97 research outputs found

    Alterations of prolyl endopeptidase activity in the plasma of children with autistic spectrum disorders

    Get PDF
    BACKGROUND: Prolyl Endopeptidase (PEP, EC 3.4.21.26), a cytosolic endopeptidase, hydrolyses peptide bonds on the carboxyl side of proline residue in proteins with a relatively small molecular weight. It has been shown that altered PEP activity is associated with various psychological diseases such as schizophrenia, mania and depression. Autistic Spectrum Disorders (ASD) are neuropsychiatric and behavioural syndromes affecting social behaviours and communication development. They are classified as developmental disorders. The aim of this study was to examine the hypothesis that PEP activity is also associated with ASDs. METHODS: Fluorometric assay was used to measure PEP activity in EDTA plasma in children with ASD (n = 18) aged 4–12 years (mean ± SD: 7.9 ± 2.5). These results were then compared to PEP activity in a control group of non-ASD children (n = 15) aged 2–10 years (mean ± SD: 6.4 ± 2.2). RESULTS: An alteration in PEP activity was found in the children with ASD compared to the control group. There was much greater variation of PEP activity in the group of ASD children when compared to the controls (SD= 39.9 and SD 9.6, respectively). This variation was significant (p < 0.0005), although the mean level of PEP activity in the group of ASD children was slightly higher than in the control group (124.4 and 134.1, respectively). CONCLUSION: Our preliminary finding suggests a role for PEP enzyme in the pathophysiology of autism but further research should be conducted to establish its role in the aetiology of psychiatric and neurological disorders, including autism and related spectrum disorders

    Midgut transcriptomic responses to dengue and chikungunya viruses in the vectors Aedes albopictus and Aedes malayensis

    Get PDF
    Dengue (DENV) and chikungunya (CHIKV) viruses are among the most preponderant arboviruses. Although primarily transmitted through the bite of Aedes aegypti mosquitoes, Aedes albopictus and Aedes malayensis are competent vectors and have an impact on arbovirus epidemiology. Here, to fill the gap in our understanding of the molecular interactions between secondary vectors and arboviruses, we used transcriptomics to profile the whole-genome responses of A. albopictus to CHIKV and of A. malayensis to CHIKV and DENV at 1 and 4 days post-infection (dpi) in midguts. In A. albopictus, 1793 and 339 genes were significantly regulated by CHIKV at 1 and 4 dpi, respectively. In A. malayensis, 943 and 222 genes upon CHIKV infection, and 74 and 69 genes upon DENV infection were significantly regulated at 1 and 4 dpi, respectively. We reported 81 genes that were consistently differentially regulated in all the CHIKV-infected conditions, identifying a CHIKV-induced signature. We identified expressed immune genes in both mosquito species, using a de novo assembled midgut transcriptome for A. malayensis, and described the immune architectures. We found the JNK pathway activated in all conditions, generalizing its antiviral function to Aedines. Our comprehensive study provides insight into arbovirus transmission by multiple Aedes vectors

    Respiratory and Urinary Tract Infections, Arthritis, and Asthma Associated with HTLV-I and HTLV-II Infection

    Get PDF
    Human T-lymphotropic virus types I and II (HTLV-I and -II) cause myelopathy; HTLV-I, but not HTLV-II, causes adult T-cell leukemia. Whether HTLV-II is associated with other diseases is unknown. Using survival analysis, we studied medical history data from a prospective cohort of HTLV-I– and HTLV-II–infected and –uninfected blood donors, all HIV seronegative. A total of 152 HTLV-I, 387 HTLV-II, and 799 uninfected donors were enrolled and followed for a median of 4.4, 4.3, and 4.4 years, respectively. HTLV-II participants had significantly increased incidences of acute bronchitis (incidence ratio [IR] = 1.68), bladder or kidney infection (IR = 1.55), arthritis (IR = 2.66), and asthma (IR = 3.28), and a borderline increase in pneumonia (IR = 1.82, 95% confidence interval [CI] 0.98 to 3.38). HTLV-I participants had significantly increased incidences of bladder or kidney infection (IR = 1.82), and arthritis (IR = 2.84). We conclude that HTLV-II infection may inhibit immunologic responses to respiratory infections and that both HTLV-I and -II may induce inflammatory or autoimmune reactions

    A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R

    Get PDF
    BACKGROUND: Autism is a pervasive developmental disorder characterized by a triad of deficits: qualitative impairments in social interactions, communication deficits, and repetitive and stereotyped patterns of behavior. Although autism is etiologically heterogeneous, family and twin studies have established a definite genetic basis. The inheritance of idiopathic autism is presumed to be complex, with many genes involved; environmental factors are also possibly contributory. The analysis of chromosome abnormalities associated with autism contributes greatly to the identification of autism candidate genes. CASE PRESENTATION: We describe a child with autistic disorder and an interstitial deletion on chromosome 4q. This child first presented at 12 months of age with developmental delay and minor dysmorphic features. At 4 years of age a diagnosis of Pervasive Developmental Disorder was made. At 11 years of age he met diagnostic criteria for autism. Cytogenetic studies revealed a chromosome 4q deletion. The karyotype was 46, XY del 4 (q31.3-q33). Here we report the clinical phenotype of the child and the molecular characterization of the deletion using molecular cytogenetic techniques and analysis of polymorphic markers. These studies revealed a 19 megabase deletion spanning 4q32 to 4q34. Analysis of existing polymorphic markers and new markers developed in this study revealed that the deletion arose on a paternally derived chromosome. To date 33 genes of known or inferred function are deleted as a consequence of the deletion. Among these are the AMPA 2 gene that encodes the glutamate receptor GluR2 sub-unit, GLRA3 and GLRB genes that encode glycine receptor subunits and neuropeptide Y receptor genes NPY1R and NPY5R. CONCLUSIONS: The deletion in this autistic subject serves to highlight specific autism candidate genes. He is hemizygous for AMPA 2, GLRA3, GLRB, NPY1R and NPY5R. GluR2 is the major determinant of AMPA receptor structure. Glutamate receptors maintain structural and functional plasticity of synapses. Neuropeptide Y and its receptors NPY1R and NPY5R play a role in hippocampal learning and memory. Glycine receptors are expressed in very early cortical development. Molecular cytogenetic studies and DNA sequence analysis in other patients with autism will be necessary to confirm that these genes are involved in autism

    Dermonecrosis caused by a spitting cobra snakebite results from toxin potentiation and is prevented by the repurposed drug varespladib

    Get PDF
    Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the aetiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a new therapeutic strategy to more effectively prevent life-changing morbidity caused by snakebite in rural Africa

    ASSESSING TARGET SPECIFICITY OF THE SMALL MOLECULE INHIBITOR MARIMASTAT TO SNAKE VENOM TOXINS: A NOVEL APPLICATION OF THERMAL PROTEOME PROFILING

    Get PDF
    New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation, and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including Thermal Proteome Profiling (TPP) and Proteome Integral Solubility Alteration (PISA) assays, represent “deep proteomics” methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply TPP and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom

    Brief Report: Theatre as Therapy for Children with Autism Spectrum Disorder

    Get PDF
    The pilot investigation evaluated a theatrical intervention program, Social Emotional NeuroScience Endocrinology (SENSE) Theatre, designed to improve socioemotional functioning and reduce stress in children with autism spectrum disorder (ASD). Eight children with ASD were paired with typically developing peers that served as expert models. Neuropsychological, biological (cortisol and oxytocin), and behavioral measures were assessed in a pretest–posttest design. The intervention was embedded in a full musical theatrical production. Participants showed some improvement in face identification and theory of mind skills. The intervention shows potential promise in improving the socioemotional functioning in children with ASD through the utilization of peers, video and behavioral modeling, and a community-based theatrical setting

    A novel blood-based biomarker for detection of autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) are classified as neurological developmental disorders. Several studies have been carried out to find a candidate biomarker linked to the development of these disorders, but up to date no reliable biomarker is available. Mass spectrometry techniques have been used for protein profiling of blood plasma of children with such disorders in order to identify proteins/peptides that may be used as biomarkers for detection of the disorders. Three differentially expressed peptides with mass–charge (m/z) values of 2020±1, 1864±1 and 1978±1 Da in the heparin plasma of children with ASD that were significantly changed as compared with the peptide pattern of the non-ASD control group are reported here. This novel set of biomarkers allows for a reliable blood-based diagnostic tool that may be used in diagnosis and potentially, in prognosis of ASD

    Oxytocin attenuates feelings of hostility depending on emotional context and individuals' characteristics

    Get PDF
    In humans, oxytocin (OT) enhances prosocial behaviour. However, it is still unclear how the prosocial effects of OT are modulated by emotional features and/or individuals' characteristics. In a placebo-controlled design, we tested 20 healthy male volunteers to investigate these behavioural and neurophysiological modulations using magnetoencephalography. As an index of the individuals' characteristics, we used the empathy quotient (EQ), the autism spectrum quotient (AQ), and the systemising quotient (SQ). Only during the perception of another person's angry face was a higher SQ a significant predictor of OT-induced prosocial change, both in the behavioural and neurophysiological indicators. In addition, a lower EQ was only a significant predictor of OT-induced prosocial changes in the neurophysiological indicators during the perception of angry faces. Both on the behavioural and the neurophysiological level, the effects of OT were specific for anger and correlated with a higher SQ

    Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior

    Get PDF
    The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ∌28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior
    • 

    corecore