1,318 research outputs found

    Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    Get PDF
    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4)

    Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Get PDF
    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots

    Long-Wavelength Instability in Surface-Tension-Driven Benard Convection

    Full text link
    Laboratory studies reveal a deformational instability that leads to a drained region (dry spot) in an initially flat liquid layer (with a free upper surface) heated uniformly from below. This long-wavelength instability supplants hexagonal convection cells as the primary instability in viscous liquid layers that are sufficiently thin or are in microgravity. The instability occurs at a temperature gradient 34% smaller than predicted by linear stability theory. Numerical simulations show a drained region qualitatively similar to that seen in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "mypprint" which is the defaul

    Onset of Surface-Tension-Driven Benard Convection

    Full text link
    Experiments with shadowgraph visualization reveal a subcritical transition to a hexagonal convection pattern in thin liquid layers that have a free upper surface and are heated from below. The measured critical Marangoni number (84) and observation of hysteresis (3%) agree with theory. In some experiments, imperfect bifurcation is observed and is attributed to deterministic forcing caused in part by the lateral boundaries in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "mypprint" which is the defaul

    Precursor or Sequela: Pathological Disorders in People with Internet Addiction Disorder

    Get PDF
    Background: This study aimed to evaluate the roles of pathological disorders in Internet addiction disorder and identify the pathological problems in IAD, as well as explore the mental status of Internet addicts prior to addiction, including the pathological traits that may trigger Internet addiction disorder. Methods and Findings: 59 students were measured by Symptom CheckList-90 before and after they became addicted to the Internet. A comparison of collected data from Symptom Checklist-90 before Internet addiction and the data collected after Internet addiction illustrated the roles of pathological disorders among people with Internet addiction disorder. The obsessive-compulsive dimension was found abnormal before they became addicted to the Internet. After their addiction, significantly higher scores were observed for dimensions on depression, anxiety, hostility, interpersonal sensitivity, and psychoticism, suggesting that these were outcomes of Internet addiction disorder. Dimensions on somatisation, paranoid ideation, and phobic anxiety did not change during the study period, signifying that these dimensions are not related to Internet addiction disorder. Conclusions: We can not find a solid pathological predictor for Internet addiction disorder. Internet addiction disorder ma

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Water Network Optimization with Wastewater Regeneration Models

    Get PDF
    The conventional water network synthesis approach greatly simplifies wastewater treatment units by using fixed recoveries, creating a gap for their applicability to industrial processes. This work describes a unifying approach combining various technologies capable of removing all the major types of contaminants through the use of more realistic models. The following improvements are made over the typical superstructure-based water network models. First, unit-specific shortcut models are developed in place of the fixed contaminant removal model to describe contaminant mass transfer in wastewater treatment units. Shortcut wastewater treatment cost functions are also incorporated into the model. In addition, uncertainty in mass load of contaminants is considered to account for the range of operating conditions. Furthermore, the superstructure is modified to accommodate realistic potential structures. We present a modified Lagrangean-based decomposition algorithm in order to solve the resulting nonconvex mixed-integer nonlinear programming (MINLP) problem efficiently. Several examples are presented to illustrate the effectiveness and limitations of the algorithm for obtaining the global optimal solutions.The authors would like to acknowledge financial support from the National Science Foundation for financial support under grant CBET-1437668, the program “Estancias de movilidad en el extranjero “Jose Castillejo” para jóvenes doctores” (JC2011-0051) of the Spanish Ministerio de Educación, and from the University of Alicante (GRE11-19)
    • 

    corecore