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This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM)
with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are
formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach
is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous
elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing
codes.The phantom-nodemethod allowsmodeling discontinuities at an arbitrary location in the mesh.The ES-FEMmodel owns a
close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM
and the phantom-nodemethod, we introduce an edge-based strain smoothing technique for the phantom-nodemethod.Numerical
results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and
other reference solutions.

1. Introduction

The extended finite element method (XFEM) [1] has become
a standard tool to model arbitrary crack growth. However,
the implementation of XFEM in an existing finite element
code requires severe modifications. An alternative method
to model arbitrary crack growth was proposed by [2], sub-
sequently implemented by [3] in a static setting and by [4]
in a dynamic setting. It was shown by [4, 5] that the method
proposed by [2] is identical to a step-enriched XFEM; [4]
refer to this method as phantom node method. The main
difference to the original XFEM is that the discontinuity

jump is not obtained by introducing additional unknowns
but by the so-called overlapping paired elements. In other
words, a new “overlapped” element is introduced to handle
the crack kinematics when an underlying element is cracked.
It is accomplished by integrating these overlapped elements
up to the crack. Though it was shown by [4] that the
crack kinematics obtained with the phantom node method
are identical to the step-enriched XFEM, and it has some
advantages over step-enriched XFEM.

(1) As no additional degrees of freedom are introduced,
the implementation of the phantom node method
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in an existing finite element code is simpler. For
example, arbitrary crack growths for nonlinear mate-
rials and cohesive zone models even for multiple
cracks in two and three dimensions have already been
implemented in ABAQUS [6] while an additional
plug-in [7] is required to model crack growth using
XFEM.

(2) No mixed terms (K𝑢𝑎 and K𝑎𝑢) occur improving
conditioning.

(3) Standard mass lumping schemes can be used due
to the absence of an enrichment. There are several
contributions to develop diagonalized mass matrices
in standardXFEM [8, 9], but they are based on certain
assumptions.

(4) The development of complex FE-formulations is
much easier due to the lack of an enrichment. For
example: when techniques such as EAS (enhanced
assumed strain) or ANS (assumed natural strain)
are used, special attention is required in a standard
XFEM-formulation, particularly for problems with
constraints. Those difficulties do not occur in the
phantom node method [10].

The key drawback of the phantom node method com-
pared to standard XFEM is its lower flexibility. It was devel-
oped for problems involving crack growth “only.” However,
avoiding a crack tip enrichment significantly facilitates the
enrichment strategy and the crack tracking algorithm.

(i) A crack tip enrichment introduces more additional
unknowns. It is well known that a topological enrich-
ment is needed for accuracy reasons [11] leading
to a substantial increase of additional unknowns
(compared to “pure” step-enriched formulations) and
increasing difficulties due to increasing the condition
number.

(ii) The nonpolynomial (and singular) crack-tip enrich-
ment complicates integration [12–15] and requires
special attention (blending).

(iii) The enrichment strategy and the crack growth algo-
rithms are complicated, in particular in 3D.

Modeling crack growth with the phantom node method
on the other hand is quite simple. Commonly, plane crack
segments are introduced through the entire element though
crack tip elements were developed [16] that allow cracks to
close inside an element.

Recently, Liu et al. constructed a new class of finite
element methods based on strain smoothing. Among those
methods, the so-called ES-FEM edge-based smoothed finite
element method (ES-FEM) has been proven to be the most
efficient and accurate one. In numerous application [17–19],
it was shown that particularly low-order SFEM-formulations
are superior in terms of efficiency and accuracy over “stan-
dard” low-order finite element formulations. In particular, it
was shown formany applications [15, 20] that results obtained
by triangular ES-FEM elements are of the same accuracy as
standard Q4-elements.

Γt

Γu

Γc

Ω

Figure 1: A two-dimensional body containing a crack and boundary
conditions.

Therefore, we propose to couple the ES-FEM with the
phantom-node method. We name the new element edge-
based phantom node method (ES-Phantom node). In this
paper, we focus on two-dimensional problems in linear elastic
fracture mechanics (LEFM). However, our long term goal is
to model fracture in nonlinear materials in 3D. Numerical
results showhigh reliability of the presentmethod for analysis
of fracture problems.

This paper is organized as follows. In Section 2, we briefly
summarize the basic theory of phantom-node method. A
brief description of ES-FEM is called back in Section 3.
The combination between the phantom-node method and
the ES-FEM is elaborated in Section 4. Section 5 presents
the integration technique. Benchmark numerical problems
taken from linear elastic fracture mechanics are studied in
Section 6. Finally, we give some concluding remarks.

2. A Brief Description of
Phantom-Node Method

Consider a deformable body occupying domainΩ inmotion,
subjected to body forces b, external applied traction t on
boundary Γ

𝑡
, and displacement boundary conditions u =

u on Γ
𝑢
containing a crack as shown in Figure 1 with the

corresponding finite element discretization. In the phantom-
node method, a completely cracked element is replaced by
two partially active superimposed elements 1 and 2 whose
nodes consist of real nodes and phantom nodes marked
by solid and empty circles, respectively. The active part of
element 1 (Ω

1
), u1(x), which holds for 𝑓(x) < 0 and

the other active part (Ω
2
), u2(x), which holds for 𝑓(x) >

0. The two parts of the model do not share nodes, and
therefore they displace (deform) independently. Areias and
Belytschko [5] demonstrated that theHansbo andHansbo [2]
formulation is equivalent to the XFEM formulation relying
on discontinuous enrichment with the Heaviside function.

The displacement field within an element Ω
𝑒
in Figure 2

is rewritten as [4]

∀x ∈ Ω
𝑒
, u (x) = ∑

𝐼∈𝑆
1

u1
𝐼
𝑁
𝐼
(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u1(x)

𝐻(−𝑓 (x))

+ ∑

𝐼∈𝑆
2

u2
𝐼
𝑁
𝐼
(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u2(x)

𝐻(𝑓 (x)) ,
(1)
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Figure 2: The decomposition of a cracked element into two super-
imposed elements.
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Figure 3: Construction of edge-based strain smoothing domains.

where 𝑆
1
and 𝑆

2
are the nodes of superimposed elements 1

and 2, respectively. As illustrated in Figure 2, each element
contains real nodes and phantom nodes marked by solid and
empty circles, respectively; 𝑁

𝐼
is the finite element shape

function associated with node 𝐼, while u1
𝐼
and u2

𝐼
are nodal

displacements of original nodes in superimposed element 1
and 2, respectively.

𝐻 is theHeaviside function given in [1, 21–24] anddefined
by

𝐻(𝑥) = {
1, 𝑥 > 0,

0, 𝑥 ⩽ 0.
(2)

Here, we choose the physical domain up to the crack
line. Note that the crack line is a boundary in phantom node
method. It is like the elements near the external boundary.
So, we avoid singularity in phantom node method. The
corresponding strain terms are written the same.

The strain field is obtained as follows:

∀x ∈ Ω
𝑒
, 𝜖 (x) = ∑

𝐼∈𝑆
1

B
𝐼
(x) u1
𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖
1
(x)

𝐻(−𝑓 (x))

+ ∑

𝐼∈𝑆
2

B
𝐼
(x) u2
𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖
2
(x)

𝐻(𝑓 (x)) ,
(3)

where B
𝐼
is the standard strain-displacement matrix.
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Figure 4: The decomposition of a completely cracked smoothing
domain into two superimposed smoothing domains.
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Figure 5: The decomposition of a cracked smoothing domain
containing crack tip into two superimposed smoothing domains.

The jump in the displacement field across the crack is
calculated by

⟦u (x) ⟧ = u1 (x) − u2 (x) on Γ
𝑐
;

𝐼 is a phantom node in {
element 1 if 𝑓 (x

𝐼
) > 0,

element 2 if 𝑓 (x
𝐼
) < 0.

(4)

In this paper, the crack tip is forced to be located on the
element’s boundary.

3. Brief on Edge-Based Strain Smoothing
Method in Finite Elements

3.1. Displacement and Strain Field. In the ES-FEM [25], the
domain Ω is partitioned into a set of nonoverlapping no-
gap smoothing domains constructed using element edges
of the triangular elements. Ω(𝑘) satisfies the conditions
Ω = ⋃

𝑁
𝑒

𝑘=1
Ω
(𝑘) and Ω(𝑖) ∩ Ω(𝑗) = 0, for all 𝑖 ̸= 𝑗, in which

𝑁
𝑒
is the total number of edges of elements in the problem

domain. In Figure 3, the smoothing domain, the smoothing
domain corresponding to an inner edge 𝑘, and the smoothing
domain for a boundary edge𝑚 are illustrated.

Numerical integration is implemented on chosen Gauss
points as illustrated in Figures 6 and 7 corresponding with
split smoothing domain in Figure 4 and tip smoothing
domain in Figure 5, respectively.
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Figure 6: The decomposition of a completely cracked smoothing
domain into two superimposed smoothing domains.
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Figure 7: The decomposition of a cracked smoothing domain
containing crack tip into two superimposed smoothing domains.

Distribution of the stress components 𝜎
𝑥𝑥

and 𝜎
𝑦𝑦

for
and unstructured mesh are shown in Figures 27 and 28,
respectively.

Introducing the edge-based smoothing operation, the
compatible strain 𝜖 = ∇

𝑠
uℎ
𝑘
is smoothed over cell Ω(𝑘)

associated with edge 𝑘 as follows:

𝜖
𝑘
= ∫
Ω
(𝑘)

𝜖 (x) Φ
𝑘
(x) dΩ = ∫

Ω
(𝑘)

∇
𝑠
uℎ (x) Φ

𝑘
(x) dΩ, (5)

where Φ
𝑘
is a given normalized smoothing function that

satisfies

∫
Ω
(𝑘)

Φ
𝑘
(x) dΩ = 1. (6)

Using the following constant smoothing function

Φ =
{

{

{

1

𝐴(𝑘)
, x ∈ Ω(𝑘)

0, x ∉ Ω(𝑘),

𝜖
𝑘
=

1

𝐴(𝑘)
∫
Ω
(𝑘)

∇
𝑠
uℎ (x) dΩ =

1

𝐴(𝑘)
∫
Γ
(𝑘)

L
𝑛
uℎ (x) dΓ,

(7)

𝜎 = 1.0

a = 0.5

b = 1.0

H
=
2.
0

Figure 8: Sheet with edge crack under tension.

where 𝐴(𝑘) = ∫
Ω
(𝑘)
dΩ is the area of the smoothing domain

Ω
(𝑘), Γ(𝑘) is the boundary of the smoothing domainΩ(𝑘), and

L
𝑛
is the outward unit normal matrix which can be expressed

as

L
𝑛
= [

[

𝑛
𝑥

0

0 𝑛
𝑦

𝑛
𝑦
𝑛
𝑥

]

]

. (8)

4. Edge-Based Strain Smoothing Phantom
Node Method

4.1. Displacement and Strain Field. The approximation of the
displacement field is written similarly to (1):

uℎ (x) = ∑

𝐼∈𝑆
es-pht
1

u1
𝐼
𝑁
𝐼
(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u1(x)

𝐻(𝑓 (x))

+ ∑

𝐼∈𝑆
es-pht
2

u2
𝐼
𝑁
𝐼
(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u2(x)

𝐻(−𝑓 (x)) ,
(9)

where 𝑆es-pht
1

and 𝑆es-pht
2

are nodes associated with smoothing
domains 1 and 2, respectively, consisting of real nodes and
phantom nodes illustrated in Figures 4 and 5. The associated
nodes of the inner smoothing domain Ω

(𝑘) (DEFG) and
boundary smoothing domain Ω

(𝑚) (ABC) are shown in
Figure 3.

The connectivities of these superimposed smoothing
domains which are cracked completely and the correspond-
ing active parts are shown in Figure 4:

nodes of smoothing domain 1 (Ω(𝑘)
1
) = [1, 2, 3̃, 4̃];

nodes of smoothing domain 2 (Ω(𝑘)
2
) = [1̃, 2̃, 3, 4].

The connectivity of a superimposed smoothing domain
containing the crack tip and the corresponding active parts is
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Figure 9: Strain energy for the sheet with edge crack under tension.

shown in Figure 5 so that crack tip is guaranteed to locate on
the element’s edge:

nodes of smoothing domain 1 (Ω(𝑘)
1
) = [1, 2, 4];

nodes of smoothing domain 2 (Ω(𝑘)
2
) = [1̃, 2, 4].

Using the strain smoothing operation, the smoothed
strain associated with edge 𝑘 created from the displacement
approximation in (9) can be rewritten as

𝜖
𝑘
= ∑

𝐼∈𝑆
es-pht
1

B
𝐼
(x
𝑘
) u1
𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖
1
(x)

𝐻(−𝑓 (x))

+ ∑

𝐼∈𝑆
es-pht
2

B
𝐼
(x
𝑘
) u2
𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜖
2
(x)

𝐻(𝑓 (x)) ,
(10)

where B
𝐼
(x
𝑘
) is the smoothed strain gradient matrix for the

standard ES-FEM part. Those matrices write as follows

B
𝐼
(x
𝑘
) =

[
[
[

[

𝑏
𝐼𝑥
(x
𝑘
) 0

0 𝑏
𝐼𝑦
(x
𝑘
)

𝑏
𝐼𝑦
(x
𝑘
) 𝑏
𝐼𝑥
(x
𝑘
)

]
]
]

]

. (11)

In (11), 𝑏
𝐼ℎ
(x
𝑘
), ℎ ∈ 𝑥, 𝑦 is computed by

𝑏
𝐼ℎ
(x
𝑘
) =

1

𝐴
𝑠

𝑘

∫
Γ
𝑠

𝑘

𝑛
ℎ
(x)𝑁
𝑖
(x)𝐻 ((−1)

𝑒

𝑓 (x)) dΓ. (12)

Using Gauss-Legendre integration along the segments of
boundary Γ𝑠

𝑘
, we have

𝑏
𝐼ℎ
=

1

𝐴
𝑠

𝑘

𝑁seg

∑

𝑚=1

[

[

𝑁gauss

∑

𝑛=1

𝑤
𝑚,𝑛
𝑁
𝑖
(x
𝑚,𝑛
)𝐻

× ((−1)
𝑒

𝑓 (x
𝑚,𝑛
)) 𝑛
ℎ
(x
𝑚,𝑛
) ]

]

,

(13)
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Figure 10:The convergence in the energy norm versus ℎ (mesh size)
for the sheet with an edge crack under tension.
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where 𝑁seg is the number of segments of the boundary Γ𝑠
𝑘
,

𝑁gauss is the number ofGauss points used along each segment,
𝑤
𝑚,𝑛

are the corresponding Gauss weights, x
𝑚,𝑛

is the 𝑛th
Gaussian point on the 𝑚th segment of the boundary Γ𝑠

𝑘
,

whose outward unit normal is denoted by 𝑛
ℎ
, the subscript

“𝑒” is either 1 or 2 as shown in Figure 4, and the superscript
“𝑒” indicates a domain restriction to element 𝑒.

The stiffness matrix K associated with a smoothing
domain is assembled by a similar process as in the FEM:

K
𝐼𝐽
=

𝑁
𝑠

∑

𝑘=1

K𝑠
𝐼𝐽,𝑘

=

𝑁
𝑠

∑

𝑘=1

∫
Ω
𝑠

𝑘

(B𝑢
𝐼
)
𝑇

DB𝑢
𝐽
dΩ. (14)
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All entries in matrix B
𝐼
in (11) with triangular meshes are

constants over each smoothing domain; the stiffness matrix
in (14) is therefore calculated by

K
𝐼𝐽
=

𝑁
𝑠

∑

𝑘=1

K𝑠
𝐼𝐽,𝑘

=

𝑁
𝑠

∑

𝑘=1

(B𝑢
𝐼
)
𝑇

DB𝑢
𝐽
𝐴
𝑠

𝑘
. (15)

4.2. Weak Formulation and Discretized Equation. We return
to the two-dimensional body in Figure 1. Since the smoothed
strain over smoothing domains is variationally consistent as
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Figure 14: Computational efficiency of energy norm for the problem
of a sheet with an edge crack under remote tension.

ES-Phantom R = 0.50

Phantom-T3R = 0.47

XFEM-T3(0t)R = 0.42

−0.48

−0.58

−0.69

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

log10(t)

lo
g 1

0
(e

k
)

Figure 15: Computational efficiency of mode 𝐼 SIF 𝐾
𝐼
for the

problem of a sheet with an edge crack under remote tension.

proven in [26] and used by [27, 28], the assumed displace-
ment uℎ and the smoothed strains 𝜖 satisfy the “smoothed”
Galerkin weak form: find uℎ ∈ 𝑉, for all 𝛿uℎ ∈ 𝑉

0
such that

∫
Ω

𝛿(𝜖 (uℎ))
𝑇

D (𝜖 (uℎ)) dΩ − ∫
Ω

(𝛿uℎ)
𝑇

bdΩ

− ∫
Γ

(𝛿uℎ)
𝑇

t
Γ
dΓ = 0

(16)
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Figure 16: Sheet with edge crack under shear.
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Figure 17: Strain energy for a sheet with an edge crack under shear.

with 𝑉 = {u | u ∈ 𝐻1(Ω \ Γ
𝑐
), u = u on Γ

𝑢
, u discontinuous

on Γ
𝑐
} and 𝑉

0
= {𝛿u | 𝛿u ∈ 𝐻

1

(Ω \ Γ
𝑐
), 𝛿u = 0 on Γ

𝑢
, 𝛿u

discontinuous on Γ
𝑐
}.

Substituting the trial and test functions into (16), we
finally obtain the familiar equation:

Kd = f , (17)

where f is the nodal force vector that is identical to that in the
standard phantomnode. The edge-based smoothed stiffness
matrix K for all subcells follows (15).

The smoothed stress 𝜎ℎ is obtained in the same way from
the as 𝜖ℎ in FEM, which is constant over a smoothing cell.
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Figure 18:The convergence in the energy norm versus ℎ (mesh size)
for a sheet with an edge crack under shear.

XFEM R = 0.50

−0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3
−2.8

−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

−2.45

lo
g 1

0
(e

e
)

log10(h)

Figure 19: The convergence in the energy norm of XFEM versus ℎ
(mesh size) for a sheet with an edge crack under shear.

In particular, for linear elastic problems, 𝜎ℎ = D𝜖ℎ is
calculated on the level of the smoothing cell.

4.3. Crack Growth and Stress Intensity Factor. Fracture
parameters such as mode 𝐼 and mode 𝐼𝐼 stress intensity
factors (SIFs) are determined using the domain form [29, 30]
of the interaction integral [31]. All the finite elements within
a radius of 𝑟

𝑑
= 𝑟
𝑘
ℎ
𝑒
from the crack-tip are used. Herein, ℎ

𝑒

is the crack tip element size, and 𝑟
𝑘
is a scalar.

In this paper, crack growth is governed by the maxi-
mum hoop stress criterion [32, 33], which assumes that the
crack will propagate from its tip in the direction 𝜃

𝑐
, where
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Figure 20: The convergence in the stress intensity factor 𝐾
𝐼
versus

ℎ (mesh size) for a sheet with an edge crack under shear.
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Figure 21:The convergence in the stress intensity factor𝐾
𝐼
of XFEM

versus ℎ (mesh size) for a sheet with an edge crack under shear.

the circumferential (hoop) stress 𝜎
𝜃𝜃
is maximum. The angle

of crack propagation satisfies the following equation:

𝐾
𝐼
sin (𝜃
𝑐
) + 𝐾
𝐼𝐼
(3 cos (𝜃

𝑐
) − 1) = 0. (18)

Solving this equation, we have

𝜃
𝑐
= 2 arctan[[

[

−2 (𝐾
𝐼𝐼
/𝐾
𝐼
)

1 + √1 + 8(𝐾
𝐼𝐼
/𝐾
𝐼
)
2

]
]

]

. (19)

Once𝐾
𝐼
and𝐾

𝐼𝐼
are known, (19) may be used to compute the

direction of propagation.
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Figure 22: The convergence in the stress intensity factor 𝐾
𝐼𝐼
versus

ℎ (mesh size) for sheet with edge crack under shear.
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Figure 23: The convergence in the stress intensity factor 𝐾
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of
XFEM versus ℎ (mesh size) for sheet with edge crack under shear.

5. Numerical Examples

In all numerical examples, we are not using near-tip enrich-
ment; that is, only discontinuous enrichment is used. This
means that the best convergence rate attainable is 1/2 in the
𝐻
1
normand 1 in the𝐿

2
norm (O(ℎ1/2) andO(ℎ), respectively,

where ℎ is the mesh size).

5.1. Sheet with an Edge Crack under Uniaxial Tension. Con-
sider a sheet under uniaxial tension as shown in Figure 8.The
dimensions of the sheet are in unit of [mm]. The material
parameters are Young’s modulus 𝐸 = 3 × 107 Pa, Poisson’s
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Figure 24: Double cantilever beam with an edge crack.

ratio ] = 0.3. The plane strain condition is assumed. The
reference mode 𝐼 SIF is given by

𝐾
exact
𝐼

= 𝐹(
𝑎

𝑏
) 𝜎√𝑎𝜋 = 1.6118Pa√mm, (20)

where 𝑎 = 0.5 is the crack length, 𝑏 is the sheet width and
𝐹(𝑎/𝑏) is given by

𝐹(
𝑎

𝑏
) = 1.12 − 0.231 (

𝑎

𝑏
) + 10.55 (

𝑎

𝑏
)

2

− 21.72 (
𝑎

𝑏
)

3

+ 30.39 (
𝑎

𝑏
)

4

.

(21)

The strain energy and the error in the energy norm are
defined as

𝐸
(Ω)

=
1

2
∫
Ω

𝜖
𝑇D𝜖dΩ,

𝑒
𝑒
=



𝐸
num
(Ω)

− 𝐸
ref
(Ω)

𝐸
ref
(Ω)



1/2

,

𝑒
𝑘
=



𝐾
num
sif − 𝐾

ref
sif

𝐾
ref
sif



1/2

× 100%, sif = 𝐼, 𝐼𝐼,

(22)

where the superscript “ref ” denotes the exact or reference
solution, and “num” denotes the numerical solution.

The results of the ES-Phantom node are compared with
those of the standard Phantom-node using triangularmeshes
and the XFEM-T3(0t) (the “standard” XFEM formulation
without tip enrichment that only employs the Heaviside
enrichment of (2)). Figure 9 shows that the strain energy
of the ES-Phantom node method is more accurate than
both the original Phantom-node and the XFEM-T3(0t). The
convergence rates in terms of the strain energy and the
stress intensity factor 𝐾

𝐼
are depicted in Figures 10 and 12,

respectively. Furthermore, Phantom-node using triangular
meshes (Phantom-T3) is superior to XFEM-T3(0t) although
they are equivalent to each other. We also have included
two more figures comparing the phantom-node method to
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Figure 25: (a) Deformed shape of the double cantilever beam
(structured mesh) and (b) crack path simulated by ES-Phantom
node method (structured mesh) after ten-step growing in which the
filled circles are the new crack tip after each step.

the tip-enriched XFEM in Figures 11 and 13 as a reference,
although it would not be fair to compare a method that
includes the asymptotic crack tip enrichment to a method
that models the crack in a much simpler way.

Note that the proposed method leads to a similar con-
vergence rate to the standard XFEM and standard phantom-
node, which is close to optimal (1/2) given the lack of tip
enrichment. Also note that the error level of the proposed
method is a fifth of an order of magnitude lower than the
method compared with.

The computational efficiency in terms of the error in the
energy norm and the relative error of𝐾

𝐼
versus computation

time (𝑠) is compared for the ES-Phantom, the standard
Phantom and the XFEM-T3(0t). The results are plotted in
Figures 14 and 15, respectively. It is clear that the present
method always produces higher computational efficiency,
that is, accuracy to computational time ratio, compared to
the other methods. The accuracy of the present method is
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Figure 26: (a) Deformed shape of the double cantilever beam
(unstructured mesh) and (b) Crack path simulated by ES-Phantom
node method (unstructured mesh) after ten-step growing in which
the filled circles are the new crack tip after each step.

approximate (1) (ES-Phantom10−1.88)/(Phantom10−1.93) =
1.12 times as much as that of the standard Phantom,
(ES-Phantom10−1.88)/(XFEM-T3(0t)10−2.01) = 1.34 times
of the XFEM-T3(0t) in term of error in energy norm;
(2) (ES-Phantom10−0.48)/(Phantom10−0.58) = 1.26 times
as much as that of the standard Phantom and (ES-
Phantom10−0.48)/(XFEM-T3(0t)10−0.58) = 1.62 times of
the XFEM-T3(0t) in term of relative error for𝐾

𝐼
.

5.2. Sheet with Edge-Crack under Shear. In this example, we
consider the edge crack geometry subjected to a shear load
as shown in Figure 16. The material parameters are Young’s
modulus𝐸 = 3×107 Pa and Poisson’s ratio ] = 0.25.The exact
stress intensity factors for this load case are given by [31]

𝐾
𝐼
= 34.0Pa√mm; 𝐾

𝐼𝐼
= 4.55Pa√mm. (23)

The results shown in Figures 16, 17, 18, 19, 20, 21, and 22
show that ES-Phantom node results are more accurate than
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Figure 27: Stress (a) 𝜎
𝑥𝑥

and (b) 𝜎
𝑦𝑦

contours in the sheet
(structured mesh) after the crack propagates.

both those of the standard Phantom-node and the XFEM-
T3(0t). ES-Phantom node maintains slight superconvergent
solutions in the strain energy. Furthermore, Phantom-node
using triangular meshes (Phantom-T3) is superior to XFEM-
T3(0t) although they are equivalent to each other with respect
to the convergence in energy norm and the stress intensity
factor𝐾

𝐼
. Figures 19, 21, and 23 again are shown as a reference

for readers.

5.3. Crack Growth Simulation in a Double Cantilever Beam.
In this section, the ES-Phantom node with structured and
unstructured meshes is used for crack grow simulation. The
dimensions of the double cantilever beam Figure 24 are
6mm × 2mm and an initial pre-crack with length 𝑎 =

2mm is considered. Plane stress conditions are assumed with
Young’s modulus, 𝐸 = 100MPa as well as the Poisson ratio,
] = 3, and the load𝑃 is taken to be unity. By symmetry, a crack
on the mid-plane of the cantilever beam is dominated by
pure mode 𝐼 and the crack would propagate in a straight line.
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Figure 28: Stress (a) 𝜎
𝑥𝑥

and (b) 𝜎
𝑦𝑦

contours in the sheet
(unstructured mesh) after the crack propagates.

We also have included simulations with a “distorted” mesh
and showed that the crack path does not change.

The crack growth increment, Δ𝑎, is taken so that the
tip is always located at an element’s edge and the crack
growth is simulated for 10 steps. The domain is discretized
with a structured and unstructured mesh of 2730 nodes.
The crack path is simulated using both the proposed ES-
Phantom node method and XFEM-T3(0t), and Figures 25
and 26 show the deformed shape of the double cantilever
beam with the magnification factor of 25 × 104 used to enable
a clear description and the evolution of the crack path. The
result shows that the crack path for an initial angle 𝜃

𝑐
= 0

agrees with the published results [1].

6. Conclusions

A numerical Phantom-node method for analysis of two-
linear elastic fracture problems was developed in framework
of the ES-FEM to create the novel ES-Phantom nodemethod.

In this method, a cracked element is replaced by two super-
imposed elements and a set of additional phantomnodes.The
two first examples were performed to investigate convergence
rate in terms of strain energy and stress intensity factors.
The results have shown that the ES-Phantom node is able
to produce superconvergent solutions. Meanwhile, the last
example has demonstrated the capability of the method to
deal with the growing crack.

Future applications of this method may deal with the
interactions among a large number of cracks in linear elastic
solids with the purpose of obtaining the higher accuracy and
efficiency in solving complicated crack interactions as shown
in [34]. This will be studied in the future.
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