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Abstract we investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR)
and GPS measurements to determine the source parameters for the three main shocks of the 2016
Central Italy earthquake sequence on 24 August and 26 and 30 October (M,, 6.1, 5.9, and 6.5,
respectively). Our preferred model is consistent with the activation of four main coseismic asperities
belonging to the SW dipping normal fault system associated with the Mount Gorzano-Mount Vettore-
Mount Bove alignment. Additional slip, equivalent to a M,, ~ 6.1-6.2 earthquake, on a secondary (1) NE
dipping antithetic fault and/or (2) on a WNW dipping low-angle fault in the hanging wall of the main
system is required to better reproduce the complex deformation pattern associated with the greatest
seismic event (the M,, 6.5 earthquake). The recognition of ancillary faults involved in the sequence
suggests a complex interaction in the activated crustal volume between the main normal faults and the
secondary structures and a partitioning of strain release.

1. Introduction

The 2016 Central Italy earthquake sequence started on 24 August with a M,, 6.1 event, striking a sector of the
Apennines (Figure 1) characterized by high geodetic strain rates [D’Agostino, 2014] and causing ~300 casual-
ties and extensive damage to the town of Amatrice and surroundings. The following seismic sequence was
characterized by numerous aftershocks located southeast and northwest of the epicenter [Chiaraluce et al.,
20171, which decreased in frequency and magnitude until the end of October, when a M,, 5.9 event occurred
on 26 October about 25 km to the NW of the previous main shock, between Visso and Ussita villages (Figure 1).
Moreover, on 30 October, a third large event of magnitude M,, 6.5 nucleated below the town of Norcia, strik-
ing the area between the two preceding events and filling the gap between the previous ruptures. Fault
plane solutions for the main events exhibit normal faulting (http://cnt.rm.ingv.tdmt) consistent with the
direction of active extension of ~3-4 mm/yr in this sector of the Apennines [Petricca et al., 2015; Devoti et al.,
2017]. Previous geological studies [Boncio et al., 2004; Galli et al., 2008; Pizzi and Galadini, 2009] have identified
several NW-SE trending normal fault systems, which are active in this area, and are often segmented by pre-
existing tectonic structures inherited from the pre-Quaternary compressional tectonic phases [Pizzi and
Galadini, 2009]. However, the influence of these preexisting structures on the propagation and segmentation
of the active normal faults is still not clear.

Here we exploit a large data set of interferometric synthetic aperture radar (InSAR) and GPS measurements to
investigate the ground displacement field and to determine, by using elastic dislocation modeling, the geome-
tries, and slip distributions of the causative normal fault segments associated with the three main events of the
seismic sequence. To examine the achieved results, we also exploit the information on the relocated aftershocks
distribution [Chiaraluce et al., 2017] and on the known geologic structures of the area [Lavecchia et al., 2016].
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Figure 1. Seismotectonic framework of the study area. Solid black lines are the major active faults of the area [Boncio et al.,
2004; Galli et al., 2008; Pizzi and Galadini, 2009], while the red ones represent the MGVB fault system, with the associated
seismogenic sources (white boxes [Falcucci et al., 2016]). The gray barbed lines mark the preexisting compressional front
[Pizzi and Galadini, 2009]. Green dashed lines represent the observed surface breaks after the 24 August event [EMERGEO
Working Group, 2016]. Seismicity: orange dots are relocated aftershocks [Chiaraluce et al., 2017]; red stars represent the
three largest shocks (moment tensor solutions from Scognamiglio et al. [2009]), while the white stars are M,, > 5 earth-
quakes. Previous events: purple stars show the location of historical earthquakes [Rovida et al., 2011]; yellow stars show the
major instrumental events [Castello et al., 2006] (ISIDe: http://iside.rm.ingv.it).

2. Geodetic Data
2.1. InSAR Data

We used InSAR data acquired by different satellites (Figure S1 and Table S1 in the supporting information),
provided within the emergency activities of the Italian National Service of Civil Protection. In particular, we
exploited two ascending and three descending interferograms, which involve the ALOS-2, the Sentinel-1
(S1), and the COSMO-SkyMed (CSK) sensors, to measure the ground displacement due to the 24 August
M,, 6.1 Amatrice earthquake and two ALOS-2 interferograms to investigate the cumulative displacement pat-
tern relative to the 26 October M,, 5.9 Visso and the 30 October M,, 6.5 Norcia earthquakes. Moreover, an
additional ascending ALOS-2 interferogram, relevant only to the Norcia event, was also used (Figure S2;
see supporting information for processing strategies).

The ground deformations retrieved from the five unwrapped interferograms, including the 24 August main
shock (Figure 2), are characterized by two NNW-SSE striking deformation lobes located to the west of the
Mount Gorzano-Mount Vettore-Mount Bove (MGVB) alignment, with a maximum negative LOS (line of sight)
displacement value of ~20 cm (negative LOS values represent increasing distances from the satellite), having
a dominantly vertical component, in agreement with previous studies [Bignami et al., 2016; Lavecchia et al.,
2016; Huang et al., 2017].
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Figure 2. Geodetic displacements for the 24 August earthquake. Data, model, and residuals from the unwrapped (a-c) ALOS-2 and (d-f) S1 ascending tracks and
from the (g-i) CSK descending track interferograms (the complete set of interferograms used in the inversion are provided in the supporting information).
Observed (blue) and predicted (yellow) GPS (j) horizontal and (k) vertical displacements.
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As regards the two ALOS-2 interferograms, spanning both the 26 and 30 October earthquakes (Figure 3), they
were also properly combined to retrieve the vertical and the E-W displacement components (Figure S3). Our
analysis reveals a subsidence pattern extending 35 km along the NNW-SSE direction, with a local minimum

Figure 3. Geodetic displacements for the 26 and 30 October earthquakes. Data, model, and residuals from the unwrapped ALOS-2 interferograms showing the
cumulative displacements from the (a-c) ascending, (d-f) descending tracks, and (g-i) the displacement field relative to the 30 October earthquake alone.

(j-1) Observed (blue) and predicted (yellow) GPS horizontal displacements relative to the 26 (Figure 3j) and 30 (Figures 3k and 3I) October events, respectively. The
vertical displacements are showed only for the latter event (Figure 3I).
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displacement of ~30 cm in correspondence to Ussita (close to the 26 October event), and a maximum
detected subsidence of ~90 cm in the surroundings of Castelluccio; a slight uplift of ~15 cm was instead
observed in correspondence to Norcia (Figures 3 and S3c). The E-W displacement map (Figure S3d) shows
a westward movement of the Norcia area and eastward displacements of the footwall of the main normal
fault system. Localized westward motions close to Castelluccio were also detected (reaching up to ~60 cm).

2.2. GPS Data

The earthquake sequence occurred where several continuous and survey mode GPS networks were operat-
ing (Figure S4). In particular, several instruments were installed at geodetic benchmarks belonging to the
Istituto Nazionale di Geofisica e Vulcanologia (INGV), CaGeoNet [Galvani et al., 2012], and to the Istituto
Geografico Militare networks. Moreover, a new INGV continuous station was built at Arquata del Tronto
(see supporting information for processing strategies).

While the few coseismic offsets for the 24 August main shock derived from continuous GPS data have been
already described in Cheloni et al. [2016] and in Huang et al. [2017], the complete set of GPS displacements,
from both permanent and survey mode stations, are presented here for the first time. The complex coseismic
deformation pattern highlights a general SW-NE oriented extension (Figures 2j and 2k), in agreement with
the deformation field depicted by the INSAR measurements. The maximum displacements are ~17 cm of sub-
sidence near Accumoli (ACCU) and ~5 cm of horizontal movement toward southeast and southwest at sta-
tions ACCU, RIFP, and SLLI (Figure 2j), respectively.

Figures 3j-3I show coseismic displacements related to the 26 and 30 October main shocks. Due to a more
limited number of GPS observations with respect to the Amatrice event, both the displacement fields
(Figures 3j and 3k) show a sparser displacement pattern, characterized by a general SW-NE oriented exten-
sion in different portions of the MGVB fault system. For 26 October event, the maximum horizontal displace-
ments were observed at stations FIAB and CAMP, which moved ~3 ¢cm toward northeast and southwest,
respectively (Figure 3j), while no significant vertical patterns were observed. As regards the 30 October earth-
quake, the largest horizontal displacements were observed at stations VETT and MSAN, with ~40 cm of move-
ment toward northeast and ~25 cm toward southwest, respectively (Figure 3k). The largest vertical
displacements were measured at sites RIFP, MSAN, and ARQT, with a subsidence reaching up to ~20-40 cm
(Figure 3l). Finally, both stations 1322 and VETT, located on the footwall of the main normal fault system,
showed an uplift of ~2-5 cm.

3. Geodetic Modeling

We performed the geodetic modeling using rectangular dislocations in an elastic, homogeneous, and isotro-
pic half-space [Okada, 1985]. Because the earthquake sequence occurred along the steep topographic gradi-
ent of the MGVB alignment (Figure 1), we have properly accounted for the elevation of each data point
[Williams and Wadge, 1998]. The source modeling was carried out with a standard two-step procedure
[Atzori et al., 2009]: a nonlinear optimization of the fault geometry with assumed uniform slip, followed by
a linear slip distribution inversion on the fault with optimized fixed geometry, subdivided into patches with
increasing size with depth [Cheloni et al., 2016]. Before modeling, the interferograms were downsampled
using a resolution-based resampling technique [Lohman and Simons, 2005]. Additional terms (i.e., linear ramp
for InSAR displacements) were also included in the inversion, to minimize the effect on the solution of any
residual long-wavelength orbital signal in INSAR maps [Pepe et al., 2011], and a relative weight was applied
to properly combine the different data sets (Figure S5). We regularize the inversion by applying positivity
and smoothing (using the Laplacian operator) constraints, choosing the scalar weighting factor by examining
a trade-off curve of misfit function versus solution roughness (Figure S6). Finally, resolution tests have been
performed (Figures S7a and S7j) to assess which features of the slip distributions are robustly determined
from the data.

3.1. The 24 August Amatrice Earthquake

The fault geometry of the source responsible for the 24 August earthquake has already been investigated by
inverting geodetic [Bignami et al., 2016; Cheloni et al., 2016; Lavecchia et al., 2016; Huang et al., 2017] and seis-
mological [Tinti et al., 2016; Liu et al., 2017] data. Compared with the previous studies, we used an augmented
geodetic data set, consisting of five InSAR interferograms and of the full set of GPS displacements. The best
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fitting uniform slip model consists, from north to south, of two distinct ~40° and ~50° SW dipping fault seg-
ments located beneath the two observed lobes of deformation, in agreement with hypocentral location,
aftershocks distribution, and previous geodetic solutions [Lavecchia et al., 2016; Huang et al., 2017]. The data
are well reproduced (Figures 2 and S8) but for the local deformation pattern depicted in all the interfero-
grams on the western flank of the Mount Vettore and the GPS VETT on the footwall of the main fault.
Despite that the InSAR local deformation has been explained both as due to a triggered landslide [Huang
et al, 2017] and to a combination of primary faulting and gravitational phenomena [Albano et al., 2016],
the GPS VETT offset is compatible assuming some very shallow slip on the Mount Vettore Fault. The variable
slip model shows two well-separated major asperities with peaks of slip of ~1.0 and 1.4 m for the southern
and northern segments, respectively (Figure 4a). The position of the main shock relative to the retrieved slip
distribution supports the seismological inference of a bilateral rupture directivity [Tinti et al., 2016; Bonini
et al,, 2016; Liu et al., 2017]. The overall seismic moment of the two fault segments is 2.12 x 10'® Nm, corre-
sponding to a M,, 6.2 earthquake.

3.2. The 26 and 30 October Visso and Norcia Earthquakes

The results of the inversion for slip distribution on the two fault planes corresponding to the activated
segments of Mount Vettore-Mount Bove normal fault system were obtained from the exploitation of a
geodetic data set consisting of three ALOS-2 interferograms and of the GPS coseismic offsets for the
26 and 30 October events (Figures S9-S11). In the modeling, the fault geometries were based on field
data [Falcucci et al, 2016], focal parameters (http://cnt.rm.ingv.tdmt), and relocated aftershocks
[Chiaraluce et al., 2017], along with the general strike of the MGVB alignment. Two fault planes were con-
sidered, with ~160° strike and 20 x 4 km? size, which compose a 40 km long tectonic structure capturing
almost the whole area affected by the October seismic sequence. We tested the sensitivity of the RMS of
the residuals to the overall fault dip by performing a number of inversions varying the dip (within a
range of 30°-60°) of the assumed fault planes. The retrieved data are consistent with a fault dip of
~40°, in agreement with previous findings by Lavecchia et al. [2016] and Huang et al. [2017] for the
southern sector of the causative Mount Vettore Fault. We subdivided the fault planes into small patches,
solving for slip and rake values on each patch. At shallow depth fault patches are about 1 x 1 km? wide,
while the deeper ones are approximately 3.5 x 3.5 kmZ. Our preferred model satisfactorily reproduces the
main characteristic of both the observed InSAR and GPS displacements (Figure S9). Our model (Figure
S10) highlights that the 26 October event occurred on the northern segment of the MGVB fault system,
releasing a seismic moment of 1.97 x 10'® Nm, equivalent to a M,, 6.16 earthquake. The slip pattern
shows a single main coseismic asperity on the southeastern portion of the fault plane, with peak slip
of ~0.8 m (Figures S10 and S11). For the 30 October main shock, our model retrieves slip on the
Mount Vettore Fault, which releases a seismic moment of 8.46 x 10'® Nm, equivalent to a M,, 6.59 earth-
quake. Most of the coseismic slip occurred on one main asperity (up to >2 m of slip) located updip of
the hypocenter, between 3 and 7 km depth (Figures S10 and S11). In addition, some slip (up to ~1 m) is
also required in the shallower portion of the plane, in correspondence to the observed surface breaks
[Galadini et al.,, 2017], and in the deeper southeastern part of the fault, below the main coseismic asperity
of the 24 August event, which ruptured only a portion of the Mount Vettore Fault. Our results are in
agreement with the preliminary findings from INGV Working Group “GPS Geodesy” [2016] and Liu
et al. [2017].

Moreover, our results revealed that the assumption of slip occurring only on the two segments of the SW dip-
ping MGVB fault system generates some displacement residuals (up to ~10 cm) in the 30 October coseismic
interferograms, especially in the area of Norcia (Figure S9). In order to better explain the displacement field
imaged by these ALOS-2 interferograms, we hypothesized the occurrence of a further amount of slip on a
secondary fault and explored two different hypotheses: (1) an antithetic NE dipping normal fault emerging
in the Norcia area and well visible in the relocated aftershocks distribution (Figures 4g and 4i) and (2) a pre-
existing low-angle WNW dipping thrust segment below the Castelluccio plain (Figures 4h and 4j). We found
that, assuming additional slip on the antithetic fault or on the low-angle dislocation, the RMS for InSAR data
decreases in both cases by ~10-15% and for GPS data by ~7-10% (Table S3 and Figures S12 and S13) with
respect to what was obtained modeling only the MGVB main fault system (Figure S9). Both the explored solu-
tions (Figures 4g and 4h) show a main patch of slip located between 2 and 4 km depth, with maximum slip of

CHELONI ET AL.

MODELING 2016 CENTRAL ITALY EARTHQUAKES 6783


http://cnt.rm.ingv.tdmt

@AG U Geophysical Research Letters 10.1002/2017GL073580

13'|00' 13130' 13"00' 13]30' 13'|00' 13130'

N \
a) 24 Aug b) 26 Oct
\

T
15

Distance perpendicular to the fault (km) Distance perpendicular to the fault (km)

1 1 !

N ) \o— o
g) Antithetic fault h) Ancillary fault
\ % N &

Downdip depth (km)

Downdip depth (km)

Downdip depth (km)

Depth (km)

cm
90

Downdip depth (km)

Distance perpendicular to the fault (km) Distance perpendicular to the fault (km) Distance (km)

Figure 4. Geodetic model of the 2016 Central Italy earthquake sequence. (a and d) The 24 August Amatrice, (b and e) the 26 October Visso, and (c and f) the 30
October Norcia coseismic slip distributions. Ancillary slip distributions assuming that normal slip occurred either on an (g and i) antithetic fault or on a (h and )
preexisting compressional structure. Seismicity: purple stars indicate the main events; dots are relocated aftershocks (red = between 24 August and 24 September;
blue = 25 September and 25 October; green = 26 October and 30 November). (k-n) Slip distributions on the 30 October fault plane (k and m) and on the ancillary
dislocations (I = antithetic fault; n = preexisting compressional structure) and relocated aftershocks that occurred within 2 km on each side of the fault plane.

~0.7-0.8 m, equivalent to a M,, ~ 6.1-6.2 earthquake (Table S4). The fact that no large aftershocks occurred
around the two hypothesized ancillary faults suggests that the secondary dislocation may have slipped
mostly aseismically.
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Figure 5. Three-dimensional modeling results and structural sections. Yellow lines are the known tectonic features of
the area from Lavecchia et al. [2016], while cyan and white lines are from Lavecchia et al. [2017]. (a) Earthquake dis-
tribution projected on a SW-NE structural cross section (color as in Figure 4); (b-f) 3-D view of the geodetic models
(1 = Mount Bove and 2 = Mount Vettore fault planes; 3 = low-angle compressional structure; 4 = antithetic faults),
seismicity (yellow stars are the main events), and structural sections; (g) Cross section of proposed models along with
structural features.

4. Discussion and Conclusions

The 2016 Central Italy earthquakes represent the largest Italian seismic sequence affecting a continental
extensional domain that has been densely observed with modern geodetic measurements. Geodetic data
show that the sequence evolved along a main SW dipping normal fault system, relative to the MGVB align-
ment. The 24 August M,, 6.1 main shock ruptured two distinct segments of this fault system (Figure 4a), cor-
responding to the northern part of the ~50° SW dipping Mount Gorzano Fault, which was partially activated
in its southern portion during the 2009 L'Aquila earthquake [Chiaraluce et al., 2011; Bigi et al., 2013; Cheloni
et al., 2014], and to the southern part of the ~40° SW-dipping Mount Vettore Fault, respectively. The main
shock occurred, with a bilateral rupture, between these two fault segments, possibly merging into a single
SW dipping structure at the hypocentral depth [Lavecchia et al., 2016; Tinti et al., 2016; Chiaraluce et al., 2017].
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The 26 October M,, 5.9 Visso event ruptured a northern ~15 km long segment of the MGVB fault system
(Figure 4b). This event occurred on a ~ 40° SW dipping fault, with a main patch of slip located in the south-
eastern part of the plane, supporting the hypothesis of a unilateral northward rupture. The difference
between geodetic (M,, 6.1) and seismologic (M,, 5.9) moment magnitude estimates is likely ascribed to an
early postseismic contribution.

Finally, the 30 October M,, 6.5 Norcia main shock ruptured the ~20 km long segment that had remained
unbroken after the previous large events (Figure 4c). The main shock occurred on the Mount Vettore normal
fault, which was only partially activated in its southern portion during the 24 August earthquake. In this case,
we found a main patch of slip (with peak slip up to >2 m) located at the center of the fault plane (between 3
and 7 km depth). The slip reaches the surface in the area where surface ruptures were observed [Galadini
etal., 2017].

Our results also indicate that during the 30 October earthquake, an additional dislocation below the
Castelluccio plain likely occurred within the sequence, with a retrieved slip equivalent to a M,, ~ 6.1-6.2 earth-
quake. As regards the nature of this ancillary dislocation, a structural section [Lavecchia et al., 2017] across the
activated crustal volume and relocated aftershocks [Chiaraluce et al., 2017] shows the existence of both anti-
thetic and synthetic faults and of inherited low-angle compressive structures (Figure 5), in agreement with
the general tectonic setting of the Central Apennines. In this geological context, the two possible candidates
or their combination (Figures S14 and S15) are therefore (1) a NE dipping normal fault antithetic to the MGVB
fault system and illuminated by the aftershocks distribution and (2) a preexisting compressional low-angle
structure, likely related to a segment of the Sibillini Thrust [Lavecchia et al., 2016]. Indeed, by projecting the
low-angle ancillary dislocation model along the structural sections, we find a good agreement with the
Sibillini Thrust location (Figure 5). Despite that the performed geodetic analysis is unable to discern between
the two possible scenarios, the distribution of seismicity suggests the activation of an antithetic normal fault,
favoring the assumption that the additional slip may happened on this ancillary structure. On the other hand,
the geological context and seismicity pattern do not rule out the hypothesis that also an inherited compres-
sive structure may be reactivated during the sequence. In conclusion, the inversion of geodetic data revealed
the progressive activation of four main coseismic asperities during the whole 2016 Central Italy seismic
sequence, belonging to the MGVB SW dipping normal fault system, located between the northern termina-
tion of the 2009 L'Aquila seismic sequence and the southern termination of the 1997 Colfiorito sequence.
Moreover, our results allow us to highlight that some extra slip occurred on a secondary fault structure; this
may be related to the activation of a normal fault antithetic to the MGVB main fault system and/or to a pre-
existing compressional low-angle structure, extensionally active during the seismic sequence. These findings
suggest a complex interaction in the activated crustal volume between the main normal fault system and the
secondary structures and a partitioning of strain release that may have important implications for the evalua-
tion of the seismic hazard in this sector of the Central Apennines.
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