1,591 research outputs found
Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors
Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production
Further improvement of fluidized bed models by incorporating zone method with Aspen Plus interface
While providing a fast and accurate tool of simulating fluidized beds, the major limitation of classical zero-dimensional ideal reactor models used in process simulators, such as models built into commercial software (e.g. Aspen Plus®), has been the difficulties of involving thermal reciprocity between each reactor model and incorporating heat absorption by the water wall and super-heaters which is usually specified as model inputs rather than predicted by the models themselves. This aspect is of particular importance to the geometry design and evaluation of operating conditions and flexibility of fluidized beds. This paper proposes a novel modelling approach to resolve this limitation by incorporating an external model that marries the advantages of zone method and Aspen Plus in a robust manner. The improved model has a relatively modest computing demand and hence may be incorporated feasibly into dynamic simulations of a whole power plant
Differentially private multidimensional data publishing
© 2017, Springer-Verlag London Ltd., part of Springer Nature. Various organizations collect data about individuals for various reasons, such as service improvement. In order to mine the collected data for useful information, data publishing has become a common practice among those organizations and data analysts, research institutes, or simply the general public. The quality of published data significantly affects the accuracy of the data analysis and thus affects decision making at the corporate level. In this study, we explore the research area of privacy-preserving data publishing, i.e., publishing high-quality data without compromising the privacy of the individuals whose data are being published. Syntactic privacy models, such as k-anonymity, impose syntactic privacy requirements and make certain assumptions about an adversary’s background knowledge. To address this shortcoming, we adopt differential privacy, a rigorous privacy model that is independent of any adversary’s knowledge and insensitive to the underlying data. The published data should preserve individuals’ privacy, yet remain useful for analysis. To maintain data utility, we propose DiffMulti, a workload-aware and differentially private algorithm that employs multidimensional generalization. We devise an efficient implementation to the proposed algorithm and use a real-life data set for experimental analysis. We evaluate the performance of our method in terms of data utility, efficiency, and scalability. When compared to closely related existing methods, DiffMulti significantly improved data utility, in some cases, by orders of magnitude
Nonlinear Volatility of River Flux Fluctuations
We study the spectral properties of the magnitudes of river flux increments,
the volatility. The volatility series exhibits (i) strong seasonal periodicity
and (ii) strongly power-law correlations for time scales less than one year. We
test the nonlinear properties of the river flux increment series by randomizing
its Fourier phases and find that the surrogate volatility series (i) has almost
no seasonal periodicity and (ii) is weakly correlated for time scales less than
one year. We quantify the degree of nonlinearity by measuring (i) the amplitude
of the power spectrum at the seasonal peak and (ii) the correlation power-law
exponent of the volatility series.Comment: 5 revtex pages, 6 page
A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics
This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions
Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl(-) cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus
The goal of this study was to determine the osmoregulatory ability of a juvenile marine fish, silver moony (), for the purpose of developing a new experimental species for ecophysiological research. In this study, was acclimated to freshwater (FW), brackish water (BW), or seawater (SW). The salinity tolerance of this euryhaline species was effective, and the fish survived well upon osmotic challenges. The largest apical surface of mitochondrion-rich cells was found in the FW individuals. Immunohistochemical staining revealed that Na+, K+-ATPase immunoreactive (NKA-IR) cells were distributed in the interlamellar region of the gill filaments of the silver moony in all experimental groups. In addition to the filaments, NKA-IR cells were also found in the lamellae of the FW individuals. The number of NKA-IR cells in the gills of the FW individuals exceeded that of the BW and SW individuals. The NKA-IR cells of FW and SW individuals exhibited bigger size than that of BW fish. The NKA activities and protein expression of the NKA alpha-subunit in the gills of the FW individuals were significantly higher than in the BW and SW groups. Additionally, the relative amounts of Na+, K+, 2Cl(-) cotransporter 1 (NKCC1) were salinity-dependent in the gills. Immunofluorescent signals of NKCC1 were localized to the basolateral membrane of NKA-IR cells in all groups. In the gills of the FW individuals, however, some NKA-IR cells did not exhibit a basolateral NKCC1 signal. In conclusion, the present study illustrated the osmoregulatory mechanisms of this easy- and economic-to-rear marine teleost with euryhaline capacity and proved the silver moony to be a good experimental animal
From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large Limit
A systematic study of multiquark exotics with one or heavy quarks in
the large limit is presented. By binding a chiral soliton to a heavy
meson, either a normal -quark baryon or an exotic -quark baryon
is obtained. By replacing the heavy quark with heavy antiquarks, exotic
-quark and -quark mesons are obtained. When , they are
just the normal triquark baryon , the exotic pentaquark baryon , tetraquark di-meson and the hexaquark
di-baryon respectively. Their
stabilities and decays are also discussed. In particular, it is shown that the
``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form
factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure
Latent profile analysis of the physical self-description among Chinese Adolescents
The purposes of this study were to validate the Physical Self-Description Questionnaire (PSDQ-S) and examine the physical self-description profiles using Latent Profile Analysis with a Chinese sample. A total of 744 secondary school students in China took part in the study. While the results provided support for internal
reliability and discriminant validity of the PSDQ-S, they indicated convergent validity
required further testing. In addition, three distinct profiles were identified with unique
physical self-concept and different levels of physical activity participation. The study
showed the PDSQ-S is useful in differentiating groups of adolescents with different levels of physical self-concept
Remarks on self-interaction correction to black hole radiation
In the work [P. Kraus and F. Wilczek, \textit{Self-interaction correction to
black hole radiation, Nucl. Phys.} B433 (1995) 403], it has been pointed out
that the self-gravitation interaction would modify the black hole radiation so
that it is no longer thermal, where it is, however, corrected in an approximate
way and therefore is not established its relationship with the underlying
unitary theory in quantum theory. In this paper, we revisit the
self-gravitation interaction to Hawking radiation of the general spherically
symmetric black hole, and find that the precisely derived spectrum is not only
deviated from the purely thermal spectrum, but most importantly, is related to
the change of the Bekenstein-Hawking entropy and consistent with an underlying
unitary theory.Comment: 14 page
Optical control of nanoparticle catalysis influenced by photoswitch positioning in hybrid peptide capping ligands
YesHere we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle
catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface.
Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated
into one of two well-studied peptide sequences with known affinity for Au, each at one of three different
positions: The N- or C-terminus, or mid-sequence. Changes in the photoswitch isomerization state induce a reversible
structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This
control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the
reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the
biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends
associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene
at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations,
respectively; however, positioning the photoswitch at the C-terminus gives rise to a unique system that is
reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental
basis for new directions in nanoparticle catalyst development to control activity in real time, which could
have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally,
such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including
biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.Air Office of Scientific Research, grant number FA9550-12- 1-0226
- …