology of Phillips et al. [2011], found clear evidence of periods in
which Bitcoin and Ethereum experienced bubble phases.

Hu et al. [2018] analysed intra-day price behaviour of Bitcoin, Litecoin, and Ripple by exam-
ining the price clustering of non-fiat cryptocurrency exchange rate pairs. The findings report a
significant price clustering at the round numbers 00, 000, and 0000, providing support for a negoti-
ation hypothesis that predicts higher clustering for higher prices and price volatility. Furthermore,
Koutmos [2018] found that a one standard deviation shock to transaction activity leads to just over
a 0.30% gain in returns on the third day following the shock. However, the results report a reversal
in this pattern by the sixth day after the investigated shocks. Fry and Cheah [2016] tested for
contagion during bubbles and found a spillover from Ripple to Bitcoin. However, the latter study
only considered Bitcoin and Ripple. The existence of structural breaks in Bitcoin volatilities has
also been confirmed by Ardia et al. [2018], who did so through the use of a two-regime MSGARCH
model that utilised in-sample forecasting performance with an inverted leverage effect in low- and
high-volatility regimes. With regards to liquidity, Wei [2018] presented evidence that return pre-
dictability diminishes in cryptocurrencies with high market liquidity, contributing to cryptocurrency
efficiency and liquidity debates. While there is little research that focuses specifically on issues re-
lating to the interconnections between traditional financial market opening hours or trading times
and the volatility of cryptocurrency markets, there is also a gap in the literature with regards to
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day-of-the-week effects in these new digital assets. Such traditional financial market literature such
as Berument and Kiymaz [2001], Keim and Stambaugh [1984], Yamori and Kurihara [2004], and
Lakonishok and Maberly [1990] supports our selected methodologies of investigation.

However, cryptocurrencies as a new asset class is not without its substantial issues, particu-
larly that of the provision of a platform for criminality and, indeed, major cybercriminality events.
While much debate surrounds the process in which this product can be regulated, there exists a
wide variety of channels in which criminality can develop and thrive. We have experienced multi-
ple, exceptionally sophisticated, high-value hacking events, both at the level of the exchange and
individual cryptocurrencies alike. Each event further depreciates trust and confidence in this as-
set class. Furthermore, the very nature of cryptocurrencies has provided a unique and efficient
channel through which both illicit funds and, indeed, illicit cross-border transactions can easily
take place, although traditional assets are not without their shortcomings. Regulatory bodies and
policy-makers alike have observed the growth of cryptocurrencies with a certain amount of scep-
ticism, based on this growing potential for illegality and malpractice. Foley et al. [2019] estimate
that around $76 billion of illegal activity per year involve bitcoin (46% of bitcoin transactions).
This is estimated to be in the same region of the U.S. and European markets for illegal drugs, and
is identified as ‘black e-commerce’. While the volatility of cryptocurrency price returns has been
studied, for example, by Chu et al. [2017] and Phillip et al. [2018], the potential for market ma-
nipulation appears to have been broadly identified in cryptocurrency cross-correlations and market
interdependencies. Griffins and Shams [2018] investigated as to whether Tether influenced Bitcoin
and other cryptocurrency prices to find that purchases with Tether were timed following market
downturns and resulted in significant increases in the price of Bitcoin. Further, less than 1% of the
hours in which Tether experienced significant transactions is associated with 50% of the increase in
Bitcoin prices and 64% of other top cryptocurrencies, drawing the damning conclusion that Tether
was used to provide price support and manipulate cryptocurrency prices. Furthermore, Gandal
et al. [2018] identified the impact of suspicious trading activity on the Mt.Gox Bitcoin exchange
theft, when approximately 600,000 Bitcoins were attained. The authors demonstrated that the
suspicious trading likely caused the spike in price in late 2013 from $150 to $1,000, most likely
driven by one single actor. These two significant pieces of research have fine-tuned the focus of
regulators, policy-makers, and academics alike, as the future growth of cryptocurrencies cannot be
sustained at pace with such significant questions of abnormality remaining unanswered.

While such damaging research continues to evolve and identify substantial issues within the mar-
kets for cryptocurrencies, we also consider the results of many analyses of detrimental manipulation
techniques based on traditional financial markets. While focusing on cybercriminality and the ques-
tionable market interlinkages that exist, two of the most problematic issues have been identified as
‘pump-and-dumps’ and ‘spoofing’, both identified within the definition of illegal price manipulation
as defined by Kyle and Viswanathan [2008]. Putnin, š [2012] states that there are three specific
avenues on which we must build in order to minimise risks from market manipulations, namely 1)
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collecting more comprehensive data, 2) using detection controlled estimation methods, and 3) con-
ducting controlled experiments. Sabherwal et al. [2011] analysed the information content of stock
message boards to find evidence of the most common use for small firms with weak financials, with
strong evidence provided of a two-day pump followed by a two-day dump manipulation pattern.
Message board sentiment is found to be an important predictor of trading-related activities. Jiang
et al. [2005] examine abnormal turnover and returns and the relationship between them, as well as
the long-term performance of the selected stocks, to conclude that the evidence suggests informed
trading rather than manipulation, based on an investigation of stock pools in the US since the
1920s. Comerton-Forde and Putnin, š [2011] constructed an index of the probability and intensity
of closing price manipulation while quantifying the effects of closing price manipulation on trading
characteristics and stock price accuracy using a unique sample of prosecuted manipulation cases.

Clarkson et al. [2006] use an intra-day analysis to examine the market reaction to takeover
rumour postings in the Hotcopper Internet Discussion Site (IDS), presenting evidence of abnormal
returns and trading volumes during the ten-minute posting intervals and abnormal trading in the
ten minutes immediately preceding the announcement, indicating that the market has anticipated
and responded to the announcement. This is an example of a ‘pump-and-dump’, which is broadly
defined as a scheme that attempts to boost the price of a stock through recommendations based
on false or misleading statements. The perpetrators most likely possess an established position in
the company’s stock and sell their positions after the hype has led to a higher share price. They
have been shown to be extremely detrimental to the functionality of the financial market. It is
important to identify that Chiu and Koeppl [2019] estimate net gains of 1-4 bps for US corporate
debt market yields when mining. Diaz et al. [2011] addresses challenges relating to applying data
mining techniques to detect stock price manipulations and extends previous results by incorporating
the analysis of intra-day trade prices, in addition to closing prices for the investigation of trade-based
manipulations, extending previous results on the topic by analysing empirical evidence in normal
and manipulated hourly data and the particular characteristics of intra-day trades within suspicious
hours. Zaki et al. [2011] describes a case study on fraud detection using data mining techniques that
help analysts to identify possible instances of touting based on spam emails. Their results strongly
suggest the cumulative effect of ‘stock touting’ spam emails is key to understanding the patterns
of manipulations associated with touting email campaigns and that data mining techniques can
be used to facilitate fraud investigations of spam emails. ‘Spoofing’ is best defined as a type of
scam where an intruder attempts to gain unauthorised access to a user’s system or information by
pretending to be the user. The main purpose is to trick the user into releasing sensitive information
in order to gain access to one’s bank account, computer system, or to steal personal information,
such as passwords. This process can occur across multiple platforms and products, however; to
date, little investigation has been based on cryptocurrency markets. Lee et al. [2013] examine
how investors strategically spoof the stock market by placing orders with little chance of being
executed but which mislead other traders into thinking there is an imbalance in the order book.
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The authors use intra-day order and trade data from the Korea Exchange (KRX) in a custom data
set identifying individual accounts. We found that investors strategically place spoofing orders,
which, given the KRX’s order-disclosure rule at the time, creates the impression of a substantial
order book imbalance, with the intent to manipulate subsequent prices. Further research that
considers the effects of issues such as spoofing includes Cumming et al. [2011], who investigated
exchange trading rules based on market manipulation, insider trading, and broker-agency conflicts,
and O’Hara [2015] who analysed high-frequency market microstructure.

3. Data

We first set out to investigate the interactions between a number of traditional assets for some
of the largest cryptocurrencies traded around the world. While considering an exceptionally broad
number of products, our final selection of traditional financial market assets was predicated on
providing a broad representation of stocks, commodities, currencies, and options. Therefore, we
have selected GBP/USD to represent interatctions between cryptocurrencies and broad currency
markets, the S&P500 as a representation of stock market performance, both gold and oil (as mea-
sured by West Texas Intermediate, WTI oil markets) as a representation of commodity markets,
and finally the VIX (CBOE volatility index) to represent options markets and implied volatility re-
spectively. Our selected traditional financial markets, sampled at 60-minute intervals, was collected
from Thomson Reuters Tick History for the period from midnight on 1 September 2017 through
midnight on 10 August 2018. This time period was selected as it maximised the number of observa-
tions available across all of our selected markets. From the 60-minute transaction prices our selected
financial products, the log return for each period, rt = ln(Pt/Pt−1) is then estimated. We utilise
data from the Bitfinex exchange at an 60-minute frequency for the eight most liquid cryptocurren-
cies throughout the period. We therefore use data for Bitcoin, Ethereum, Litecoin, Ripple, Stellar,
Monero, Cardano and Bitcoin Cash. We considered the use of higher frequency data and even tick
level data, however, the use of hourly data was found to be most effective from a methodologi-
cal standpoint. One distinct issue surrounds the opening times of our selected financial products.
Cryptocurrency markets are open 24 hours a day, seven days a week, providing 8,297 hourly ob-
servations in our sample (with the exception of Cardano with 7,376 observations due to data being
unavailable prior to 09:00 on 9 October 2007). Our selected traditional financial markets have
varying opening times All times are matched using Greenwich Mean Time (GMT). However, gold
which represents the most infrequently trading product has 1,229 observations, whereas GBP/USD
presents 5,891 observations. Commodity markets as represented by gold and oil markets are the
traditional markets most frequently open.

Table 1 presents the descriptive statistics of the selected traditional assets and cryptocurrencies.
The VIX represents the most volatile of the selected traditional financial markets as denoted with
mean hourly returns of +0.015%. All cryptocurrencies present evidence of mean hourly returns
above the next most volatile traditional asset which is the market for oil. Stellar is the most volatile
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cryptocurrency with a variance of 0.00045 and standard deviation of 0.02111. The largest one hour
loss occurred in the market for Bitcoin Cash (-23.91%), while the largest gain occurred in the market
for Stellar (+40.325%). Table 2 presents the correlation matrix for all of our selected variables for
the entire period of time under investigation. We observe that there are three distinct areas of
interest, namely the correlations between both traditional financial assets and cryptocurrencies
in isolation and indeed the correlations between these two asset classes. There are a number of
stark observations, namely quite elevated correlations between intra-asset classes, however, little
inter-asset correlations further indicative of the relative isolation of cryptocurrencies as an asset
class as previously identified (Corbet et al. [2018]). Intra-cryptocurrency return correlations also
present evidence of strong comovement of cryptocurrencies and Bitcoin with the exception of Stellar
(+0.052) and Cardano (+0.088). Observing traditional financial market correlations, the VIX
presents a theoretically expected negative relationship with the S&P500 (-0.768), while Oil as
identified by the price movements of West Texas Intermediate presents a positive correlation with
equity markets (+0.363).

Insert Tables 1 and 2 about here

In order to investigate the effects of cybercriminality on cryptocurrency markets, we utilise data
from the Bitfinex exchange at a 60-minute frequency for the eight most liquid cryptocurrencies
throughout the period2. We use data for Bitcoin, Ethereum, Litecoin, Ripple, Stellar, Monero,
Cardano and Bitcoin Cash. We considered the use of higher frequency data and even tick level data,
however, the use of hourly data was found to be most effective from a methodological standpoint.
One distinct issue surrounds the opening times of our selected financial products. The log return
for each period are calculated rt = ln(Pt/Pt−1). Cryptocurrency markets are open 24 hours a
day, seven days a week, providing 8,297 hourly observations in our sample (with the exception of
Cardano with 7,376 observations due to data being unavailable prior to 09:00 on 9 October 2007).

Insert Table 3 about here

2While considering an exceptionally broad number of products, we have incorporated a number of traditional
financial markets in our descriptive statistics to act as a benchmark through which we can compare our selected
cryptocurrency returns. These traditional financial assets are also utilised as control variables within the mean
equations of the multivariate GARCH methodology used in Sections 4 and 5. We have selected GBP/USD to
represent interactions between cryptocurrencies and broad currency markets, the S&P500 as a representation of
stock market performance, both gold and oil (as measured by West Texas Intermediate, WTI oil markets) as a
representation of commodity markets, and finally the VIX (CBOE volatility index) to represent options markets
and implied volatility respectively. Our selected financial markets variables, sampled at 60-minute intervals, were
collected from Thomson Reuters Tick History for the period from midnight on September 1st 2017 through midnight,
the 10th of August 2018.
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In Table 3 we have established a list of the seventeen largest cryptocurrency hacking events
between September 2017 and August 2018. The list of hacking events includes a broad number of
unique situations that targeted either the exchange on which cryptocurrencies trade, the blockchain
supporting a specific cryptocurrency, or indeed the wallets of cryptocurrency investors. We have
only included events that were determined as newsworthy if covered by any one of a number of
mainstream international broadsheet newspapers as determined by a thorough search using the
LexisNexis database. The largest estimated loss from such cryptocurrency theft occurred on the
9th of April 2018 when an alleged online scam, reportedly sourced in Vietnam, let to the generation
of a false ICO led by the companies Ifan and Pincoin. The two firms are alleged to have misled ap-
proximately 32,000 investors and to have stolen in the region of $650 million. The scale of this theft
dwarfed the estimated amounts lost throughout the majority of other included hacking events with
the exception of the Coincheck hacking on the 26th of January 2018, when the exchange suspended
all deposits in the cryptocurrency NEM due to a hack on their exchange which led to the theft of
approximately $532.6 million. While these two particular events are particularly prevalent due to
the scale of losses that were generated, a substantial number of cybercrime events have generated
losses above $50 million. When compared to events of such scale, there are two particular hacking
events that did not generate such substantial monetary losses, but were particularly disturbing due
to the nature and ability of the criminals that had masterminded such thefts. In particular the
$400,000 lost in Stellar on the 13th of January 2018 and the $900,000 lost on the 31st of January
2018 through the ICO of BeeToken. During the Stellar Lumen (XLM) hack, wallets hosted by
Blackwallet.co were accessed without permission, where the hosting server had its settings changed
remotely to allow code to run that would then send balances to wallets belonging to the hackers,
leading to the decision to close the server in an attempt to mitigate the attack. In the latter event,
the attackers targeted the BeeToken ICO with phishing attacks, leading to the theft of assets in
Ethereum directly from investors who had been misled by false emails that appeared to have been
sent by official sources.

4. Methodology

The development of the theoretical understanding of a relatively new financial product can often
be associated with substantial conflicting evidence. The cryptocurrency asset class is no exception.
However, much research continues to identify this asset class to contain exceptionally high levels of
volatility when compared to more established counterparts (Corbet et al. [2018]). The source of this
cryptocurrency market volatility is exceptionally important to identify, particularly as regulators,
policy-markers and experts try to both value, regulate and decide on the future viability of the
product. We therefore set out the three following stages of analysis. We first analyse the intra-
day volatility of our selected cryptocurrencies through a range of traditional methodologies. Next,
we focus on stylised facts associated with cryptocurrencies in comparison to traditional financial
markets, namely the existence of time-of-the-day effects and the transition of volatility behaviour
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during the opening hours of the exchanges on which traditional financial markets trade. It has
been broadly identified (Corbet et al. [2018]; Gandal et al. [2018]; Griffins and Shams [2018]) that
cybercriminality remains one of the key concerns3 undermining the viability of digital currency at
large as ‘the future of finance’. There are identified weaknesses both at the exchange-level, within
the underlying technology and most disturbingly through the trading structures of these assets in
the form of ‘spoofing’ and ‘pump-and-dumps’. Considering the identification of both volatility and
non-volatility effects, we finally set out to establish as to whether cybercriminiality is indeed one of
the main driving forces behind the volatility of cryptocurrencies. Further, we set out to establish as
to whether cryptocurrency investors value varying types of cybercriminality in a differing manner.

4.1. Does the intra-day volatility of cryptocurrency markets change based on the time-of-the-day

and when traditional financial markets close?

While we analyse the informational share that is transferred between traditional markets, cryp-
tocurrency markets and indeed, within these sub-categories of financial market products, we further
develop this analysis by investigating intra-day volatility. One of the key questions relating to cryp-
tocurrencies as a financial product is based on their behaviour in correlation with the opening hours
of traditional financial markets, and their behaviour when the same markets are closed. We have
selected five markets as representative of our selected traditional financial markets: 1) GBP/USD;
2) VIX; 3) Gold; 4) the S&P500; and 5) Oil as measured by West Texas Intermediate. The first
stage of our analysis therefore focuses on three distinct areas:

– H1: Does the intra-day volatility of cryptocurrencies change significantly when traditional
markets are closed?

– H2: Does the intra-day volatility of cryptocurrencies change significantly at the weekend when
compared to weekdays?

– H3: Is there a difference in intra-day cryptocurrency volatility based on the opening hours of
major international financial markets?

To analyse these specific hypotheses and to provide robustness within our selected framework, we
utilise the work of Parkinson [1980], Garman and Klass [1980], Rogers and Satchell [1991] and Yang
and Zhang [2000]. It is important to note that traditional financial markets have pre-determined

3The International Monetary Fund (IMF) have previously expressed their satisfaction with the development of the
cryptocurrency industry and the benefits that are contained within its continued growth (An Even-handed Approach
to Cryptocurrencies, IMF blogpost written by Christine Lagarde, Head of the International Monetary Fund, avail-
able at: https://blogs.imf.org/2018/04/16/an-even-handed-approach-to-crypto-assets/), the Securities and Exchange
Commission (SEC) in 2018 have backtracked on earlier positivity to warn of the inherent potential for spoofing and
other market manipulation techniques (US Securities and Exchange Commission, Public Statement, Statement on
Potentially Unlawful Online Platforms for Trading Digital Assets, Available at: https://www.sec.gov/news/public-
statement/enforcement-tm-statement-potentially-unlawful-online-platforms-trading)
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opening and closing times, however, cryptocurrency markets do not. To create a comparative series
that can be used for comparison, we define the opening and closing times of traditional markets as
defined by the exchange. To test H1, we analyse the volatility of cryptocurrency markets within
the opening and closing times of our selected traditional financial markets. However, we identify
midnight as the opening and closing time of each individual day for the purposes of calculation for
cryptocurrencies when testing H2 and H3.

Parkinson [1980] utilised estimates of high and low prices to provide a concise volatility esti-
mator. The diffusion constant characterising the random walk which is the same as the variance
of the rate of return, is found to become an important quantity to calculate and was at this time
traditionally estimated using closing prices only. However, one issue of this estimator was based on
the assumption of continuous trading, which is effective for cryptocurrencies but not for traditional
assets, which underestimates the volatility for potential movements in prices when markets are
closed. The estimate is calculated as:

VolatilityPark = σp =

√
F

N

√√√√ 1

4ln(2)

N∑
i=1

(
ln(

hi
li

)

)2

(1)

where F represents the number of trading days in year, N is the number of observations in the
sample, h and l represent the high and low prices respectively and o and c represent the opening
and closing prices respectively. Garman and Klass [1980] developed on the work of Parkinson [1980]
through the use of opening and closing prices, with their estimate calculated as:

VolatilityG−Klass = σGK =

√
F

N

√√√√ N∑
i=1

1

2

(
ln(

hi
li

)

)2

− (2ln(2)− 1)

(
ln(

ci
oi

)

)2

(2)

Rogers and Satchell [1991] developed on this work assuming that the average return is zero.
Therefore, financial products that possess drift which denotes a non-zero mean, require a measure
that incorporates such movement. However, this measure somewhat understated volatility due to its
inability to incorporate jumps in volatility. Their research builds on a simple correction to overcome
the error where this approximation of the true high and low values of the drifting Brownian motion
by the high and low values of a random walk introduces an error that can be considered quite often
to be serious enough to render the calculation as useless. It is calculated as:

VolatilityRogers = σRS =

√
F

N

√√√√ N∑
i=1

ln(
hi
ci

)ln(
hi
oi

) + ln(
li
ci

)ln(
li
oi

) (3)

Yang-Zhang modified the Garman-Klass volatility measure to support jumps in the price of the
series. The measure does assume a zero drift, hence it will overestimate the volatility if a security
has a non-zero mean return. It is estimated as:
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VolGKY = σGKY =

√
F

N

√√√√ N∑
i=1

(
ln(

oi
ci−1

)

)2

+
1

2

(
ln(

hi
li

)

)2

− (2ln(2)− 1)

(
ln(

ci
oi

)

)2

(4)

Yang and Zhang [2000] developed further on this measure through the creation of a a volatility
measure that handles both opening jumps and drift. It is the sum of the overnight volatility (close-
to-open volatility) and a weighted average of the Rogers and Satchell [1991] volatility and the
open-to-close volatility. They present a new volatility estimator that is unbiased in the continuous
limit, independent of the drift and consistent in dealing with opening price jumps. Further, it has
the smallest variance among all estimators with similar properties. The assumption of continuous
prices does mean the measure tends to slightly underestimate the volatility4.

VolatilityY ang−Z = σY Z =
√
F
√
σ2
o/n Vol + kσ2

op-cl Vol + (1− k)σ2
RS (5)

Overall, Parkinson [1980] generated a measure utilising high and low prices that cannot handle
drift or overnight jumps in prices. Garman and Klass [1980] were the first to utilise both high and
low, and opening and closing prices but could not provide a methodology that could effectively
account for drift in prices and overnight jumps. Rogers and Satchell [1991] provided a measure
that used both high and low, and opening and closing prices to provide a measure that can hand
drift but not overnight jumps, while Yang and Zhang [2000] generated a measure that can handle
both drift and overnight jumps. We develop on the work of Parkinson [1980], Garman and Klass
[1980], Rogers and Satchell [1991] and Yang and Zhang [2000] to test the listed hypotheses. To
test HNUM , we present the results of our analysis sub-divided between the opening and closing
times of our selected traditional markets. To test HNUM , we sub-divide the analysis and compare
results for cryptocurrency markets between week-days and the weekend. Finally, to test HNUM , we
sub-divide our analysis based on the opening hours (as based on GMT) of Japanese stock markets
as represented by the Tokyo Stock Exchange (00:00 to 06:00 GMT), Chinese financial markets
as represented by the Shanghai and Shenzen Stock Exchanges (open between 01:30 and 07:00),
European and United Kingdom financial markets as represented by the Euronext Paris, Frankfurt
Stock Exchange and London Stock Exchange respectively (all open between 08:00 to 16:30 GMT)
and United States financial markets as represented by the New York Stock Exchange (14:30 to
21:00 GMT). Adjustments are made throughout for the international implementation of daylight
savings time.

4In the calculation of the estimate provided by Yang and Zhang [2000], we must note that k = 0.34

1.34+(N+1
N−1

)
.

Further, we calcuate overnight volatility and open to close volatility as σ2
o/n Vol = 1

N−1

∑N
i=1

[
ln( oi

ci−1
− ln( oi

ci−1
)
]2

and σ2
op-cl Vol = 1

N−1

∑N
i=1

[
ln( ci

oi
− ln( ci

oi
)
]2

respectively.
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4.2. Cryptocurrency market volatility due to opening hours and traditional market volatility

The second stage of our analysis builds upon a multivariate GARCH(1,1) methodology to iden-
tify as to whether there exists volatility in the largest cryptocurrency markets due to the hour-
of-the-day in which trading takes place. Further, we investigate as to whether cryptocurrency
volatility has been influenced by periods of substantial volatility in traditional financial markets.
We therefore identify two further hypotheses:

– H4: Does cryptocurrency market volatility change substantially based on the hour-of-the-day
in which trading takes place?

– H5: Has cryptocurrency volatility varied substantially during periods of traditional market
volatility?

The GARCH specification was developed byBollerslev [1986] and was designed to include lagged
conditional variance terms as autoregressive terms. The general GARCH (p,q) model has the
following form:

Rt = a+ b′Xt + εt, where εt|Ωt ∼ iidN(0, ht) (6)

ht = ω + Σpi=1αiht−i + +Σqj=1βjε
2
t−j (7)

which states that the value of the variance scaling parameter ht now depends both on the past
value of the shocks, which are captured by the lagged square residual terms, and on past values of
itself, which are captured by the lagged ht terms. Specification tests found that the GARCH(1,1)
model served as the best fitting to estimate volatility effects through the use of dummy variables
that are used to denote both the time-of-the-day and also periods of substantial traditional market
volatility. It is also necessary to mitigate international effects which can be completed through the
inclusion of the returns of traditional financial products in the mean equation of the GARCH(1,1)
methodology. The volatility sourced in shocks that are incorporated in the returns of traditional
financial markets are therefore considered in the volatility estimation of the selected structure. The
GARCH(1,1) methodology used to investigate H4 has the following form:

Rt = a0 +

5∑
j=1

bjRt−j + b2£/$t + b3V IXt + b4Goldt + b5S&Pt + b6Oilt + εt (8)

ht = ω + α1ht−1 + β1u
2
t−1 +

24∑
i=1

DToDi (9)

Rt−j represents the lagged value of cryptocurrency returns, n hours beforeRt is observed. b2£/$t
represents the interaction between the selected cryptocurrency returns and £/$, while b3V IXt
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represents the value of the VIX in the hour that the estimate Rt was observed. Finally, b5S&Pt

and b6Oil represent the relationship between cryptocurrency returns and the returns of the S&P500
and oil as measured through West Texas Intermediate (WTI) respectively.

∑24
i=1DToD is included

in the variance equation to provide a coefficient relating to specific hour in which trading has taken
place for each of our investigated cryptocurrencies. Bollerslev [1986] showed that restrictions on the
parameters for positivity, ω > 0, α ≥ 0 and β ≥ 0, and the wide-sense stationarity condition, α+β <

1. Nelson [1990] proved that the GARCH (1,1) process is uniquely stationary if E[log(β+αε2t )] < 0,
where Bougerol and Picard [1992] generalise this for any GARCH (p,q) order model. Bollerslev
[1986] also proved that if the fourth order moment exists, then the model can handle leptokurtosis.

H5 investigates as to whether cryptocurrency volatility varied substantially during periods of
traditional market volatility? While a number of other recent works focus on the presence of
dynamic relationships between traditional financial markets and cryptocurrencies (Corbet et al.
[2018]; Tiwari et al. [2018]; Urquhart [2017]), we set out to analyse as to whether the structure
of cryptocurrency volatility presents evidence of substantial change as traditional financial market
volatility conditions change. We therefore build on the above GARCH(1,1) methodology through
the use of the adapted variance equation:

ht = ω + α1ht−1 + β1u
2
t−1 +

4∑
i=1

Dvoli (10)

where
∑4
i=1Dvoli develops on a dummy variable that is established based on the quartile of

volatility that has been experienced in the markets for GBP/USD, VIX, S&P500, gold and oil
separately. Quartile 1 represents the denoted lowest estimates of volatility in each of the analysed
markets, while quartile 4 denotes the highest estimates of volatility.

4.3. Cryptocurrency market volatility due to hacking events: A multivariate GARCH analysis

We have selected three areas of investigation on which to focus our analysis of the effects of
cybercriminality on cryptocurrency markets. First, we focus on the direct volatility changes through
the use of a multivariate GARCH analysis to investigate and identify the presence of differing pricing
behaviour in the period immediately after cybercrime events. Secondly, due to the large amount of
research focusing on the comovement of asset prices during periods of great stress and crises (Forbes
and Rigobon [2002]), we use a DCC-GARCH analysis to analyse changing correlations between
cryptocurrencies, while incorporating methodological ‘learning’ through the inclusion of variables
representing traditional financial market products and dummy variables relating to cybercriminality
in cryptocurrency markets. Finally, we investigate changes in the flow of information between
cryptocurrencies in the period before and after major cybercriminality events. To do so we build on
the work of Hasbrouck [1995] and Gonzalo and Granger [1995] to analyse the information share, the
component share and the information leadership share of price discovery between cryptocurrencies.
We therefore set out to analyse our final three hypotheses which investigate:
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– H6: Does cryptocurrency market volatility change substantially in the aftermath of cyber-
criminality?

– H7: Does such cryptocurrency volatility vary by severity of cybercriminality event?

– H8: Do the conditional correlations between cryptocurrency markets change substantially in
the aftermath of cybercriminality events?

– H9: Does the information share and component share of price discovery change between the
periods before and after cybercrime events in cryptocurrency markets?

4.3.1. Cryptocurrency market volatility due to hacking events: A multivariate GARCH analysis
We utilise a multivariate GARCH(1,1) methodology to obtain volatility changes in the imme-

diate aftermath of a major cybercrime incident relating to cryptocurrency markets. The GARCH
specification was developed by Bollerslev [1986]. Specification tests found that the GARCH (1,1)
model served as the best fitting to estimate volatility effects after industrial incidents for publicly
traded companies. It is also necessary to mitigate international effects which can be completed
through the inclusion of the returns of traditional financial products in the mean equation of the
GARCH(1,1) methodology. The volatility sourced in shocks that are incorporated in the returns
of traditional financial markets are therefore considered in the volatility estimation of the selected
structure. Dummy variables are used in the variance equation denoted as unity in the first one
hundred and twenty hours (five days) after the cybercrime incident and zero otherwise. The lagged
cryptocurrency returns for the five preceding hours were found to provide explanatory significance
and are therefore included in the mean equation. The GARCH (1,1) methodology used in this
study has the following form:

Rt = a0 +

5∑
j=1

bjRt−j + b2£/$t + b3V IXt + b4Goldt + b5S&Pt + b6Oilt + b7Bitt + εt (11)

εt|Ωt ∼ iidN(0, ht) (12)

ht = ω + α1ht−1 + β1u
2
t−1 +

17∑
i=1

Di (13)

Rt−j represents the lagged value of cryptocurrency returns, n hours beforeRt is observed. b2£/$t
represents the interaction between the selected cryptocurrency returns and £/$, while b3V IXt

represents the value of the VIX in the hour that the estimate Rt was observed. Finally, b5S&Pt

and b6Oil represent the relationship between cryptocurrency returns and the returns of the S&P500
and oil as measured through the West Texas Intermediate (WTI). b7Bitt represents the returns of
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Bitcoin to incorporate cryptocurrency market dynamics, however, in the methodology investigating
Bitcoin specifically, b7 is set to zero.

∑17
i=1Di is included in the variance equation to provide a

coefficient relating to the included seventeen dummy variables listed in Table 6. Bollerslev [1986]
argue for restrictions on the parameters for positivity, ω > 0, α ≥ 0 and β ≥ 0, and the wide-sense
stationarity condition, α+ β < 1. Nelson [1990] proved that the GARCH (1,1) process is uniquely
stationary if E[log(β+αε2t )] < 0, where Bougerol and Picard [1992] generalise this for any GARCH
(p,q) order model. Bollerslev [1986] also proved that if the fourth order moment exists, then the
model can handle leptokurtosis.

4.3.2. Cryptocurrency market behaviour during hacking events: A DCC-GARCH analysis
Using a multivariate GARCH analysis to analyse the changes in cryptocurrency volatility due

to cybercriminality is a very useful starting point. We then investigate as to whether there has
been a significant increase in the comovement of high frequency cryptocurrency returns. Significant
increases in the comovement and correlation of returns in traditional financial markets have been
widely observed in periods of sharp financial crises. Forbes and Rigobon [2002] found that correla-
tion coefficients are conditional on market volatility as they investigated stock market comovements
during the 1997 Asian crisis, the 1994 Mexican devaluation, and the 1987 U.S. market crash. Further
evidence was provided by Baig and Goldfajn [1999] through the use of dummy variables that con-
trolled for domestic news to find cross-border contagion in currency and stock markets. A number of
explanations for such comovements have been provided, such as trade between countries (Glick and
Rose [1999]) and interconnectedness of the banking sector (Kaminsky and Reinhart [2000]); neither
of which present an adequate explanation to any identified behaviour in cryptocurrency markets.
We first test for the presence of such comovements in cryptocurrency markets and then specifically
investigate their responses during cybercrime events using a DCC-GARCH methodology5.

When specifying the form of the conditional correlation matrix Rt, two requirements have to
be considered. The first is that the covariance matrix Ht has to be positive and the second is that
all the elements in the conditional correlation matrix Rt have to be equal or less than unity. The
DCC model is estimated by using a two-step approach to maximise the log-likelihood function. If
we let θ denote the parameters in Dt and ϑ, the parameters in Rt, then the log-likelihood is:

lt(θ, ϑ) =

[
−1

2
ΣTt=1nlog(2π) + log |Dt|2 + ε

′

tD
−2
t εt

]
+
[
ΣTt=1log |Rt| z

′

tR
−1
t zt − z

′

tzt

]
(14)

5As proposed by Engle (2002), the DCC-GARCH model is designed to allow for a two-stage estimation of the
conditional variance matrix ht. In the first stage, univariate GARCH (1,1) volatility models are fitted for each of the
stock return residuals and estimates of

√
hit are obtained. In the second stage, stock return residuals are transformed

by their estimated standard deviations from the first stage as zit = εit√
hit

. Finally, the standardised residual zit is

used to estimate the correlation parameters.
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The first part of the log likelihood function is volatility, which is the sum of the individual
GARCH likelihoods. The log-likelihood function can be maximised in the first stage over the
parameters Dt. Given the estimated parameters in the first stage, the correlation component of the
likelihood function in the second stage is maximised to estimate the correlation coefficients. Finally,
we examine the DCC-GARCH model’s change in behaviour before and after cybercriminality in
cryptocurrency markets occur. In a first stage analysis, we estimate the impact of external shocks
on the dynamic conditional correlation features. We regress the time-varying correlation model as
follows:

ρij,t = ωij + Σpp=1ϕpρij,t−p + Σ2
k=1αkDMk,t + εij,t (15)

where ρij,t is the pair-wise conditional correlation coefficient between the cryptocurrency i and
cryptocurrency j. DM1 is a dummy variable denoting the date of the cybercrime incident. The
value of the dummy variables are set equal to unity for the period after the cybercrime incident and
zero otherwise. The conditional variance equation is assumed to follow a GARCH(1,1) specification
including a dummy variable identifying the exact hour of the incident, DMk(k = 1):

hi,t = A0 +A1ε
2
t−1 +B1hi,t−1 + Σ2

k=1dkDMk,t (16)

where A0 > 0, A1 ≥ 0, B1 ≥ 0 and A1 + B1 < 1. In the mean equation, the coefficient d1 is
statistically significant in all the incidents investigated. We use both the Akaike Information Crite-
rion (AIC) and the Schwarz Bayesian Information Criterion (SBIC) to determine the appropriate
lag length.

4.3.3. Information share and component share of price discovery before and after hacking events
There are two standard measures of price discovery commonly employed in the literature: the

Hasbrouck [1995] Information Share (IS) and the Gonzalo and Granger [1995] Component Share
(CS) approach. Hasbrouck [1995] demonstrates that the contribution of a price series to price
discovery (the ‘Information Share’) can be measured by the proportion of the variance in the
common efficient price innovations that is explained by innovations in that price series. Gonzalo
and Granger [1995] decompose a cointegrated price series into a permanent component and a
temporary component using error correction coefficients. The permanent component is interpreted
as the common efficient price, the temporary component reflects deviations from the efficient price
caused by trading fractions. We estimate IS and CS, as developed by Hauptfleisch et al. [2016]
using the error correction parameters and variance-covariance of the error terms from the Vector
Error Correction Model (VECM):

∆p1,t = α1(p1,t−1 − p2,t−1) +

200∑
i=1

γi∆p1,t−i +

200∑
j=1

δj∆p2,t−j + ε1,t (17)
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∆p2,t = α2(p1,t−1 − p2,t−1) +

200∑
k=1

ϕk∆p1,t−k +

200∑
m=1

φm∆p2,t−m + ε2,t (18)

where ∆pi,t is the change in the log price (pi,t) of the asset traded in market i at time t. The next
stage is to obtain the component shares from the normalised orthogonal vector of error correction
coefficients, therefore:

CS1 = γ1 =
α2

α2 − α1
;CS2 = γ2 =

α1

α1 − α2
(19)

Given the covariance matrix of the reduced form VECM error terms 6 where:

M =

(
m11 0

m12 m22

)
=

(
σ1 0

ρσ2 σ2(1− ρ2)
1
2

)
(20)

we calculate the IS using:

IS1 =
(γ1m11 + γ2m12)2

(γ1m11 + γ2m12)2 + (γ2m22)2
(21)

IS2 =
(γ2m22)2

(γ1m11 + γ2m12)2 + (γ2m22)2
(22)

Recent studies show that IS and CS are sensitive to the relative level of noise in each market, they
measure a combination of leadership in impounding new information and the relative level of noise in
the price series from each market. The measures tend to overstate the price discovery contribution
of the less noisy market. An appropriate combination of IS and CS cancels out dependence on
noise, Yan and Zivot [2010]; Putnin, š [2013]. The combined measure is known as the Information
Leadership Share (ILS) which is calculated as:

ILS1 =

∣∣∣ IS1

IS2

CS2

CS1

∣∣∣∣∣∣ IS1

IS2

CS2

CS1

∣∣∣+
∣∣∣ IS2

IS1

CS1

CS2

∣∣∣ and ILS2 =

∣∣∣ IS2

IS1

CS1

CS2

∣∣∣∣∣∣ IS1

IS2

CS2

CS1

∣∣∣+
∣∣∣ IS2

IS1

CS1

CS2

∣∣∣ (23)

5. Results

During the short amount of time in which cryptocurrencies have existed, we have witnessed
many astonishing price variations have been observed, along with broad structural changes and
substantial illegality. We continue to develop our understanding of these young products throughout
their development. We first focus on the key hypotheses that analyse the stylised facts surrounding
the pricing of cryptocurrencies in comparison to other traditional financial markets. We then

6Ω =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
and its Cholesky factorisation, Ω = MM ′.
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investigate the effects of broad cybercriminality, both within the products and the exchanges on
which cryptocurrencies trade. The issues continue to damage both the reputation and credentials
of the market at large, and have continued to evolve in both scale and sophistication.

5.1. Does cryptocurrency volatility change due to the opening times of traditional financial markets?
In the following sections we first consider Hypotheses H1 through H3 which investigate the

stylised facts relating to intra-day volatility based on when traditional markets are open or closed,
whether it is a weekday or the weekend, or indeed, based on the opening hours of the main traditional
exchanges. Hypothesis H1 is analysed in Table 4, while observing the results of the four selected
intra-day volatility measures, we can identify that there are a wide range of outcomes. While
calculating the averages of the volatility measures, cryptocurrency markets appear to be most
volatile while the VIX and gold markets are open (an average rank of 1.6 and 1.8 respectively). The
market for GBP/USD, while open, presents the next most volatile time period for cryptocurrency
markets with the S&P500 and Oil market opening times reflecting the least volatile in comparison.
As previously identified, the Garman-Klass indicator presents the broadest range of outcomes in
comparison to the other comparable measures. These results are quite pronounced in the market for
Bitcoin, where average intra-day volatility while the gold market is open is 0.47%. However, these
is little intra-day volatility difference during the opening hours of the S&P500 and Oil markets.
Bitcoin Cash, while representing a product with a shorter life span, present evidence of a intra-day
volatility reduction while both Gold and the S&P500 is trading. These findings are robust across
measures. The largest average result is identified in the market for Stellar (1.51%) while gold
markets are open. It is important to observe that while there are clear differences identified between
the investigated cryptocurrency markets, there are also substantial and significant differences in
intra-day volatility depending on the operational trading hours investigated. However, despite this,
the variation between the individual markets do not correlate across all eight of the investigated
markets, therefore, although we can state that on average there are substantial differences based on
differing opening times, we cannot definitively state that this is the same for all cryptocurrencies.
On this occasion, we can therefore reject H1.

Insert Table 4 about here

In Table 5 we present the results of the analysis of hypothesisH2 which investigates the difference
between the intra-day volatility of cryptocurrency markets dependent on whether it is a weekday or
the weekend. Across all measures analysed, we find clear evidence that accepts H2, that first of all,
that there is a clear difference weekend effect in cryptocurrency markets, but also there is evidence
of elevated intra-day volatility during the week and a substantial reduction at the weekend. This is
found to significantly support of hypothesis H2. We must note again that cryptocurrency markets
are open twenty-four hours a day, seven days per week, whereas traditional markets have structured
opening and closing times.
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Insert Table 5 about here

The final analysis of intra-day volatility investigates as to whether cryptocurrency markets
present evidence of differing volatility depending on the international exchange that is open. Table
6 presents the results based on hypothesis H3. This analysis presents some very interesting results.
intra-day volatility is found to be substantially elevated while both European and United States
financial markets are trading with the exception of Cardano during European opening and Ripple,
Bitcoin Cash and Cardano during United States opening. However, cryptocurrency volatility is
broadly below average during both Japanese and Chinese trading times with the exception of
results for Stellar, and again, Bitcoin Cash and Cardano. This presents evidence supporting the
hypothesis that cryptocurrency intra-day volatility behaves in a different manner depending on the
exchange that is open.

Insert Table 6 about here

While we observe this evidence of contrasting intra-day volatility during Asian, American and
European market opening times, it is also important to investigate hour-of-the-day effects as we
do throughout the investigation of H4 with results presented in Table 7. In this analysis, we
investigate the hourly trading volatility of each of our eight investigated cryptocurrencies using a
multivariate GARCH analysis. There is evidence of a significant increase in volatility in the markets
for Bitcoin, Ethereum, Ripple and Cardano at 11:00am GMT. In the largest market by market
capitalisation, Bitcoin, there are only two hours of elevated volatility at 06:00am and 11:00am
GMT, with only the latter observation being significant. In the markets for Bitcoin Cash and Stellar,
there are no significant periods of elevated volatility throughout the day indicating no abnormalities.
The markets for Ripple and Cardano present evidence of elevated and significant volatility after
08:00am until midday GMT. Despite a number of alternative specifications and differing frequencies
of investigation, there are a number of differing times where individual cryptocurrencies exhibit
elevated levels of GARCH-calculated volatility, but there is no evidence to support hypothesis H4

across the cryptocurrency markets investigated.

Insert Table 7 about here

5.2. How has cryptocurrency volatility been affected by traditional financial market volatility?

While we have observed that there do exist clear differences in intra-day volatility between
weekdays and the weekend in cryptocurrency markets with further support that differing volatil-
ity based on the exchange that is open (with American and European opening times exhibiting
substantially more volatility than Chinese and Japanese opening hours). In this section, we need
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to investigate as to whether cryptocurrency volatility exhibits differing volatility behaviour during
episodes of substantial volatility in traditional financial markets? We therefore investigate H5 in
Table 8, which is supported further by the following DCC-GARCH analysis investigating volatility
transfers.

Insert Table 8 about here

We observe several interesting results through this analysis of volatility. With the exception
of Cardano, there are few significant relationships identified between individual cryptocurrency
markets and differing periods of low throughout high volatility in the markets for VIX, the S&P500
and gold. It must be noted that with the exception of the relationship between Cardano and the
VIX, all differential between high and low differential GARCH-calculated volatility and positive
despite this lack of confidence. However, we clearly observe some very strong interactions and
behavioural differentials between our selected cryptocurrency markets and both the market for oil
and GBP/USD. High volatility periods are associated with a significant increase in volatility in the
markets for Bitcoin, Ethereum, Litecoin, Monero and Cardano, whereas there are few interactions
between the selected variables and periods of low and below-average volatility periods. The scale
of such volatility differentials are largest in the markets for Bitcoin, Litecoin and Cardano. The
relationship between the volatility differentials in the market for GBP/USD and cryptocurrencies
are far more pronounced. The largest significant differentials are identified in the markets for
Bitcoin and Bitcoin Cash, with further significant positive volatility differentials identified in the
markets for Ethereum and Monero.

Therefore, we can accept H5 through the presentation of such evidence indicating that periods
denoted to contain substantial volatility in the markets oil and GBP/USD are also associated
with sharp, significant increases in the volatility of cryptocurrency markets. This would indicate
that the transfer of news and sentiment that would effect GBP/USD and oil markets are capable
of generating significant volatility in cryptocurrency markets, providing further evidence of the
continued evolution of these young products and exchanges.

5.3. Has the style and scale of cybercriminality directly influenced the volatility of cryptocurrencies?

After identifying a number of stylised facts surrounding the intra-day volatility of cryptocurrency
markets and the interactions with volatility in traditional financial markets, we next set out to
establish the source of this volatility. During the relatively short time in which cryptocurrencies
have existed, there have been numerous episodes of significant cybercriminality that have damaged
both the reputation and credibility of both individual cryptocurrencies and the broader exchanges
on which they trade. It is important that we investigate the differing behaviour of cryptocurrency
investors in the periods both before and after such incidents. Our analysis first sets out to investigate
broad volatility changes and the transfer of volatility in the aftermath of cybercriminality. While
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the second stage investigates changes in the information content of such pricing has changed due
to such an event.

5.3.1. What price volatility dynamics exist in the aftermath of cryptocurrency cybercriminality?
The first stage of our analysis investigates the changes in the volatility dynamics of our selected

cryptocurrencies in the periods before and after cybercrime events. We investigate H6 which analy-
ses as to whether there is a substantial change in cryptocurrency volatility in the period after cyber-
criminality. We focus on the direct volatility change using a multivariate-GARCH analysis, but also
focus on the change in dynamic correlations though the use of a DCC-GARCH methodology. The
multivariate-GARCH methodology, of which our results are presented in Table 9, is predicated on
three sources of information, the incorporation of past information as incorporated through lagged
cryptocurrency returns. Further,Table 10 provides robustness through the estimation of GARCH
caluclated volatility throughout the entire period in which we can denote episodes of cybercrim-
inality. We observe that lagged returns are significant in all of our investigated cryptocurrencies
with the exception of Ethereum. International effects are incorporated in the multivariate-GARCH
methodology through the inclusion of the traditional assets: GBP/USD, VIX, gold, S&P500 and
oil. As the most widely renowned and market leading cryptocurrency in terms of market valuation,
Bitcoin is used as a control variable in the analysis of our selected cryptocurrencies with the ex-
ception of the methodology relating to Bitcoin itself. We observe that there is a strong significant
and positive relationship between Bitcoin and our investigated cryptocurrencies, with the excep-
tion of Bitcoin and both Stellar (+0.1717) and Cardano (+0.0424). While Bitcoin presents positive
relationships with the returns of the traditional assets with the exception of oil, it is very much
similar to the market relationships found in Ripple. However, in comparison to the other large
capitalisation cryptocurrencies, both Ethereum and Litecoin presents mostly negative relationships
with traditional assets. The relationships of those cryptocurrencies with both medium and low
market capitalisation is broadly non-standard, with uniformly positive relationships identified with
the VIX and Bitcoin. The cumulative ARCH and GARCH coefficients are found to be below unity
and are significant at the 1% level throughout all individual methodologies.

Insert Tables 9 and 10 about here

While there are multiple differing responses, there appears to be no significantly uniform re-
sponses across all markets investigated which indicates that all markets have differing volatility
responses to the investigated cybercrime events. However, there are broad responses for hack 4, 7,
8, 10, 14 and 15. Hack 4 and 15 are related to a cybercrime event within an exchange (Coincheck
and Coinrail respectively), which traded a broad number of cryptocurrencies therefore presenting
a theoretically plausible influence across a broad number of products. Hack 7, 8, 10 and 14 are
associated to scam and cybercriminality that has taken place at the time of an ICO. Such results
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indicate that there are broad differences in the volatility responses of cryptocurrencies with evi-
dence supporting significant instability generated within attacks on exchanges and ICO-fraud, both
of which can be observed to be heavily dependent on perceptions of stability and financial safety.
Any threat to such stability is found to lead widespread responses across a large number of cryp-
tocurrencies rather than at the individual level. There is also evidence of cryptocurrency-specific
volatility based on the market that has been directly targeted by such cybercrime. Such evidence is
identified in the market for Bitcoin in hack 3 (+0.0033), hack 4 (-0.0031) and hack 11 (-0.0027) and
for Ethereum during hack 8 (0.0033). The remaining hacks are found to be quite geographically-
specific and product-specific, relating to cryptocurrencies that are not included in our selection due
to a number of factors including data availability and illiquidity.

Insert Table 11 about here

To analyse H7, which investigates as to whether the severity of each incident is related to
the level of volatility that is incurred, use dummy variables that represent the time period at
which the stated hack in Table 6 occurs. Within this methodology, we incorporate the estimated
dollar value lost during the cybercrime event. Results are presented using a continuous dummy
variable denoting the scale of the loss in each market investigated. In Table 11, we observe that
four markets present significant evidence denoting that volatility is correlated with the size of the
cybercriminality event (Bitcoin, Litecoin, Ripple and Monero). It must be noted that although the
results of four markets remain insignificant, all results are positive throughout this analysis, with
Cardano presenting evidence of a substantial positive relationship between the dollar-valued scale
of cybercriminality and GARCH-calculated volatility measure.

5.3.2. Do the conditional correlations between cryptocurrency markets change substantially in the

aftermath of cybercriminality events?
We next analyse the dynamic correlations between our selected cryptocurrencies using a DCC-

GARCH methodology to investigate H8, investigating as to whether such dynamic correlations
change after cybercrime events. Our results are denoted in Table 12 and are further presented
graphically in Figure 1. In Table 12, we observe the average dynamic correlation between each
cryptocurrency pair included in our sample. The highest cross-cryptocurrency correlations identified
are based on the relationships between Litecoin and Bitcoin, Litecoin and Ethereum, Ripple and
Ethereum, Monero and Ethereum, Ripple and Ethereum, Monero and Litecoin, Bitcoin Cash and
Litecoin, Monero and Ripple, and finally, Bitcoin Cash and Monero (all estimates are calculated
as +0.0002). We then provide the estimates of the same dynamic corrlation relationship in the
period surrounding each hacking event. There are a number of very interesting results presented in
this analysis. First, we observe that there are lower estimates identified for smaller capitalisation
cryptocurrencies when compared to the cross-correlations between their larger counterparts. This
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holds true not only for the dynamic correlations between smaller cyrptocurrencies themselves, but
also for the relationships between smaller and larger cryptocurrencies. Secondly, we can identify
two specific periods where there is a sustained increase in cross-cryptocurrency correlations as
controlled for each hacking event. We identify the largest sustained increase in cross-cryptocurrency
correlations at the time of hack 3 through hack 5 (6th of December 2017 through 13th of January
2018). Peak cross-correlations occur during hack 4 (18th of December 2017). These events coincide
with the service breach and hacking of Nicehash, the bankrupcy of Youbit due to an external
hack, and the DNS hijacking of Blackwallet.co resulting in the remote theft of $400,000 in Stellar
Lumer (XLM). The combined losses from these three events is approximately $103.4 million, which
is less than some individual hacking events. Further, in some relationships, the elevated cross-
correlations last beyond the time of hack 6 which represents the second largest loss of investor’s
capital ($532.6 million in NEM) which represents the largest specific hacking event in our sample.
However, it would appear that the sustained internationally relayed coverage of the four events led
to a substantial loss of confidence in cryptocurrency market during this time, which is reflected in
the broad cross-correlations of both the largest and smallest cryptocurrencies alike. Overall, we can
accept hypotheses H8.

Insert Table 12 about here

The second distinct phase of elevated cross-correlations occurs during hack 12 through 13, rep-
resenting the period between the 4th of March 2018 and the 9th of April 2018 linked with the theft
of approximately $300 million during the multi-level-marketing scheme created by GainBitcoin and
the ICO scam inspired by Ifan and Pincoin that resulted in the loss of $650 million. Figure 1 further
supports these results, with evidence of the spikes in cross-cryptocurrency correlations clearly coin-
ciding with the timing of our selected hacking events as denoted by the grey-shaded time periods.
Interestingly, there are two specific periods throughout the majority of the cross-cryptocurrency
relationships that also results in elevated correlations. The first at approximately 13:00 on the
5th of September 2017, while during a period of elevated correlations strongly linked to hack 11,
there is a further sharp increase in correlations throughout the night of the 18th of March 2018
and the days thereafter. The former event appears to occur at the same time as the first time
that Bitcoin fell below $4,400 in a significant sell-off which generated substantial fear throughout
the entire cryptocurrency sector, while the latter event occurs in the midst of two significant an-
nouncements. The first was the decision by Google to ban cryptocurrency advertisement, indicating
that even legitimate companies would not be able to advertise their services in a similar manner
to a decision already made by Facebook. The second significant news event which generated such
broad cryptocurrency comovement surrounded the thwarted theft on the Binance exchange, where
hackers had manipulated the market before attempting to cash out. The attack was not successful,
therefore, it is not included as one of our cybercrime events. Further, the exchange offered $250,000
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for information that could lead to the arrest of the hackers and put aside $10 million in a pool for
future bounty rewards to mitigate such attacks.

While considering the results of the above DCC-GARCH analysis, we must briefly take the
relationships between our selected cryptocurrencies into account. Bitcoin and Litecoin are identi-
cal in structure as peer-to-peer networks, therefore it would not be unreasonable to expect some
similarities in the volatility responses in these cryptocurrencies as investor’s observe their struc-
ture, dynamics and response mechanism to shocks in a similar manner. Cardano runs on smart
contracts in the same manner as Ethereum7. Stellar is an open-source, decentralised protocol for
digital currency to fiat currency transfers which allows cross-border transactions between any pair
of currencies. It shares similar characteristics with Ripple, and in fact was created by the same
person who founded the Mt. Gox exchange and co-founded Ripple (Jed McCaleb). Monero is found
to be in relative isolation when compared to the other seven of our selected cryptocurrencies as it
uses a Proof of Work mechanism to issue new coins and incentivise miners to secure the network
and validate transactions through an obfuscated public ledger, meaning anybody can broadcast
or send transactions, but no outside observer can tell the source, amount or destination. These
contrasting characteristics and interlinkages in design add further supportive to differing results
that are identified.

Insert Figure 1 about here

The combination of the above multivariate GARCH and DCC-GARCH analysis presents a num-
ber of interesting observations. Primarily, we can identify that there are sharp volatility responses in
cryptocurrency markets during cybercrime events, which appear to be rationally targeted at cryp-
tocurrencies directly involved and the broader sector of cryptocurrencies should the cybercrime
event be systemically damaging. This is particularly evident during cybercrime events relating to
theft directly based on wallets which proponents state is one of the key safety features of virtual
currencies, and attacks on cryptocurrency exchanges that trade multiple cryptocurrencies. Fur-
ther, we find evidence of broad comovement in cryptocurrency markets during periods of extreme
stress and severe reputational damage which supports the hypotheses that these relatively youthful
markets have developed to act somewhat similarly to traditional financial assets in time of crises.

5.3.3. Does the information share and component share of price discover change between the periods

before and after cybercrime events in cryptocurrency markets?
Developing from the volatility which can be attributed to our selected hacking events and the

dynamic conditional correlations between the cryptocurrency cross-pairs, we calculate the compo-

7Smart contracts have been found to mitigate informational asymmetry and improve welfare and consumer surplus
through enhanced entry and competition, yet distributing information during consensus generation may encourage
greater collusion (Cong and He [2019])
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nent share, information share and information leadership to uncover the key components of price
discovery. This final stage of our analysis specifically investigates as to whether this information
share and component share of information changes substantially after cybercriminality, denoted as
hypothesis H9. These measures provide information based on the contribution of each asset to
price discovery which can be explained by the proportion of variance in the common efficient price
innovations. We then proceed to map the changes in the individual components of price discovery
as set out through heat-maps presented in Figures 2, 3 and 4, which portray heat-maps representing
the information share, the information leadership share and the component share of price discovery
respectively.

Insert Figures 2, 3 and 4 about here

While focusing on the largest changes in information share in Figure 2, we can clearly identify
that there are a number of individual changes in relationships during the cyrbercrime event anal-
ysed. For example, hack 1 relating to the $280 million theft of Ethereum generates a response in
the relationship between Ethereum and that of Stellar (+0.17), Bitcoin Cash (+0.13) and Monero
(+0.16). Similar relationships are identified for hack 15, 16 and 17 with differing responses ob-
served in the change of information share between high market capitalisation cryptocurrencies such
as Bitcoin, Ethereum, Litecoin and Ripple, which present evidence of increased values. Whereas low
market capitalisation cryptocurrencies such as Stellar, Cardano, Bitcoin Cash and Monero present
evidence of much sharper changes in informational flows during these cybercrime events. However,
sharper responses are identified for the same cybercrime events when analysing the information
leadership share (Figure 3) and component share (Figure 4) of price discovery, where further dis-
tinct differences can be observed based on the market capitalisation of our selected cryptocurrencies.
Evidence is presented of Bitcoin’s prominent position in the cyrptocurrency asset class throughout
these hacks as identified in the substantial shifts in information flows in the periods before and after
these cybercrime events. These distinct differences in our information measures are of particular
interest; information share demonstrates the contribution of a price series to price discovery which
can be measured by the proportion of the variance in the common efficient price innovations while
the component share presents the permanent and temporary components of price discovery, there-
fore the common efficient price and the efficient price caused by trading fractions. There is evidence
to suggest that cybercriminality can distort these pricing relationships and can also influence large
and small cryptocurrencies in a different manner.

There is further evidence of differing responses based on the size of the cryptocurrencies anal-
ysed during hacks relating to cybercrime fraud. Such evidence is provided for hack 10 and 13 which
represent the release of news in February 2018 relating to a Ukrainian phishing network responsible
for the theft of a reported $50 million and the theft of approximately $650 million in an ICO scam in
Vietnam. Both events led to broad decreases in information share between Bitcoin and other high
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capitalisation cryptocurrencies, but decreases between Bitcoin and low capitalisation cryptocurren-
cies. However, the same information share relationship increases between smaller cryptocurrencies.
During hack 13, there is evidence of very significant responses in the information leadership share
and component share from Stellar to other smaller cryptocurrencies.

One of the most interesting results surrounds that of hack 2, relating to the theft of almost $431
million in the cryptocurrency Tether on the 21st of November 2017 where an attacker had stolen the
funds directly from the Treasury wallet and subsequently moved them to an unauthorised account.
While analyzing this event, we must consider the work of Gandal et al. [2018] who identified the
impact of suspicious trading activity on the Mt.Gox Bitcoin exchange theft when approximately
600,000 Bitcoins were attained. The authors demonstrated that the suspicious trading likely caused
the spike in price in late 2013 from $150 to $1,000, most likely driven by one single actor. These
two new and significant pieces of research have fine-tuned the focus of regulators, policy-makers
and academics alike, broad trust in both cryptocurrencies and the exchanges on which they trade
cannot be sustained with such significant questions of abnormality remaining unanswered. The
relationship between these cryptocurrencies is further established through the fact that Tether is
pegged to Bitcoin. Analyzing the changes in information share during this time, we observe that
Bitcoin influences Ethereum more in the period after the hacking event (+0.20), but obtains larger
information flows from all of the other cryptocurrencies analyzed. Interestingly, Ethereum and
Litecoin lose information share against the other cryptocurrencies while Ripple and Stellar gain
informational authority. Similar, but far more pronounced estimates are identified in the analysis
based on the information leadership share and component share of information.

With regards to cybercriminality based on the hacking of the exchanges on which cryptocur-
rencies trade, hack 3 and 4 related to the breaches at NiceHash and Youbit respectively. Hack 6
relates to the 26th of January hack of the Coincheck exchange in NEM. While hacks 3 and 4 relate
directly to Bitcoin, there is evidence of increased information share responses to Bitcoin during hack
3 and from Bitcoin during hack 4 to other large cryptocurrencies with the exception of Ethereum.
Interestingly, Ethereum increases it’s information share during these events, which might indicate
an improvement in it’s perception as a central cryptocurrency during such a damaging time for Bit-
coin. While the same relationships are identified in tests based on information leadership share and
component share, the results are far more pronounced. During event 6, $536 million of NEM was
lost during the hacking of Coincheck, which were stolen during several unauthorised transactions
from a hot wallet. NEM is a blockchain platform that was designed and coded from the ground
up for scale and speed that has a fixed supply of 8,999,999,999 units in it’s genesis block. During
this hacking event, over 523 million of these NEM units were stolen. While presenting no evidence
of a significant volatility response during the multivariate GARCH analysis, with further evidence
of it occurrence signalling the end of a pronounced period of comovement during this time. The
scale of this cybercrime event resulted in widespread news coverage and despite little evidence of
direct pricing volatility, there is substantial evidence of net transfer of information from smaller to
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larger cryptocurrencies through all three measures analysed, with particularly pronounced results
evident in the the component share of information. The scale of this event appears to have provided
somewhat of an informational equilibrium between large and small cryptocurrencies alike, as the
shock echoed through the entire cryptocurrency sector.

Hacks 5, 7 and 8 warrant particular attention. As observed during the volatility and comovement
analyses outlined above, these three cybercrime events represent the smallest estimated monetary
losses. However, there are distinct characteristics related to each that appear to have generated
substantial reverberations within cryptocurrency markets due to the nature of the cybercrime event.
Hack 5 was based on the unprecedented direct theft of Stellar from a wallet, resulting in widespread
discourse in the cryptocurrency community as to how such a theft could occur as the very nature of
blockchain was to mitigate such risk of occurrence. As a partial robustness check to support the use
of our selected methodology, in Figure 2 we observe a clear and sharp increase in the information flow
between Stellar and Cardano (+0.44), while the sharpest declines with all other cryptocurrencies
are related to relationships specifically with Stellar, such as that with Bitcoin (-0.47), Ethereum
(-0.42) and Litecoin (-0.42). These responses are mirrored in the results relating to information
leadership share, but are found to be quite broad when observing the component share response.
Hack 7 and 8 refer to the BeeToken phishing attack and the Seele ICO scam, which although
relate to quite minuscule losses when compared to other listed events, occurred in rapid succession
during a period of broad reputation damage to the credibility of cryptocurrency markets. While
proponents of the new financial asset class continued to identify the safety of it’s use as key feature
of cryptocurrencies, these particular events exposed deep flaws within their structure and supported
the argument against their credibility due to the ease in which assets could be stolen. These events
all generate substantial flows of information through all measures from smaller cryptocurrencies to
largest cryptocurrencies.

Insert Figure 5 about here

In Figure 5, we analyse the abnormal returns associated with each of the investigated hacking
events. While evidence of varying responses can be observed throughout each of the presented
hacking events, there are particularly pronounced results provided in hacks 5 and 13. For brevity,
we have only included the stated hacks8 In the hour before event 5 relating to the theft of Stellar,
we observe substantial abnormal returns in the markets Ripple (-24%), along with Ethereum (-
11%), Litecoin (-7%), Bitcoin Cash (-4%) and the cryptocurrency at the centre of the hack, Stellar
(-2%). This result is not only interesting due to the scale of the abnormal returns identified, but
largely due to the fact that such negative abnormal returns can be identified in advance of what

8All other results related to the abnormal returns of cryptocurrencies due to hacking events are available from
the authors on request.
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can be considered to be official announcements. Abnormal returns appear largely pronounced of
up to 4 hours after the time of the hacking event. Similarly, hack 13 which relates to the official
announcement of the $650 million estimated loss through the Vietnamese ICO-theft initiated by
the companies Ifan and Pincoin. This is found to be associated with significant abnormal returns
in the four hours prior to the official announcement, initially leading to sharp losses in Ethereum
markets four hours beforehand and then generating substantial abnormal one-hour gains (of over
$4 in some cases) in all markets in both two and three hour periods before the announcement.
At the time of the announcement, abnormal returns had fallen to levels close to 0%. While the
role of automated trading programs warrants particular investigation in these scenarios, we cannot
eliminate the role of illicit behaviour as cryptocurrency markets absorb the broadly damaging news
of such significant cybercrime events.

Insert Table 13 about here

Table 13 presents an overview of the results contained within this analysis. Overall, with regards
to intra-day volatility, we find evidence that there exist ‘weekend effects’ in cryptocurrency markets
and that volatility is found to vary based on the opening hours of traditional financial markets.
However, we could not find evidence of hour-of-the-day effects or indeed, any differential in volatility
overnight as traditional financial markets closed. Most importantly, we identify a broad range of
significant findings relating to the existence of sharp differences in volatility and information flow
within these young markets in the aftermath of cybercriminality and broad hacking events. Should
cryptocurrency markets aspire to become reputationally-comparable to that of key traditional fi-
nancial markets, it is of paramount importance that such broad criminality be eliminated within
the products and exchanges on which they trade. Should this not transpire, investors will continue
to be broadly exposed to the exceptional moral hazard and asymmetric information issues that
exist. Such changes in volatility and information content merit the protection of investors, or at the
very least, further more substantial warnings that there exist abnormal risks of theft through both
product and exchange manipulation. As research on cryptocurrency markets continues to evolve,
while focusing and reflecting on the future benefits of both cryptocurrencies and blockchain at large,
we must also consider the product’s evolution to coincide with the development of a reasonable level
of investor confidence, that must be absent irrational exuberance, yet inclusive of a risk premium
that reflects appropriate investor exposure in an efficient, sensible and legitimate manner.

6. Conclusion

This research provides a number of novel findings related to our selected cryptocurrency markets.
The first stage of our analysis identifies a number of stylised facts relating to the intra-day price
volatility and source of volatility within these markets. While investigating a number of hypothe-
ses relating to intra-day cryptocurrency volatility, we have identified a number of stylised facts.
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First, we have identified that there are substantial differences in cryptocurrency volatility between
weekdays and weekends robust across a number of measures. Secondly, we identify that there are
substantially elevated levels of cryptocurrency volatility while United States and European markets
are open, however, this volatility is substantially reduced while Chinese and Japanese markets are
operational. Finally, there is evidence of substantially elevated cryptocurrency volatility during
episodes of substantial stress in GBP/USD and oil markets. However, we must also note that there
is no evidence identified to accept the hypotheses that cryptocurrency volatility varies based on
the times that traditional markets open and indeed, there is no evidence identified to support the
presence of hour-of-the-day effects.

There are broad volatility responses for cybercrime events within an exchange which traded a
broad number of cryptocurrencies indicating that such cybercrime generates sector-wide volatility
effects. Further, there are significant differences in the volatility responses of cryptocurrencies with
further evidence identifying significant instability generated within attacks on exchanges and ICO-
fraud, both of which can be heavily dependent on perceptions of stability and financial safety. In
a DCC-GARCH analysis, we observe that there are lower volatility estimates identified for smaller
capitalisation cryptocurrencies when compared to the cross-correlations between their larger coun-
terparts. This holds true not only for the dynamic correlations between smaller cyrptocurrencies
themselves, but also for the relationships between smaller and larger cryptocurrencies. We also iden-
tify two specific periods where there is a sustained increase in cross-cryptocurrency correlations as
controlled for each hacking event. We identify the largest sustained increase in cross-cryptocurrency
correlations between the 6th of December 2017 and the 13th of January 2018, incorporating a num-
ber of significant hacks in our sample. Peak cross-correlations occur on the 18th of December 2017.
These events coincide with the service breach and hacking of Nicehash, the bankrupcy of Youbit due
to an external hack, and the DNS hijacking of Blackwallet.co resulting in the remote theft $400,000
in Stellar Lumer (XLM). It would appear that the sustained internationally relayed coverage of the
four events led to a substantial loss of confidence in the cryptocurrency market during this time,
which is reflected in the broad cross-correlations of both the largest and smallest cryptocurrencies
alike. The second distinct phase of elevated cross-correlations occurs during the period between
the 4th of March 2018 and the 9th of April 2018 which represent the theft of approximately $300
million during the multi-level-marketing scheme created by GainBitcoin and the ICO scam inspired
by Ifan and Pincoin that resulted in the loss of $650 million. We also find significant differences in
the price discovery dynamics in the pairwise relationships between our selected cryptocurrencies.

Three distinct novel results are presented. There exist substantial and sustained differences
in the volatility of broad cryptocurrency markets dependent on a weekend effects, whether Asian,
American and European markets are open, and indeed, dependent on episodes of extreme volatility
in GBP/USD and oil markets. Further, we find evidence of broad comovement in cryptocur-
rency markets during periods of extreme stress and severe reputational damage which supports
the hypotheses that these relatively youthful markets have developed to act somewhat similarly to
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traditional financial assets in time of crises. Further, there is substantial evidence to suggest that
these same relationships change substantially in the period after cryptocurrency cybercriminality,
indicating that not only is the price volatility of these financial products directly influenced, but
also the manner in which the information share, information leadership share and the component
share of the price discovery is processed. This result broadly indicates the presence of market ma-
nipulation within this young industry, a finding that institutional investors and regulators should
find concerning.
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Table 1: Descriptive statistics of the traditional financial assets and cryptocurrencies

Count Mean Variance Std Dev Skew Kurt Min Max
Traditional Financial Assets
GBP/USD 5,891 0.00000 0.00000 0.00076 0.24383 10.24634 -0.00664 0.00965
VIX 3,070 0.00015 0.00067 0.02596 -0.19906 57.44486 -0.46779 0.34793
Gold 1,229 -0.00007 0.00000 0.00157 0.35547 5.13538 -0.00721 0.01013
S&P500 1,671 -0.00001 0.00001 0.00227 -1.11241 10.32006 -0.01715 0.01479
Oil (WTI) 5,040 0.00006 0.00001 0.00316 -0.23558 7.57966 -0.02506 0.02188
Cryptocurrencies
Bitcoin 8,297 0.00011 0.00014 0.01195 0.48299 10.40750 -0.10547 0.11889
Ethereum 8,297 0.00007 0.00018 0.01352 0.85312 15.16250 -0.10905 0.15243
Litecoin 8,297 0.00011 0.00027 0.01657 1.48860 20.91631 -0.12945 0.23656
Ripple 8,297 0.00020 0.00038 0.01954 2.37126 34.32370 -0.16514 0.30347
Stellar 8,297 0.00046 0.00045 0.02111 2.99377 47.85589 -0.14332 0.40325
Monero 8,297 0.00010 0.00029 0.01713 0.34831 8.26498 -0.12667 0.18751
Bitcoin Cash 8,297 0.00019 0.00039 0.01981 0.69729 16.24494 -0.23913 0.27164
Cardano 7,376 0.00035 0.00035 0.01859 2.44642 30.14793 -0.17087 0.31692

Note: We have selected GBP/USD to represent interatctions between cryptocurrencies and broad currency markets, the
S&P500 as a representation of stock market performance, both gold and oil (as measured by West Texas Intermediate,
WTI oil markets) as a representation of commodity markets, and finally the VIX (CBOE volatility index) to represent
options markets and implied volatility respectively. Our selected cryptocurrencies represent the eight largest by market
capitalisation during the period in which data was collected. Our selected financial markets, sampled at 60-minute
intervals, was collected from Thomson Reuters Tick History for the period from midnight on 1 September 2017 through
midnight on 10 August 2018.
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Table 2: Correlation matrix between traditional financial assets and cryptocurrencies

GBP/USD VIX Gold S&P500 Oil BTC ETC LTC RIP STE MON BTCa CAR
GBP/USD 1.000
VIX 0.014 1.000
Gold -0.548 0.085 1.000
S&P500 -0.035 -0.768 -0.131 1.000
Oil (WTI) -0.244 -0.271 0.116 0.363 1.000
Bitcoin 0.025 -0.010 0.016 0.051 -0.016 1.000
Ethereum 0.014 0.014 0.040 0.045 0.008 0.710 1.000
Litecoin 0.010 -0.011 0.005 0.028 -0.007 0.618 0.690 1.000
Ripple 0.025 0.028 0.061 0.025 0.016 0.484 0.557 0.416 1.000
Stellar -0.002 0.045 0.014 -0.007 -0.033 0.052 0.218 0.165 0.248 1.000
Monero -0.002 -0.018 0.033 0.060 0.012 0.642 0.676 0.552 0.406 0.217 1.000
Bitcoin Cash 0.021 -0.014 -0.050 0.058 0.023 0.593 0.613 0.522 0.342 0.157 0.560 1.000
Cardano -0.043 0.013 0.027 0.004 0.062 0.088 0.239 0.094 0.246 0.443 0.206 0.256 1.000

Note: We have selected GBP/USD to represent interatctions between cryptocurrencies and broad currency markets, the S&P500 as a representation of stock
market performance, both gold and oil (as measured by West Texas Intermediate, WTI oil markets) as a representation of commodity markets, and finally the
VIX (CBOE volatility index) to represent options markets and implied volatility respectively. Our selected cryptocurrencies represent the eight largest by
market capitalisation during the period in which data was collected. Our selected financial markets, sampled at 60-minute intervals, was collected from
Thomson Reuters Tick History for the period from midnight on 1 September 2017 through midnight on 10 August 2018.
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Table 3: Cryptocurrency hacking events used to investigate the differences in price volatility and discover

Hack Date Est. Time Amount Market Description

1 07-Nov-17 11:51 $280.0m Ethereum On November 6th, a user playing with the Parity multisig wallet library contract
triggered its kill function, effectively freezing the funds on all Parity multisig wallets
linked to the library’s code. The vulnerability was deployed after July 20th 2017 and
was found by an anonymous user. The user decided to exploit this vulnerability and
made himself the ‘owner’ of the library contract.

2 21-Nov-17 04:15 $30.0m Tether Tether blamed a ‘malicious action by an external attacker’ stating that $30,950,010
USDT was removed from the Tether Treasury wallet on Nov. 19, 2017 and sent to an
unauthorized bitcoin address. As Tether is the issuer of the USDT managed asset,
we will not redeem any of the stolen tokens, and we are in the process of attempting
token recovery to prevent them from entering the broader ecosystem.’

3 06-Dec-17 10:45 $64.0m Bitcoin Service breach and hack at NiceHash, a marketplace for miners to rent out their hash
rate to others. The situation escalated after hours of website outage and reports from
a multitude of users that their NiceHash-associated wallets had been emptied.

4 18-Dec-17 21:35 $37.0m Bitcoin The South Korean bitcoin exchange named Youbit moved to declare bankruptcy
following what it said was a debilitating hack and theft. A message on Youbit’s
official website stated that, at around 4:34 a.m. local time, an external hack resulted
in the loss of ‘about 17 % of total assets.’

5 13-Jan-18 12:00 $0.4m Stellar A DNS hijack has led to hackers withdrawing $400,000 worth of Stellar Lumen (XLM)
coins from wallets hosted by Blackwallet.co without user permission. On January 13,
attackers took control of BlackWallet’s hosting server, changing settings to allow code
to run which automatically sent customer balances over 20XLM to an address under
the hackers’ control.

6 26-Jan-18 15:00 $532.6m NEM On Jan. 26, Coincheck suspended all deposits in NEM on their exchange. NEM Foun-
dation president Lon Wong confirmed Coincheck was hacked, calling the stolen funds
‘the biggest theft in the history of the world.’ Once the hack was confirmed by the
exchange, reported to have happened 3:00 AM local time on Jan. 26, it was then
revealed that the hack resulted in a loss of 523 mln NEM coins, worth approximately
$532.6 mln around Jan. 26. The coins were stolen via several unauthorized transac-
tions from a hot wallet.

(continued on next page)
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Table 3: Cryptocurrency hacking events used to investigate the differences in price volatility and discover

Hack Date Est. Time Amount Market Description
7 31-Jan-18 20:22 $0.9m BeeToken Cryptocurrency startup BeeToken was hacked while the attackers targeted its initial

coin offering (ICO) with phishing attacks and duped investors for over $1 million
worth of Ethereum.

8 05-Feb-18 17:00 $1.8m Ethereum Potential Seele ICO investors were scammed out of nearly $2 million by impersonators
posing as administrators, who used the company’s Telegram channel to get them to
send their money over before the token sale began. Seele, a blockchain project that
describes itself as ‘blockchain 4.0,’ with potential applications in IoT, game assets,
fintech, among others areas.

9 08-Feb-18 12:00 $195.0m Nano The hack is estimated to have occurred on 8 February 2018, however, Nano’s devel-
opers allege that the exchange was insolvent long before February, stating ‘we now
have sufficient reason to believe that Firano has been misleading the Nano Core Team
and the community regarding the solvency of the BitGrail exchange for a significant
period of time.’

10 15-Feb-18 09:00 $50.0m Bitcoin Cisco had already been investigating potential cybercriminality in partnership with
the Ukrainian Cyberpolice stating that those behind a large scam had netted $50 mil-
lion in cryptocurrency over a three-year period. ‘The campaign was very simple and
after initial setup the attackers needed only to continue purchasing Google AdWords
to ensure a steady stream of victims,’ they wrote.

11 04-Mar-18 17:41 $50.0m Bitcoin BTC Global was launched in Sep. 25, 2017 by ‘famous’ trader Steven Twain. His
success in binary options trading led people to believe that the platform was trust-
worthy. However, the set-up was criticized and called out for being a scam ever since
it was released.

12 05-Apr-18 12:00 $300.0m Bitcoin GainBitcoin began as a multi-level marketing (MLM) scheme in 2015 and amassed
over 100,000 investors, all of whom were promised monthly returns of 10% on their
investment. When authorities caught on, Amit Bhardwaj, who had established the
scheme had moved his base of operations to Dubai while continuing operations in
India.

(continued on next page)
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Table 3: Cryptocurrency hacking events used to investigate the differences in price volatility and discover

Hack Date Est. Time Amount Market Description
13 09-Apr-18 12:00 $650.0m ICO Occurring in Vietnam, the largest alleged scam connected to an ICO has been pulled

off by two blockchain firms, Ifan and Pincoin. The two firms have allegedly duped
32,000 investors for around VND 15 trillion ($660 million). Ifan is registered in Sin-
gapore while Pincoin is registered in Dubai, however, both firms had approached the
same company in Vietnam (Modern Tech) to advertise their projects to potential
local investors.

14 19-Apr-18 09:00 $20.0m Bitcoin Two men started the scheme in 2015 and subsequently built a multi-level company by
promising investors high returns through investing in bitcoin. ‘The multi-level trans-
action is a risk to the socioeconomic order with mass production of many victims,’
the prosecuting judge was quoted as saying in the report.

15 10-Jun-18 17:00 $40.0m NPXS Coinrail stated that it had suspended services after it suffered what it calls a ‘cyber
intrusion,’ which resulted in a range of ERC-20 based tokens stolen from the platform.
However, Coinrail only provided the names of some of the tokens that were taken in
the alleged breach without disclosing the exact amounts at stake.

16 16-Jun-18 07:33 $31.5m Ethereum Bithumb moved a large amount of Ethereum to its cold wallet when they recently
noticed abnormal access. On June 16, Bithumb announced an abrupt server check
‘in order to maximize security settings.’ The maintenance was planned from 5:20 am
KST to 9:00 am KST, but exceeded the scheduled time.

17 09-Jul-18 21:35 $23.5m Ethereum In a statement revealed July 9, Bancor experienced a security breach to the hot wallet
used to update smart contracts on its exchange, resulting in a loss of approximately
$23.5 million worth of Ethereum. In a more detailed statement released at a later
stage, Bancor outlined the extent of the theft, indicating that 24,984 ETH ($12.5M),
229M NPXS ($1M) and 3.2M BNT ($10M) were stolen in total.

In the above table we have established a list of seventeen of the largest cryptocurrency hacking events between September 2017 and August 2018. The list of
hacking events include a broad number of unique situations that targeted either the exchange on which cryptocurrencies trade, the blockchain supporting a
specific cryptocurrency or indeed the wallets of cryptocurrency investors. We have only included events that were determined as newsworthy if covered by any
one of a number of mainstream international broadsheet newspapers as determined by a thorough search using the LexusNexis database.
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Table 4: intra-day volatility of cryptocurrency markets during traditional financial market opening hours

BTC ETH LTC RIP STL MON BTCa CAR Ave Rank

GBP/USD open
Park 0.11% 0.27% 0.19% 0.38% 0.44% 0.27% 0.10% 0.25%
G-Klass 0.24% 0.72% 0.50% 1.19% 1.17% 0.77% 0.40% 0.57%
Rogers 0.13% 0.28% 0.20% 0.36% 0.42% 0.25% 0.11% 0.25%
Yang-Z 0.17% 0.37% 0.26% 0.54% 0.56% 0.35% 0.17% 0.31%

0.16% 0.41% 0.29% 0.61% 0.65% 0.41% 0.20% 0.34%
3 3 4 2 4 4 2 3 3.1

VIX open
Park 0.18% 0.39% 0.54% 0.56% 0.61% 0.47% 0.17% 0.24%
G-Klass 0.46% 1.03% 1.36% 1.87% 1.99% 1.32% 0.31% 0.95%
Rogers 0.20% 0.41% 0.56% 0.50% 0.53% 0.47% 0.26% 0.14%
Yang-Z 0.28% 0.52% 0.77% 0.86% 0.86% 0.59% 0.27% 0.23%

0.28% 0.59% 0.81% 0.95% 1.00% 0.71% 0.26% 0.39%
2 1 2 1 2 2 1 2 1.6

Gold open
Park 0.30% 0.42% 0.82% 0.40% 1.05% 0.58% -0.07% 0.56%
G-Klass 0.82% 0.70% 1.48% 0.82% 2.55% 1.72% -0.11% 1.56%
Rogers 0.32% 0.49% 0.96% 0.43% 0.99% 0.52% -0.07% 0.55%
Yang-Z 0.46% 0.65% 1.14% 0.74% 1.45% 0.87% 0.14% 0.82%

0.47% 0.57% 1.10% 0.60% 1.51% 0.92% -0.03% 0.87%
1 2 1 3 1 1 4 1 1.8

S&P500 open
Park 0.07% 0.27% 0.39% 0.39% 0.46% 0.33% -0.24% 0.20%
G-Klass -0.07% 0.01% 0.27% 0.90% 1.51% 1.05% -1.25% 0.59%
Rogers 0.13% 0.41% 0.56% 0.44% 0.43% 0.27% -0.02% 0.13%
Yang-Z 0.13% 0.33% 0.52% 0.63% 0.69% 0.40% -0.29% 0.15%

0.06% 0.25% 0.44% 0.59% 0.77% 0.51% -0.45% 0.27%
4 5 3 4 3 3 5 4 3.9

Oil open
Park 0.05% 0.22% 0.18% 0.35% 0.40% 0.23% 0.07% 0.16%
G-Klass 0.04% 0.57% 0.43% 1.07% 1.08% 0.68% 0.25% 0.42%
Rogers 0.07% 0.24% 0.20% 0.33% 0.37% 0.22% 0.08% 0.14%
Yang-Z 0.08% 0.31% 0.25% 0.52% 0.53% 0.28% 0.15% 0.22%

0.06% 0.34% 0.27% 0.57% 0.59% 0.35% 0.14% 0.23%
5 4 5 5 5 5 3 5 4.6

Note: The above volatility estimates represent the distance from the average intra-day value as calculated by the multiple
estimation techniques presented in Section 4.1. Each of the individual market opening times are then compared and ranked
in order of 1 through 5, indicative of most volatile (1) and least volatile (5). The average rank indicates the average rank
across all analysed cryptocurrencies.
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Table 5: intra-day volatility of cryptocurrency markets separated by weekday and weekend trading times

BTC ETH LTC RIP STL MON BTCa CAR

Park
Weekdays 0.12% 0.28% 0.20% 0.39% 0.46% 0.26% 0.09% 0.22%
Weekends -0.31% -0.71% -0.51% -0.99% -1.15% -0.67% -0.23% -0.57%

G-Klass
Weekdays 0.27% 0.75% 0.55% 1.22% 1.24% 0.77% 0.34% 0.53%
Weekends -0.70% -1.90% -1.41% -3.08% -3.10% -1.95% -0.88% -1.37%

Rogers
Weekdays 0.14% 0.29% 0.21% 0.37% 0.43% 0.25% 0.11% 0.21%
Weekends -0.35% -0.73% -0.53% -0.93% -1.09% -0.63% -0.28% -0.55%

Yang-Z
Weekdays 0.18% 0.38% 0.27% 0.56% 0.58% 0.35% 0.16% 0.28%
Weekends -0.46% -0.97% -0.69% -1.41% -1.47% -0.89% -0.42% -0.73%

Note: The above volatility estimates represent the distance from the average intra-day value as calculated by the multiple
estimation techniques presented in Section 4.1.
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Table 6: intra-day volatility of cryptocurrency markets during differing geographic financial market opening hours

BTC ETH LTC RIP STL MON BTCa CAR Average Rank

Tokyo markets open Park -0.17% -0.22% -0.29% -0.18% 0.20% -0.18% -0.04% 0.34%
G-Klass -0.34% -0.49% -0.72% -0.84% 0.08% -0.18% 0.55% 0.96%
Rogers -0.19% -0.20% -0.25% -0.09% 0.25% -0.25% -0.15% 0.36%
Yang-Z -0.27% -0.30% -0.47% -0.30% 0.26% -0.15% 0.03% 0.49%
Average -0.24% -0.30% -0.43% -0.35% 0.20% -0.19% 0.10% 0.53%
Rank 3 3 3 3 2 3 2 1 2.5

Beijing markets open Park -0.23% -0.33% -0.35% -0.29% -0.14% -0.33% -0.03% -0.09%
G-Klass -0.71% -0.89% -1.10% -1.15% -0.91% -1.01% 0.05% -0.45%
Rogers -0.22% -0.31% -0.32% -0.22% -0.10% -0.30% -0.11% -0.02%
Yang-Z -0.29% -0.38% -0.47% -0.37% -0.13% -0.31% 0.07% 0.11%
Average -0.36% -0.48% -0.56% -0.51% -0.32% -0.49% 0.00% -0.11%
Rank 4 4 4 4 4 4 3 3 3.8

Europe markets open Park 0.22% 0.28% 0.33% 0.37% 0.14% 0.33% 0.50% -0.09%
G-Klass 0.74% 0.96% 1.26% 1.41% 0.54% 0.99% 1.34% 0.13%
Rogers 0.20% 0.25% 0.24% 0.28% 0.09% 0.34% 0.48% -0.16%
Yang-Z 0.27% 0.38% 0.46% 0.56% 0.16% 0.36% 0.68% -0.16%
Average 0.36% 0.47% 0.57% 0.65% 0.23% 0.50% 0.75% -0.07%
Rank 1 1 1 1 1 1 1 2 1.1

US markets open Park 0.05% 0.18% 0.18% -0.10% -0.11% 0.11% -0.34% -0.26%
G-Klass 0.04% -0.16% -0.08% -0.69% 0.43% 0.01% -1.61% -0.59%
Rogers 0.07% 0.27% 0.27% -0.06% -0.17% 0.14% -0.18% -0.29%
Yang-Z 0.15% 0.26% 0.37% 0.06% 0.03% 0.16% -0.31% -0.35%
Average 0.08% 0.14% 0.19% -0.20% 0.04% 0.10% -0.61% -0.37%
Rank 2 2 2 2 3 2 4 4 2.6

Note: The above volatility estimates represent the distance from the average intra-day value as calculated by the multiple estimation techniques presented in
Section 4.1. Each of the individual national market opening times are then compared and ranked in order of 1 through 5, indicative of most volatile (1) and
least volatile (5). The average rank indicates the average rank across all analysed cryptocurrencies. When comparing differing time zones of investigation, all
opening times have been converted to Greenwich Mean Time (GMT), with daylight savings times across jurisdictions taken into account and alternated
accordingly.
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Table 7: GARCH-calculated volatility based on the hour-of-the-day in which trades are completed

Bitcoin Bitcoin Cash Ethereum Litecoin Ripple Stellar Monero Cardano

12:00AM -0.00134** -0.00236** -0.00095 -0.00164** -0.00250*** -0.00168** -0.00159* -0.00065
01:00AM -0.00111* -0.00115 -0.00062 -0.00080 -0.00160* -0.00343*** -0.00257*** -0.00008
02:00AM -0.00142** -0.00175* -0.00005 -0.00085 -0.00177* -0.00172** -0.00173* -0.00008
03:00AM -0.00116* -0.00232** -0.00058 -0.00217** -0.00162* -0.00227*** -0.00179* -0.00003
04:00AM -0.00060 -0.00120 -0.00027 -0.00036 -0.00054 -0.00156* -0.00149 +0.00128
05:00AM -0.00080 -0.00095 -0.00004 -0.00121 -0.00166* -0.00313*** -0.00070 -0.00015
06:00AM +0.00058 -0.00111 -0.00039 +0.00013 -0.00196** -0.00080 -0.00221** +0.00133*
07:00AM -0.00104* -0.00226** -0.00003 -0.00167** -0.00068 -0.00242*** -0.00113 +0.00049
08:00AM -0.00120* -0.00152 -0.00011 -0.00066 +0.00100 -0.00132 -0.00199** +0.00175**
09:00AM -0.00133** -0.00236** -0.00131* -0.00110 +0.00187** -0.00180** -0.00109 +0.00032
10:00AM -0.00133** -0.00076 -0.00110 +0.00001 -0.01285*** -0.00334*** -0.00193** +0.00195**
11:00AM +0.00094* -0.00165 +0.00154** +0.00065 +0.00406*** -0.00017 -0.00100 +0.00157**
12:00PM -0.00053 -0.00134 -0.00057 -0.00071 -0.00569*** -0.00102 -0.00101 +0.00225***
13:00PM -0.00087 -0.00141 -0.00077 -0.00039 -0.00002 -0.00226*** -0.00158* -0.00007
14:00PM -0.00158** -0.00252** -0.00064 -0.00102 -0.00148* -0.00247*** -0.00113 +0.00150*
15:00PM - - - - - - - +0.00298***
16:00PM -0.00024 -0.00094 -0.00047 -0.00002 -0.00089 -0.00103 +0.00062 +0.00255***
17:00PM -0.00096* -0.00230** -0.00079 -0.00101 -0.00184** -0.00271*** -0.00137* +0.00198**
18:00PM -0.00053 -0.00207* -0.00074 -0.00068 -0.00133 -0.00193** -0.00152 +0.00348***
19:00PM -0.00068 -0.00074 -0.00091 -0.00042 -0.00225** -0.00090 -0.00062 +0.00234***
20:00PM -0.00127* -0.00209* -0.00134* -0.00204*** -0.00153* -0.00200** -0.00224** +0.00264***
21:00PM -0.00165** -0.00319*** +0.00009 -0.00095 -0.00097 -0.00044 -0.00197** +0.00137*
22:00PM -0.00051 -0.00024 -0.00005 -0.00104 -0.00139* -0.00171** -0.00078 +0.00092
23:00PM -0.00064 -0.00079 +0.00051 +0.00005 -0.00086 -0.00196** -0.00025 -

Constant 0.00102** 0.00159** 0.00052 0.00069 0.00127** 0.00151** 0.00136** -0.00142**

ARCH 0.07615*** 0.09578*** 0.11583*** 0.11171*** 0.48590*** 0.11666*** 0.08821*** 0.17359***
(35.55) (27.70) (26.74) (31.10) (36.40) (41.91) (25.98) (31.82)

GARCH 0.90819*** 0.88126*** 0.84654*** 0.87015*** 0.59315*** 0.89265*** 0.90290*** 0.81949***
(350.57) (204.89) (163.15) (233.56) (90.37) (362.69) (264.84) (182.74)

N 8,297 8,297 8,297 8,297 8,297 8,297 8,297 7,376
Wald Chi2 72.88 30.30 34.02 38.47 4623.58 71.16 34.97 150.74
Prob >Chi2 0.00000 0.14110 0.06490 0.02270 0.00000 0.00000 0.05240 0.00000
Log-Likelihood 26,541.23 22,591.69 25,575.23 24,331.72 23,147.71 23,445.54 23,375.97 21,921.16

Note: The results are based on GARCH methodologies utilising data at hourly intervals over the period 1 September 2017 through 12 August 2018. The
selected GARCH methodology utilises the following mean equation: Rt = a0 +

∑5
j=1 bjRt−j + b2£/$t + b3V IXt + b4Goldt + b5S&Pt + b6Oilt + εt with a

variance equation represented by ht = ω + α1ht−1 + β1u
2
t−1 +

∑24
i=1DToD. For brevity, only the results relative to the time of day volatility estimates are

presented. Further results are available from the authors on request. T-statistics are in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1%
levels, respectively.
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Table 8: Cryptocurrency price volatility during differing traditional financial market volatility regimes

Bitcoin Bitcoin Cash Ethereum Litecoin Ripple Stellar Monero Cardano

GBP/USD Volatility
Low Vol. -0.00140*** -0.00251*** -0.00109** -0.00114** -0.00084 -0.00067 -0.00183*** -0.00105**
Below Average Vol. -0.00119*** -0.00120** -0.00080* -0.00083 -0.00065 -0.00114*** -0.00120** -0.00119***
Above Average Vol. -0.00107*** -0.00133** -0.00074 -0.00054 -0.00187*** -0.00156*** -0.00145*** -0.00085**
High Vol. -0.00067*** -0.00126* -0.00091** -0.00063 -0.00043 -0.00135*** -0.00138** -0.00135***
High-Low Difference +0.00072 +0.00125 +0.00018 +0.00051 +0.00042 -0.00068 +0.00045 -0.00031

VIX Volatility
Low Vol. -0.00056 -0.00065 -0.00071 -0.00010 -0.00136* +0.00041 -0.00050 +0.00194***
Below Average Vol. +0.00035 +0.00097* +0.00012 +0.00082* +0.00036 +0.00062 +0.00058 +0.00112**
Above Average Vol. +0.00051 +0.00061 +0.00026 +0.00080 -0.00223*** +0.00103** +0.00147** +0.00295***
High Vol. -0.00015 +0.00066 +0.00004 +0.00067 -0.00001 0.00195*** +0.00051 +0.00016
High-Low Difference +0.00042 +0.00132 +0.00075 +0.00077 +0.00135 +0.00154 +0.00101 -0.00178

S&P500 Volatility
Low Vol. -0.00073 -0.00117 -0.00129** -0.00107 -0.00008 -0.00188*** +0.00004 -0.00115*
Below Average Vol. +0.00018 +0.00068 -0.00003 +0.00011 +0.00120* +0.00071 -0.00002 +0.00011
Above Average Vol. +0.00044 -0.00048 +0.00002 +0.00037 +0.00008 +0.00045 -0.00014 -0.00030
High Vol. -0.00035 -0.00094 -0.00021 -0.00059 +0.00053 +0.00057 +0.00068 -0.00046
High-Low Difference +0.00038 +0.00023 +0.00108 +0.00048 +0.00061 +0.00246 +0.00063 +0.00069

Gold Volatility
Low Vol. +0.00001 -0.00050 +0.00005 -0.00054 -0.00021 -0.00075 -0.00023 +0.00196***
Below Average Vol. -0.00018 -0.00060 -0.00004 -0.00107* -0.00084 +0.00018 -0.00103 -0.00045
Above Average Vol. -0.00026 -0.00003 -0.00009 -0.00041 +0.00046 -0.00055 +0.00009 -0.00073
High Vol. +0.00073* -0.00044 +0.00102* +0.00083 +0.00003 -0.00041 +0.00043 +0.00093
High-Low Difference +0.00072 +0.00006 +0.00098 +0.00137 +0.00024 +0.00034 +0.00067 -0.00104

Oil Volatility
Low Vol. +0.00013 +0.00078 -0.00001 -0.00029 +0.00166** +0.00085* +0.00071 -0.00018
Below Average Vol. +0.00093** +0.00065 +0.00054 +0.00051 +0.00097 +0.00143*** +0.00089 +0.00025
Above Average Vol. +0.00069 +0.00110 +0.00056* +0.00023 -0.00065 +0.00043 +0.00114** -0.00007
High Vol. +0.00116*** +0.00149 +0.00071** +0.00089** +0.00097 -0.00011 +0.00153** +0.00139***
High-Low Difference +0.00103 +0.00071 +0.00071 +0.00119 -0.00069 +0.00095 +0.00082 +0.00157

Note: Dummy variables are generated based on the quartile of volatility that each of the above individual traditional financial markets fall. The first quartile
represents the lowest periods of volatility while the fourth quartile represents the highest level of volatility. The resulting dummy variables are then used in a
GARCH methodology to investigate potential behavioural differences in cryptocurrency volatility during these periods. The stated high-low difference is
defined as the difference between the periods denoted as the highest and the lowest levels of volatilities. The methodologies utilise data at hourly intervals over
the period 1 September 2017 through 12 August 2018. Full regression results are available from the authors on request. For presentation purposes, only the
coefficients associated with the determined dummy variables are presented. T-statistics are in parentheses. *, ** and *** indicate significance at the 10%, 5%
and 1% levels, respectively.
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Table 9: Multivariate GARCH methodology analysing cryptocurrency response to hacking events

Variable Bitcoin Ethereum Litecoin Ripple Stellar Monero Bit. Cash Cardano

R1 -0.1896*** -0.0447 -0.0558** -0.1736*** -0.2628*** -0.1499*** -0.0060 -0.2760***
(-4.21) (-1.74) -2.39 -8.44 -6.48 -5.06 -0.27 -8.84

R2 -0.0488 -0.0131 -0.0727*** -0.2037*** 0.0345 -0.0137 -0.0504** -0.0709*
(-1.57) (-0.62) -3.67 -10.14 1.17 -0.44 -2.11 -1.72

R3 0.0460 -0.0059 -0.0472* 0.0579** -0.1813*** 0.0774*** -0.0216 0.0761**
(1.52) (-0.24) -1.91 2.44 -11.08 2.86 -0.88 2.11

R4 -0.0930*** -0.0168 -0.0656*** -0.0092 -0.0393* -0.0192 -0.0063 -0.0828***
(-3.34) (-0.86) -4.02 -0.40 -1.78 -0.74 -0.25 -3.03

R5 -0.0103 -0.0192 -0.0283 -0.0217 -0.1823*** -0.0653** -0.0341 -0.0078
(-0.42) (-0.95) -1.43 -0.98 -9.04 -2.40 -1.62 -0.25

GBP/USD 0.2395 -0.4719 0.2629 0.7008 -0.2349*** 0.0365 -0.7563 -0.1159
(0.38) (-1.23) 0.52 0.75 -3.89 0.05 -1.00 -0.09

VIX 0.0152 -0.0122 -0.0177 0.0141 0.0191 0.0153 0.0109 0.0237
(0.88) (-0.75) -1.00 0.61 0.88 0.92 0.48 0.96

Gold 0.2286 -0.1741 -0.0458 0.3451 -0.5614* -0.0373 -0.6397* 0.0896
(0.67) (-0.68) -0.20 0.83 -1.78 -0.11 -1.91 0.16

S&P500 0.1595 0.0130 0.2417 0.4752 0.1625 0.1028 -0.0808 0.1235
(0.56) (0.06) 1.01 1.24 0.56 0.36 -0.23 0.39

Oil -0.1174 -0.0506 -0.0124 -0.1537 -0.2540* 0.1124 0.1365 0.3203*
(-1.04) (-0.60) -0.16 -1.08 -1.71 0.90 0.96 1.73

Bitcoin - 0.8062*** 0.8968*** 0.5907*** 0.1717*** 0.7511*** 0.8665*** 0.0424
(-) (31.98) 29.78 17.35 4.72 19.66 25.62 1.03

D1 -0.0011 0.0010 0.0016 0.0007 0.0011 0.0030* 0.0023 0.0019
(-1.60) (0.92) 1.22 0.42 0.38 1.90 1.53 1.54

D2 -0.0005 -0.0015*** -0.0006 -0.0012 0.0016 -0.0003 0.0002 -0.0004
(-0.67) (-4.19) -0.63 -1.20 0.43 -0.27 0.12 -0.43

D3 0.0033*** -0.0021*** -0.0013 0.0008 0.0002 -0.0003 -0.0010 0.0003
(2.89) (-2.54) -1.32 1.02 0.04 -0.18 -0.70 0.13

D4 -0.0031*** -0.0016 -0.0010 0.0023 0.0053*** -0.0068*** -0.0051** -0.0002
(-2.62) (-1.59) -0.49 1.43 2.59 -6.52 -2.38 -0.16

D5 -0.0020* -0.0013 -0.0019 -0.0033* -0.0016 -0.0009 -0.0030* -0.0009
(-1.69) (-1.02) -1.33 -1.68 -0.83 -0.50 -1.90 -0.60

D6 -0.0010 0.0005 -0.0001 -0.0002 -0.0011 -0.0008 -0.0003 -0.0006
(-0.98) (0.50) -0.13 -0.17 -1.13 -0.68 -0.23 -0.65

D7 -0.0008 -0.0003 0.0032*** 0.0106*** 0.0056*** -0.0011 -0.0016 0.0019**
(-0.83) (-0.27) 2.47 17.34 9.23 -0.76 -1.17 2.41

D8 0.0025 0.0033* 0.0029 0.0042*** 0.0010 0.0053** 0.0054** 0.0011
(1.37) (1.91) 1.38 2.49 0.87 2.31 2.39 0.90

D9 -0.0004 -0.0008 -0.0002 0.0008 0.0000 -0.0013 -0.0009 -0.0006
(-0.26) (-0.71) -0.11 0.39 0.05 -0.69 -0.44 -0.50

D10 0.0008 0.0003 -0.0003 0.0020*** -0.0004 0.0021 0.0028*** -0.0002
(0.87) (0.29) -0.19 2.77 -0.44 1.61 2.75 -0.44

D11 -0.0027*** -0.0018** -0.0012 -0.0041*** 0.0017** -0.0028*** -0.0020** -0.0010
(-6.74) (-2.33) -1.41 -4.72 2.50 -3.18 -2.09 -0.98

D12 -0.0005 0.0010 0.0000 0.0001 0.0002 -0.0005 -0.0002 0.0009
(-0.86) (0.99) 0.00 0.05 0.31 -0.62 -0.19 1.08

D13 0.0091*** 0.0017* 0.0009 0.0013 0.0011 0.0010 0.0016 0.0008
(4.52) (1.65) 0.95 0.67 1.19 0.81 1.27 1.50

D14 0.0008 0.0020* 0.0011 0.0018 0.0000 0.0027** 0.0065*** 0.0000
(1.13) (1.91) 1.08 1.22 -0.03 2.12 5.19 -0.01

D15 -0.0023*** -0.0021** -0.0023** -0.0008 0.0001 -0.0053*** -0.0015 0.0016***
(-4.68) (-2.36) -2.63 -0.50 0.10 -8.39 -1.04 2.68

D16 0.0002 0.0004 0.0002 -0.0001 0.0000 0.0000 0.0001 -0.0003
(0.25) (0.50) 0.25 -0.09 -0.07 0.03 0.08 -0.50

D17 -0.0009 -0.0007 -0.0003 -0.0008 0.0099*** -0.0013 -0.0007 0.0101***
(-1.17) (-0.67) -0.28 -0.39 50.18 -1.08 -0.42 52.61

ARCH 0.0600*** 0.1160*** 0.1122*** 0.1922*** 0.1039*** 0.0882*** 0.0960*** 0.1693***
(38.31) (27.26) 33.59 44.28 50.27 26.06 28.32 36.53

GARCH 0.9287*** 0.8457*** 0.8682*** 0.7401*** 0.8927*** 0.9025*** 0.8803*** 0.8273***
(547.03) (166.53) 244.46 126.58 447.46 265.69 211.51 207.79

The GARCH (1,1) methodology used in this study has the following form: Rt = a0 +
∑5
j=1 bjRt−j + b2£/$t + b3V IXt + b4Goldt + b5S&Pt

+b6Oilt + b7Bitt + εt where ht = ω + α1ht−1 + β1u
2
t−1 +

∑17
i=1 Di. Rt−j represents the lagged value of cryptocurrency returns, n hours

before Rt is observed. b2£/$t represents the interaction between the selected cryptocurrency returns and £/$, while b3V IXt represents the
value of the VIX in the hour that the estimate Rt was observed. Finally, b5S&Pt and b6Oil represent the relationship between cryptocurrency
returns and the returns of the S&P500 and oil as measured through West Texas Intermediate (WTI) respectively.

∑17
i=1 Di is included in the

variance equation to provide a coefficient relating to the included seventeen dummy variables listed in Table 3. T-statistics are in parentheses.
*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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Table 10: Multivariate GARCH methodology using a continuous variable representing cryptocurrency cybercriminal-
ity

Variable Bitcoin Ethereum Litecoin Ripple Stellar Monero Bit. Cash Cardano

GBP/USD 0.2603 -0.4136 0.1857 0.7232 -0.3563*** -0.0840 -0.6414 -0.1867
(0.48) (-1.08) (0.38) (0.80) (-6.40) (-0.11) (-0.86) (-0.14)

VIX 0.0243 -0.0121 -0.0087 0.0406 0.0246 0.0019 0.0196 0.0224
(1.36) (-0.74) (-0.45) (1.45) (1.03) (0.09) (0.89) (0.68)

Gold 0.3161 -0.1161 -0.1151 0.1236 -1.6722*** -0.0055 -0.6468** -0.1227
(1.17) (-0.50) (-0.64) (0.30) (-4.82) (-0.02) (-2.01) (-0.19)

S&P500 0.1495 0.0204 0.2712 0.3528 0.1936 0.1635 0.0368 0.3369
(0.52) (0.10) (1.02) (0.94) (0.64) (0.47) (0.10) (0.94)

Oil -0.0817 -0.0510 0.0233 0.1251 -0.3224*** 0.0667 0.1202 0.0385
(-0.79) (-0.63) (0.31) (0.73) (-1.89) (0.45) (0.86) (0.28)

Bitcoin - 0.7866*** 0.9286*** 0.7733*** 0.1332*** 0.8394*** 0.8162*** -
(-) (33.39) (28.83) (26.12) (3.62) (25.87) (23.12) (-)

Volatility Change 1.3916*** 0.4297 1.2624*** 3.2872** 1.2265* 1.4947*** 0.8512 0.7668
(5.22) (0.66) (3.40) (2.29) (1.87) (8.82) (1.52) (0.15)

ARCH 0.2924*** 0.1879*** 0.2309*** 0.4030*** 0.2846*** 0.2607*** 0.3532*** 0.4629***
(4.35) (8.15) (7.32) (18.43) (8.55) (2.64) (7.79) (6.13)

GARCH 0.5062*** 0.7866*** 0.7598*** 0.5845*** 0.9218*** 0.4477*** 0.6280*** 0.5750***
(7.50) (9.84) (10.92) (13.91) (13.75) (4.42) (7.54) (10.45)

The GARCH (1,1) methodology used in this study has the following form: Rt = a0 +
∑5
j=1 bjRt−j + b2£/$t + b3V IXt

+b4Goldt + b5S&Pt + b6Oilt + b7Bitt + εt where ht = ω + α1ht−1 + β1u
2
t−1 +Di. Rt−j represents the lagged value of

cryptocurrency returns, n hours before Rt is observed. b2£/$t represents the interaction between the selected
cryptocurrency returns and £/$, while b3V IXt represents the value of the VIX in the hour that the estimate Rt was
observed. Finally, b5S&Pt and b6Oil represent the relationship between cryptocurrency returns and the returns of the
S&P500 and oil as measured through West Texas Intermediate (WTI) respectively. A continuous variable representing the
combined number of cybercriminality events is included in the variance equation to provide a coefficient relating to the
included seventeen dummy variables listed in Table 3. T-statistics are in parentheses. *, ** and *** indicate significance at
the 10%, 5% and 1% levels, respectively.
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Table 11: Multivariate GARCH methodology analysing the effects of cryptocurrency cybercriminality based on the
estimated dollar value stolen

Variable Bitcoin Ethereum Litecoin Ripple Stellar Monero Bit. Cash Cardano

GBP/USD 0.2547 -0.4272 0.1704 0.6072 -0.3523*** -0.0297 -0.6585 -0.1965
(0.46) (-1.12) (0.34) (0.70) (-5.25) (-0.04) (-0.89) (-0.14)

VIX 0.0231 -0.0113 -0.0098 0.0326 0.0262 0.0083 0.0168 0.0237
(1.31) (-0.68) (-0.52) (1.19) (1.11) (0.45) (0.79) (0.71)

Gold 0.3161 -0.1311 -0.1053 -0.0039 -1.6372*** 0.0011 -0.6576** -0.0862
(1.09) (-0.56) (-0.55) (-0.01) (-4.58) (0.00) (-2.05) (-0.13)

S&P500 0.1698 0.0380 0.2759 0.2700 0.2316 0.2174 0.0163 0.3542
(0.58) (0.18) (1.05) (0.71) (0.75) (0.65) (0.05) (0.92)

Oil -0.0963 -0.0549 0.0204 0.1685 -0.3233* 0.0402 0.1244 0.0422
(-0.95) (-0.68) (0.27) (1.07) (-1.90) (0.28) (0.88) (0.30)

Bitcoin - 0.7856*** 0.9311*** 0.7792*** 0.1329*** 0.8471*** 0.8191*** -
(-) (32.94) (28.63) (23.62) (3.57) (25.52) (23.00) (-)

Volatility Change 0.0705*** 0.0289 0.0640*** 0.1460*** 0.0609 0.0866*** 0.0434 0.1190
(4.41) (0.82) (2.87) (2.77) (1.60) (7.24) (1.29) (0.13)

ARCH 0.2860*** 0.1810*** 0.2226*** 0.4549*** 0.2821*** 0.2804*** 0.3767*** 0.4521***
(4.15) (7.97) (7.14) (14.73) (8.50) (2.79) (7.83) (6.08)

GARCH 0.5221*** 0.7946*** 0.7621*** 0.5813*** 0.9239*** 0.4649*** 0.6292*** 0.5834***
(7.58) (9.74) (10.72) (15.33) (13.72) (4.39) (7.50) (10.72)

The GARCH (1,1) methodology used in this study has the following form:
Rt = a0 +

∑5
j=1 bjRt−j + b2£/$t + b3V IXt + b4Goldt +b5S&Pt + b6Oilt + b7Bitt + εt where

ht = ω + α1ht−1 + β1u
2
t−1 +DUSD$i

. Rt−j represents the lagged value of cryptocurrency returns, n hours before Rt is
observed. b2£/$t represents the interaction between the selected cryptocurrency returns and £/$, while b3V IXt
represents the value of the VIX in the hour that the estimate Rt was observed. Finally, b5S&Pt and b6Oil represent the
relationship between cryptocurrency returns and the returns of the S&P500 and oil as measured through West Texas
Intermediate (WTI) respectively. A continuous variable representing the natural logarithm of the estimated dollar value
stolen due to cybercriminality is included in the variance equation to provide a coefficient relating to the included
seventeen dummy variables listed in Table 3. T-statistics are in parentheses. *, ** and *** indicate significance at the 10%,
5% and 1% levels, respectively.
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Table 12: Dynamic correlations between selected cryptocurrency markets during hacking events

ET-BT LT-BT RI-BT ST-BT MO-BT Bc-BT LT-ET RI-ET ST-ET MO-ET Bc-ET RI-LT ST-LT
Total 0.01 0.02 0.01 0.00 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01
D1 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.02 0.02 0.00
D2 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00
D3 0.01 0.02 0.01 0.01 0.04 0.01 0.02 0.01 0.02 0.04 0.02 0.01 0.03
D4 0.16 0.25 0.19 0.05 0.17 0.12 0.24 0.20 0.07 0.16 0.13 0.33 0.13
D5 0.10 0.13 0.13 0.07 0.10 0.11 0.14 0.17 0.07 0.10 0.12 0.19 0.11
D6 0.02 0.02 0.02 0.00 0.02 0.02 0.01 0.02 0.00 0.02 0.02 0.02 0.00
D7 0.04 0.06 0.04 0.02 0.04 0.03 0.06 0.05 0.02 0.04 0.03 0.07 0.04
D8 0.02 0.02 0.03 0.00 0.02 0.02 0.02 0.03 0.00 0.02 0.02 0.03 0.00
D9 0.02 0.02 0.03 0.01 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01
D10 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00
D11 0.03 0.03 0.02 0.00 0.03 0.03 0.02 0.02 0.00 0.03 0.02 0.02 0.00
D12 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.00
D13 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.03 0.00 0.02 0.02 0.03 0.00
D14 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00
D15 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
D16 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00
D17 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00

MO-LT Bc-LT CA-LT ST-RI MO-RI Bc-RI CA-RI MO-ST Bc-ST CA-ST Bc-MO CA-MO CA-Bc
Total 0.02 0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.00
D1 0.01 0.03 0.00 0.00 0.00 0.01 0.00 0.01 -0.02 0.01 0.00 0.00 0.02
D2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00
D3 0.05 0.04 0.02 0.01 0.02 0.01 0.01 0.05 0.04 0.06 0.05 0.02 0.02
D4 0.25 0.18 0.05 0.17 0.19 0.12 0.06 0.08 0.04 0.06 0.17 0.02 0.02
D5 0.14 0.16 0.03 0.11 0.10 0.13 0.04 0.09 0.10 0.04 0.15 0.03 0.03
D6 0.02 0.02 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00
D7 0.06 0.05 0.04 0.03 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02
D8 0.02 0.02 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.01 0.02 0.00 0.00
D9 0.02 0.02 0.00 0.01 0.03 0.02 0.01 0.01 0.00 0.00 0.02 0.00 0.00
D10 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
D11 0.02 0.02 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00
D12 0.01 0.02 0.00 0.01 0.02 0.02 0.00 0.00 0.01 0.00 0.02 0.00 0.00
D13 0.02 0.02 0.00 0.01 0.03 0.03 0.01 0.00 0.00 0.01 0.02 0.00 0.00
D14 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01
D15 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
D16 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
D17 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.12 0.00 0.01 0.01

Note: For presentation purposes, the names of the selected cryptocurrencies have been shortened. They are now presented as BT (Bitcoin), ET (Ethereum), LT
(Litecoin), RI (Ripple), ST (Stellar), MO (Monero), Bc (Bitcoin Cash), and CA (Cardano). Results are scaled for presentation purposes by multiplying
original coefficients by 102. For brevity we have only included selected abnormal return results. All other results related to the abnormal returns of
cryptocurrencies due to hacking events are available from the authors on request. The results indicate the dynamic correlations between the stated products at
the time of each hacking event. We estimate the impact of external shocks on the dynamic conditional correlation features. We regress the time-varying
correlation model as follows: ρij,t = ωij + Σpp=1ϕpρij,t−p + Σ2

k=1αkDMk,t + εij,t where ρij,t is the pair-wise conditional correlation coefficient between the
cryptocurrency i and cryptocurrency j. DM1 is a dummy variable denoting the date of the cybercrime incident.The shaded areas represent the periods that
incorporate major cryptocurrency hacking events that are denoted in Table 6.
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Table 13: Overview of the acceptance and rejection of the selected research hypotheses

Hypothesis Description Result Note

H1 Does the intra-day volatility of cryp-
tocurrencies change significantly when
traditional markets are closed?

Reject We identified clear differences between the investigated cryptocurrency markets with both sub-
stantial and significant differences in intra-day volatility depending on the operational trading
hours investigated. However, despite this, the variation between the individual markets do
not correlate across all eight of the investigated markets, therefore, although we can state
that on average there are substantial differences based on differing opening times, we cannot
definitively state that this is the same for all cryptocurrencies.

H2 Does the intra-day volatility of cryp-
tocurrencies change significantly at the
weekend when compared to weekdays?

Accept There is a clear difference weekend effect in cryptocurrency markets, but also there is evidence
of elevated intra-day volatility during the week and a substantial reduction at the weekend.

H3 Is there a difference in intra-day cryp-
tocurrency volatility based on the open-
ing hours of major international financial
markets?

Accept intra-day volatility is found to be substantially elevated while both European and United
States financial markets are trading with the exception of Cardano during European opening
and Ripple, Bitcoin Cash and Cardano during United States opening. However, cryptocur-
rency volatility is broadly below average during both Japanese and Chinese trading times with
the exception of results for Stellar, and again, Bitcoin Cash and Cardano. This presents evi-
dence supporting the hypothesis that cryptocurrency intra-day volatility behaves in a different
manner depending on the exchange that is open.

H4 Does cryptocurrency market volatility
change substantially based on the hour-
of-the-day in which trading takes place?

Reject Despite a number of alternative specifications and differing frequencies of investigation, there
are a number of differing times where individual cryptocurrencies exhibit elevated levels of
GARCH-calculated volatility, but there is no evidence to support hypothesis H4 across the
cryptocurrency markets investigated.

H5 Has cryptocurrency volatility varied sub-
stantially during periods of traditional
market volatility?

Accept We identify evidence indicating that periods denoted to contain substantial volatility in the
markets for both oil and GBP/USD are also associated with sharp, significant increases in the
volatility of cryptocurrency markets.

H6 Does cryptocurrency market volatility
change substantially in the aftermath of
cybercriminality?

Accept We can identify that there are sharp volatility responses in cryptocurrency markets during cy-
bercrime events, which appear to be rationally targeted at cryptocurrencies directly involved
and the broader sector of cryptocurrencies should the cybercrime event be systemically dam-
aging.

H7 Does such cryptocurrency volatility vary
by severity of cybercriminality event?

Accept It must be noted that although the results of four markets remain insignificant, all results
are positive throughout this analysis, with Cardano presenting evidence of a substantial pos-
itive relationship between the dollar-valued scale of cybercriminality and GARCH-calculated
volatility measure.

H8 Do the conditional correlations between
cryptocurrency markets change substan-
tially in the aftermath of cybercriminal-
ity events?

Accept There are two broad results: we observe that there are lower estimates identified for smaller
capitalisation cryptocurrencies when compared to the cross-correlations between their larger
counterparts. Secondly, we can identify two specific periods where there is a sustained increase
in cross-cryptocurrency correlations as controlled for each hacking event.

H9 Does the information share and compo-
nent share of price discovery change be-
tween the periods before and after cyber-
crime events in cryptocurrency markets?

Accept There is significant evidence provided to suggest that cybercriminality can distort these infor-
mation share with the investigated pricing relationships and can also influence large and small
cryptocurrencies in a different manner.

Note: The development of the above hypotheses are explained throughout Section 2, with the selected methodology presented in Section 4.
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Figure 1: Selected dynamic correlations between cryptocurrencies during cybercrime events
We examine the DCC-GARCH model’s change in behaviour before and after cybercriminility in cryptocurrency mar-
kets occur. In a first stage analysis, we estimate the impact of external shocks on the dynamic conditional correlation
features. We regress the time-varying correlation model as follows: ρij,t = ωij+Σpp=1ϕpρij,t−p+Σ2

k=1αkDMk,t+εij,t
where ρij,t is the pair-wise conditional correlation coefficient between the cryptocurrency i and cryptocurrency j.DM1

is a dummy variable denoting the date of the cybercrime incident.The shaded areas represent the periods that incor-
porate major cryptocurrency hacking events that are denoted in Table 3. For brevity we have only included selected
dynamic correlation results. All other results related to the abnormal returns of cryptocurrencies due to hacking
events are available from the authors on request.
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Figure 2: Change in Information Share (IS) between cryptocurrencies in the period after a hacking event
The above figure represents the change in the information share of price discovery in the period before each of the hacking events that are denoted in Table
3. We estimate IS using the error correction parameters and variance-covariance of the error terms from the Vector Error Correction Model (VECM):
∆p1,t = α1(p1,t−1 − p2,t−1) +

∑200
i=1 γi∆p1,t−i +

∑200
j=1 δj∆p2,t−j + ε1,t and ∆p2,t = α2(p1,t−1 − p2,t−1) +

∑200
k=1 ϕk∆p1,t−k +

∑200
m=1 φm∆p2,t−m +

ε2,t where ∆pi,t is the change in the log price (pi,t) of the asset traded in market i at time t. Given the covariance matrix of the reduced form

VECM error terms where: M =

(
m11 0
m12 m22

)
=

(
σ1 0

ρσ2 σ2(1− ρ2)
1
2

)
we calculate the IS using: IS1 =

(γ1m11+γ2m12)
2

(γ1m11+γ2m12)2+(γ2m22)2
and IS2 =

(γ2m22)
2

(γ1m11+γ2m12)2+(γ2m22)2
. The heatmap is colour-coded so that green cells denoted large increases in the share of price discovery from cryptocurrency

A to B, while red cells denoted large increases in the share of price discovery from cryptocurrency B to A.
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Figure 3: Change in Information Leadership Share (ILS) between cryptocurrencies in the period after a hacking event
The above figure represents the change in the information leadership share of price discovery in the period before each of the hacking events that are
denoted in Table 3. We estimate ILS using the error correction parameters and variance-covariance of the error terms from the Vector Error Correction
Model (VECM): ∆p1,t = α1(p1,t−1 − p2,t−1) +

∑200
i=1 γi∆p1,t−i +

∑200
j=1 δj∆p2,t−j + ε1,t and ∆p2,t = α2(p1,t−1 − p2,t−1) +

∑200
k=1 ϕk∆p1,t−k +∑200

m=1 φm∆p2,t−m + ε2,t where ∆pi,t is the change in the log price (pi,t) of the asset traded in market i at time t. Recent studies show that IS
and CS are sensitive to the relative level of noise in each market, they measure a combination of leadership in impounding new information and the
relative level of noise in the price series from each market. The measures tend to overstate the price discovery contribution of the less noisy market. An
appropriate combination of IS and CS cancels out dependence on noise. The combined measure is known as the Information Leadership Share (ILS)

which is calculated as: ILS1 =

∣∣∣∣ IS1
IS2

CS2
CS1

∣∣∣∣∣∣∣∣ IS1
IS2

CS2
CS1

∣∣∣∣+∣∣∣∣ IS2
IS1

CS1
CS2

∣∣∣∣ and ILS2 =
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CS1
CS2
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CS2
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∣∣∣∣
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Figure 4: Change in Component Share (CS) between cryptocurrencies in the period after a hacking event
The above figure represents the change in the component share of price discovery in the period before each of the hacking events that are denoted in Table
3. We estimate CS using the error correction parameters and variance-covariance of the error terms from the Vector Error Correction Model (VECM):
∆p1,t = α1(p1,t−1−p2,t−1)+

∑200
i=1 γi∆p1,t−i+

∑200
j=1 δj∆p2,t−j+ε1,t and ∆p2,t = α2(p1,t−1−p2,t−1)+

∑200
k=1 ϕk∆p1,t−k+

∑200
m=1 φm∆p2,t−m+ε2,t

where ∆pi,t is the change in the log price (pi,t) of the asset traded in market i at time t. The next stage is to obtain the component shares from
the normalised orthogonal to the vector of error correction coefficients, therefore: CS1 = γ1 = α2

α2−α1
and CS2 = γ2 = α1

α1−α2
. The heatmap is

colour-coded so that green cells denoted large increases in the share of price discovery from cryptocurrency A to B, while red cells denoted large
increases in the share of price discovery from cryptocurrency B to A.
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Figure 5: Abnormal cryptocurrency returns in the period after each denoted hacking event
The above figure represents the abnormal returns of our selected cryptocurrencies during the 24 hours periods both before and after major cryptocurrency
hacking events that are denoted in Table 3. For brevity we have only included selected abnormal return results. All other results related to the abnormal
returns of cryptocurrencies due to hacking events are available from the authors on request.
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