5,332 research outputs found
The westward drift of the lithosphere. A tidal ratchet?
Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable
process of Earth’s geodynamics? The reason why the tidal drag has been questioned as the mechanism
determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of
the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’
decoupling of the entire Earth’s outer lithospheric shell and new studies support lower viscosities in the
low-velocity layer (LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side
relative to the other due to the contemporaneous Moon’s revolution, we demonstrate that a non-linear
rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet
favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the
westerly motion of the lithosphere relative to the mantle
Longer aftershocks duration in extensional tectonic settings
Aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along
the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude (1) aftershock sequences are longer and (2) the number of earthquakes is greater in extensional tectonic settings than in contractional ones. We interpret this difference as related to the different type of energy dissipated during earthquakes. In detail, (1) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (2) pure elastic stress release controls contractional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes
Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas
The bile duct system and pancreas show many similarities due to their anatomical proximity and common embryological origin. Consequently, preneoplastic and neoplastic lesions of the bile duct and pancreas share analogies in terms of
molecular, histological and pathophysiological features. Intraepithelial neoplasms are reported in biliary tract, as biliary intraepithelial neoplasm (BilIN), and in pancreas, as pancreatic intraepithelial neoplasm (PanIN). Both can evolve
to invasive carcinomas, respectively cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary neoplasms arise in biliary tract and pancreas. Intraductal papillary neoplasm of the biliary tract (IPNB)
share common histologic and phenotypic features such as pancreatobiliary, gastric, intestinal and oncocytic types, and biological behavior with the pancreatic counterpart, the intraductal papillary mucinous neoplasm of the pancreas (IPMN). All these neoplastic lesions exhibit similar immunohistochemical phenotypes, suggesting a common carcinogenic process.
Indeed, CCA and PDAC display similar clinic-pathological features as growth pattern, poor response to conventional chemotherapy and radiotherapy and, as a consequence, an unfavorable prognosis. The objective of this review is to discuss similarities and differences between the neoplastic lesions of the pancreas and biliary tract with potential implications on a common origin from similar stem/progenitor cells
Polarized Plate Tectonics.
The mechanisms driving plate motion and the Earth\u2019s geodynamics are still not entirely clari\u2423ed. Lithospheric volumes recycled at subduction zones or emerging at rift zones testify mantle convection. The cooling of the planet and the related density gradients are invoked to explain mantle convection either driven from the hot interior or from the cooler outer boundary layer. In this paper we summarize a number of evidence sup- porting generalized asymmetries along the plate boundaries that point to a polariza- tion of plate tectonics. W-directed slabs provide two to three times larger volumes to the mantle with respect to the opposite E- or NE-directed subduction zones. W-directed slabs are deeper and steeper, usually characterized by down-dip compres- sion. Moreover, they show a shallow decollement and low elevated accretionary prism, a steep regional monocline with a deep trench or foredeep, a backarc basin with high heat \u2423ow and positive gravity anomaly. Conversely directed subduction zones show antithetic signatures and no similar backarc basin. Rift zones also show an asymmetry, e.g., faster Vs in the western lithosphere and a slightly deeper bathymetry with respect to the eastern \u2423ank. These evidences can be linked to the westward drift of the lithosphere relative to the underlying mantle and may explain the differences among subduction and rift zones as a function of their geographic polarity with respect to the \u201ctectonic equator.\u201d Therefore also mantle convection and plate motion should be polar- ized. All this supports a general tuning of the Earth\u2019s geodynamics and mantle convec- tion by astronomical forces
Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels
Weakly-coupled TeV-scale particles may mediate the interactions between
normal matter and dark matter. If so, the LHC would produce dark matter through
these mediators, leading to the familiar "mono-X" search signatures, but the
mediators would also produce signals without missing momentum via the same
vertices involved in their production. This document from the LHC Dark Matter
Working Group suggests how to compare searches for these two types of signals
in case of vector and axial-vector mediators, based on a workshop that took
place on September 19/20, 2016 and subsequent discussions. These suggestions
include how to extend the spin-1 mediated simplified models already in
widespread use to include lepton couplings. This document also provides
analytic calculations of the relic density in the simplified models and reports
an issue that arose when ATLAS and CMS first began to use preliminary numerical
calculations of the dark matter relic density in these models.Comment: 19 pages, 4 figures; v2: author list and LaTeX problem fixe
Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data
We investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR)and GPS measurements to determine the source parameters for the three main shocks of the 2016Central Italy earthquake sequence on 24 August and 26 and 30 October (Mw6.1, 5.9, and 6.5,respectively). Our preferred model is consistent with the activation of four main coseismic asperitiesbelonging to the SW dipping normal fault system associated with the Mount Gorzano-Mount Vettore-Mount Bove alignment. Additional slip, equivalent to aMw~ 6.1–6.2 earthquake, on a secondary (1) NEdipping antithetic fault and/or (2) on a WNW dipping low-angle fault in the hanging wall of the mainsystem is required to better reproduce the complex deformation pattern associated with the greatestseismic event (theMw6.5 earthquake). The recognition of ancillary faults involved in the sequencesuggests a complex interaction in the activated crustal volume between the main normal faults and thesecondary structures and a partitioning of strain releas
- …
