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TECHNICAL CONTENT STATEMENT

This report was prepared as an account of work sponsored by
the United States Government. - Neither the United States nor the United
States Department of Energy, nor any of their employees, nor any of their
contractors, sub-contractors, or their employees,makes any warranties,
express or implied, or assumeé any legal liability or responsibility for
the accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not in-

fringe privately owned rights.

NEW TECHNOLOGY

No new technology is reportable for the period covered by this -

report.
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1. SUMMARY

» This is the 13th quarterly report of a study entitled an
Investigation of the Effects of Impurities and Processing on Silicon
Solar Cells. The objective of the program is to define the effects of
impurities, various thermochemical processes and any impurity-process

interactions on the performance of terrestrial silicon solar cells.

The Phase III program effort falls in five areas: (1) cell
processing studies (2) completion of the data base and impurity-perform-
ance modeling for n-base cells (3) extension of p-base studies to in-
clude contaminants likely to be introduced during silicon production,
refining or crystal growth (4) anisotropy effects and (5) a preliminary
study of the permanence of impurity effects in silicon solar cells. The

focus of this quarter's activity was tasks on (1), (3) and (4).

Gettering experiments with phosphorus oxychloride gas phase
treatments at 950°C, 1000°C, and 1150°C have been completed for two Ti~
doped ingots (3x10'3 cm™3 and 2.1x10% em™3 Ti doping levels, respective-
ly), two molybdenum doped ingots (8x1011and 4.2x10'2 cm™3 Mo) and one
iron-doped ingot (3x10!% cm™3 Fe). For the Ti and Fe ingots two clear
trends were observed: (1) atkany fixed temperature, e.g. 1100°C, as get~
tering time was extended cell performance improved; (2) as gettering
temperature was increased atbfixed heat treatment time cell performance also
improved. For example, in these experiments the maximum improvement
for the 3x10!3 cm—3 Ti ingot occurred after 4 hours at 1100°C: the cell effi-
ciency was faised to 77% of the undoped baseline from an initial un-
treated value of 57%‘of Baseline. The iron-doﬁed ingot recovered to

100% of the baseline cell value from the untreated value of 82%Z. (A small
k decline in baseline efficiency at the higher temperaturei&as noted ),
Little or no improvement on the cell performance of the Mo-doped ingots

‘was obtained.



First generation Co and W-doped ingots were grown and processed
to solar cells, Neither dopant could be detected in the ingots by spark
source mass spectroscopy (SSMS) although depreciation in cell performance
occurred in each case, The detection limits of the SSMS pléCe an upper
limit on the segregation coefficients at about 10~° and 107 for Co and
W respectively. W reduces cell performance by degrading bulk lifetime;

Co like Fe and Cu appears also to affect junctidn properties.

Miniature solar cells and diodes were used to map the charac-
teristics of wafers from a 3 inch diameter ingot doped with Mn or Ti.
Wafers were processed from the seed, center, and tang end of the ingot.
The cell performance showed no significant anisotropy or non-uniformi-
ty with position in the wafer or ingot. Cell efficiency within a given
wafer varied by no more than + 5% of the average value. The magnitude
of the cell efficiency and OCD lifetimes for the large diameter (com~.
mer:.al size) ingots agreed with the values obtained on our standard
1 iuch diameter test ingot. A model has been developed to describe the
behavior of solar cells bearing non-uniform distributions of impurities

or defects.




2. INTRODUCTION

This is the 13th quarterly report describing activities con-
ducted under JPL Contract 954331. Phase III of this program is entitled
an Investigation of the Effects of Impurities and Processing on Silicon
Solar Cells.

The objective of this program is to determine how various pro-
cesses, impurities,and impurity-process interactions affect the proper-
ties of silicon and the performancé of terrestrial solar cells made from
silicon. The development of this data base permits the definition of
the tolerable impurity levels in a low-cost Solar Grade Silicon. The
data further provide the silicon manufacturer with a means to select
materials of construction which minimize product contamination and per-
mit the cost-effective selection of chemical processes for silicon pur-
ification. For the silicon ingot, sheet or ribbon manufacturer the data
‘suggest what silicon feedstock purity must be selected to produce wafers
suitable for cell production and what furnace materials minimize wafer
contamination. The cell manufacturer may use the data to define an ac-
ceptable wafer purity for cell processing or to identify processes which
minimize impurity impact on efficiency. In short, the data provide a
basis for cost-benefit analysis to the producers and users of Solar Grade

Silicon.

The program approach has been to evaluate the chemical, micro-
structural, electrical, and solar cell characteristics of silicon wafers
infused with controlled amounts of various metal:contaminants. The

wafers are produced from Czochralski ingots and silicon web crystals.

The Phase TII effort encompasses five major topics: (1) expan-
sion of the activity directed to cell processing (2) completion of the
..data base and modéling~of n-base solar cells (3) extension the p-base

studies to include impurities likely to be introduced during silicon



production, refining or crystal growth, (4) a consideration of the
potential impact of anisotropic impurity distribution in large Czochral-
ski and ribbon solar cells and (5) a preliminary investigation of the
permanence of impurity effects in silicon solar cells. The focus of
this quarter's activity was on tasks (1), (3) and (4). Highlights of

this effort are described below.



3. TECHNICAL RESULTS

3.1 Ingot Preparation and Evaluation

3.1.1 Ingot Preparation

During this quarter three main types of silicon ingots were
prepared: ingots for prOCessing studies, first generation ingots repre-
senting materials of construction (cobalt and tungsten),and second and
third generation n-base ingots. Eleven ingots were grown and as before
each was érepéred‘by the Czochralski Crystal growth method. Details of
the crystal growth equipment and conditions can be found in earlier
reports (1,2). The ingots prepared this quarter included:

1 p-type singly doped low resistivity (0.2 ohm-cm)

2 p-type singly doped (4 ohm-cm)

6 n-type singly doped (1.5 ohm-cm)

1 p-type high resistivity baseline (30 ohm~cm)

1 p-type singly doped high resistivity (30 ohm-cm)

3.1.2 1Ingot Evaluation

The impurity content, electrical resistivity, and etc¢h pit den-
sity of each ingot was evaluated as described previously (2,3). Resist-
ivity and etch pit densities for ingots W-129 through W-154 are listed
in Table 1. 1In general, there is no deviation from the eétablished

norms (1) for either property.

The effectivé segregation coefficients uéed'td determine the
| appropriate ingot melt concehtrations are listed in Appendix 7.1. ‘The
upper limit values for tuﬁgstén and cobalt were recently-determined on
the basis of mass spectrographic analysis bf ingots W-145 and W-146 ré-‘

-spectively. - The inability to detect tungsten in W-145 and cobalt in



Table 1. Resistivity and Etch Pit Density
of Phase III Ingots

Ingot RESizggvit RACFua% i  Foen
Identification Q (bhm—Cm) ’ ?i;;ii;;ty Pl; 353 §ty
W-129-00-000(7.6 cm) 4.0 (B) 4,7-3.0 1K-Gross Lineage
W~130-00-000(7.6 cm) 5.0 (W) 4.7-3.7 OK-Gross Lineage
W-131-Mn=008(7.6 cm) 4.0 (B) 6.0-3.8 OK-Gross Lineage
W-132-Ta-003 4.0 (B) 3.8-3.4 1-20K
W-133-00-000 4.0 (B) 4.3-3.7 OK-Gross Lineage
W-134-T1-009 4.0 (B) 45.9-4.4 0-10K
W-135-Fe-005 : 4.0 (B) 5.3-2.1 0-Gross Lineage
W-136~Fe~006 4.0 (B) 3.3-2.7 1K-Gnoss Lineage
w-137-Ti-010 4.0 (B) 4.6-4.4 0-Gross Lineage
W-138-Mo-005 4.0 (B) 5.0-4.1 0-5K
M-139-Mo=006 W0 () hov-2.3 0-Gross Lineage
W-140-Ti-011(7.6 cm) 4.0 (B) 3.6-1.7 5K~Gross Lineage
W-141-Mo/Cu~001 4.0 ()  4.7-3.0 2K-Gross Lineage
NtlQZ—OO-OOO 0.2 (1) -0.22-0.20 0-3K
12143-Ti-002 0.2(8) 0.21-0.15 0-Gross Poly
WE144-Mo-001 0.2(B) 0.23-0.19 0-Gross Poly
W=-145-W-001 ’ 4 (B) 4.5-4.0 2K-Gross Poly
W oLAhO Co 001 4o BRI e IK-Crous Poly
W=147-n/Ni-002 sy 1.9-1.4 2-15K
W-148-N/Mn-002 1.5y 2,5-2.1 1K-Gross Poly
W-149-N/Fe-003 ‘ 1.5(P) Z.b-l.ﬁ 3K-Gross Poly
W~-150-N/v-003 T L.5(R) A 2.0=1.5 - , 1-5K
1"2151-00-000 30(B) 35.6-18.1 0-5K

, W*ilSZ—Ti—OOl 30(B) : 31.9-25 0-Gross Poly
W-153-N/Ti-003 1.5(p) 2.1-1.1. 0—lOK

' W-154-N/Cr-003 1.5(p) 2.1-1.4 T g1k

* Use of asterisk indicates low resistivity p-type ingot.
*% Use of double asterisk indicates 30 ohm-cm p-type ingot.

+ The first figure is etch pit density of the seed; second figure etch
pit density of extreme tang end of ingot. The first value shown is
indicative of dislocation density in slices used for cell fabrication
Structural degradation commonly occurs at the tang end of the most
heavily-doped ingots due to comstitutional supercooling:

6 ORIGINAL PAGE IS
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W-146 by mass spectrographic analysis placed upper limits on the intended
dopant concentrations. Target concentrations, calculated concentrations
based on melt analysis, measured impurity concentrations based on spark
source mass spectrographic analysis for all ingots are summarized in
Appendix 7.2.  Mass spectrographic analysis and atomic absorption data
comparisons, when applicable, continue to agree within the expected lim-
its of error. A best estimate of the impurity concentration for each

Phase III ingot is compiled in Table 2.

The detectability of cobalt in a silicon spectrum by mass spec-
troscopy is hindered by the intense silicon background produced by the
lines of Sit at m/e = 28 and 29. The most intense cobalt line at m/e
=59 ¢r~ ‘ovonds to a line of Sit,. The next most intense line of co-
balt . =29 1/2 is masked by intense lines of Sit at m/e = 28 and
29, ag the limit of detectability at 0.033 ppma cobalt (1.7 x 1015
atows/cm3). The least intense line of cobalt at m/e 19 2/3 is masked

by the lines of S8i2% at m/e = 14, 14 1/2 and 15. The cobalt line at m/e

=19 2/3 is also 3 times less intense than the line of cobalt at m/e =
29 1/2. Sihce we could not detect cobalt at a concentration less than
1.7 x 1015 atoms/cm® when the melt concentration was 1.5 x 1020 atoms/
em3 this placed an upper limit for the cobalt effective segregation co-

efficient of 1.1 x 10 ~°,

Tungsten,in W-145 was not detectable at a concentration of 0.003
ppma (1.5 x 10% atoms/cm3) using the longest mass spectrographic expo-
sure of 1000 coulombs. ' This concentration limit for the ingot taken with
ingot melt concentration of 9.7 x 10!° atoms/cm3 yields an upper limit

for the tungsten effective segregation coefficient of 1.6 x 1076,

Carbon and oxygen concentrations of each ingot were measured
by .infrared absorption. The amplitude of the abéorption peak for carbon

! wave numbers are proportional to the

at 606 cm'1 and oxygen at 1107 cm™
carbon and bxygen concentrations, respectively. The constants of pro-
Aportionality used in this work were‘2.2'for carbon and 9.6 for oxygen.(z)
Normal carbon and oxygen concentrations found in Czochralski grown mater-
’ialkare in the rénge of 2.5 x 108 atoms/cm® to 5 x 1017‘atoms/cm3 for

carbon and 50 x 1016 atoms/cm® to 150 x 106 atoms/cm3 for oxygen. No



Table 2, Best Estimate of Impurity Concentrations

Ingot
Identification

W-129-00-000 (7.6 cm)
W-130-00-000 (7.6 cm)
W-131-Mn-008 (7.6 cm)

W=1732-Ta~-007
W-133-00-000
W-134-T1-009
W-145-1e=00"
W~-136~Fe-006
W-137-Ti-010
W~138-Mo-005
W-=139-Mo-006

W-140-Ti-011 (7.6 cm)

W-141-Mo/Cu-001
*
W-142-00-000

X
W~143-~Ti-002
W-144-2Mo-001
W—=145-W-001
W-146-Co~00L
W=-147-N/Ni-002
W=148-N/Mn-002
W-149-N/Fe-003
W=L50=N/Vv-007
T o

W =151-00-000

k&
LOW-152-Ti-001
W-153-N/Ti-003

‘W-154-N/Cr-003

~*  Low resistivity p-type ingot identification

k&

of Phase III Ingots

30 ohm-cm p-type ingot identification

Best Estimate of

Iwpurity Conc.

(16" " atoms/cn®)

NA
NA
0.55
0.0002
NA
0.05
1.0
0.3

0.21
0.001
0.0042
0.18
0.004/4.00
NA
0.20
0.004
<0.15
<1.7
0.40
0.60
0.60
0.03
NA
Processing
Processing

Processing



Table 3. Carbon and Oxygen Concentrations

of Phase IITI Ingots

Carbon Concentration Oxygen Concentration
Ingot Number x 106 atoms/cm3 x 1016 atoms/cm3
W-129-00-000 11.3 202
W-131-Mn-008 5.3 164
W-133-00-000 10.4 117
W-135-Fe-005 9.4 118
W-137-Ti-010 5.3 134
W-139-Mo-006 6.5 149
W-141-Mo/Cu-001 8.3 156
W¥143-Ti~002 ++ +
W-145-W-001 5.8 149
W-147-N/Ni-002 | 14.0 : 157
W-149-N/Fe-003 6.6 151
w**151-00~000 (300-cm) 7.0 | 154

W-153~N/Ti-001 7.5 160

*  low resistivity ingot
*% high resistivity ingot-
++ Due to free carrier absorption infrared methods cannot be used for

carbon and oxygen determination in these samples,



significant variations from these values were observed in the ingots
produced this quarter as indicated by the data for the odd numbered

ingots listed in Tabie 3.

3.2 Processing Studies

A sizeable portion of this impurity-interaction study is di-
rected toward investigating the effect of several thermochemical pro-
cesses on the cell performance of impurity-doped silicon. These thermo~-
chemical processes are those which can be performed on the doped ingot

to reduce the harmful effects of metal contamination.

The program plan called for studying three impurities at two
di fferent impurity levels(l) ingots. One iron ingot produced was not
suitable for processing due to cellular breakdown during growth so a

total of 5 ingots have been studied so far.

The thermochemical processes under study are: (1) POCl3 get-
tering, (2) HCR gettering and (3) damage gettering. These processes
are thermally activated. Thus, it should be possible to characterize
each by time, temperature and activation energy so that the results may

be extrapolated as to impurity level and gettering cycles.

The processing chart and the experimental plan were presented
in Figures 1 and 2 of one Twelfth Quarterly Report(“z Thus far, We have
completed all of the POCR3 gettering experiments on the five ingots as
indicated below.

The POCL3 gettering steps were:
1 hr. - 950°C

Isochronal 1 hr. - 1800°C
1 hr. - 1100°C

Isothermal 2 hrs. - 1100°C
’ 3 hrs. - 1100°C
5 hrs. - 1100°C

The ingots studied were: _ 136 Fe 006 (3 x 101“ Fe)
: o 134 Ti 009 (5 x 1018 Ti)
137 Ti 010 (2.1 x 101% 11)

10



138M0005 (1 x 10!2Mo)
139 Mo006 (4.2 x 1012 Mo)

The data for these five ingots is compiled in Tables 4 through
8 and presented in graphical form in Figures 1 and 2. Figure 1 illus-
trates the results of the isochronal treatments with the log _%_%%g%&
plotted vs time at 1100°C.

Several comments are appropriate with respect to the data. In

Tables 4, 5, and 6, the baseline cell efficiency (and other baseline
parameters) show a gentle decrease with increased treatment temperature.
This is in general agreement with previous results (1), These results
reveal that the recombination lifetime of the baseline samples reached

a weak maximum after 1 gettering cycle (1 hr. at 1000°C in POC23). and
further getter cycles caused a slight decline in lifetime. (A similar
degrading effect was noted in doped ingot at that time. :Wekgig_ggg ob—
serve this in the present work and the reasons for such partial dispaf—.
ity in results are now being explored ), It may be that two competing
mechanisms are operative during gettering of the doped ingots. The
first may be a simple diffusion of contaminants to the surface where they
are removed, and a second, yet to be understood phenomena may be one by
which increased gettering degrades the cell parameters. In any case,
the final value of the baseline parameters would set an effective limit
on the maximum improvement that may be expected when gettering a doped
ingot.

The iron ingot (W136) exhibited a complete recovery to base-

line properties, i.e.,, nl/nB ~ 1.0, after gettering. The result is
~somewhat misleading. Although the cell efficiency of the iron ingot im-
proved from about 8.27% to ¥ n 9%, the baseline decreased from 107 to below
9%. Thus, in absolute terms, the iron ingot only recovered about -40% of

that required to match the original baseline properties.

, For the two Mo ingots (138 and 139) gettering produced only
slight improvements (and then only at 1100°C) in cell efficiency compared

to the untreated material. It must tentatlvely be concluded that POCRq

11



TABLE 4

POCS, GETTERING EXPERIMENT BASELINE - W11700-000
INGOT - W136FE006
(3x10" “Fe)

TREATMENT I (mA) Ve (V) FF EFF (%)
None B 22.6 .559 .749 10.00
1 I 20.0 .536 .725 8.23
VB  .887 .950 .968 824
1HR-950°C B 21.8 .551 739 9.36
2 1 21.5 .552 717 9.03
VB  .986 1.00 .970 .965
1HR-1000°C B  21.4 .549 .726 8.99
3 1 21.7 .549 .720 9.13
Vs 1.01 1.00 .992 1.01
1HR-1100°C B  21.2 .541 693 8.41
4 T 21.3 546 .684 8.40
VB 1.00 1.01 987 1.00
2HR-1100°C B  21.1 ; .546 690 8.38
5 I 21.4 .555 737 9.24
VB 1.04 1.02  1.07 1.10
3HR-1100°C B 21.3 .544 715 8.77
6 T 21.6 .553 735 9.34
VB 1.01 1.02 1.03 1.06
SHR-1100°C B 21.3 .546 702 8.63
7 1 21.4 .555 719 8.98

~ U8 1.01 1.02 1.02 1.04

12



TABLE 5

POCL., GETTERING EXPERIMENT BASELINE - W11700-000

3 i
(AVERAGE VALUES) INGOT - W134Ti009 .
(5x1013T1)
TREATMENT ~ TIgg(mA) Voc W FF EFF(%)
None B 22.40 .556 .729 9.60
1 I, 15.42 - .491 .694 5.56
1/B .689 .882  .953 .579
1HR-950°C B 21.30 .549 .729 8.98
2 1 15.36 484 .699 5.30
/B 7.21 .882 .937 .590
1HR-1000°C B 21.34 .550 .746 9.25
3 1 15.68 .492 .699 5.69
: 1/8 .735 .895 .937 .615
1HR-1100°C B 21.200 ' .545 715 8.74
4 1 16.20° .500 .700 5.99
1/B .764 .917 .979 .685
1HR-1100°C B 21.65 - .549 .741 9.32
5 I  16.98 .505  .706 6.41
- 1/B .784 .920 1,953 .688
'3HR-1100°C B 21.67 .546 720 9.01
6 1 17.06 .505 .697 6.35
~ 1/B .787 .925 .968 .705
SHR-1100°C B 21.50 .543 706 8.73
7 1 17.58 - .513 .702 6.71
1/B 8.18 945  .994 .769

. . h
I/B = value of the property divided by that for
the baseline. ingot. SR



TABLE 6

POCQ,3 GETTERING EXPERIMENT

(AVERAGE VALUES)

BASELINE - W11700-000
INGOT - W137Ti-010

(2.1x10M71)

TREATMENT

None
1

1HR-950°C
2

1HR-1000°C
3

1HR-1100°C
4

2HR-1100°C
5

3HR-1100°C
6

5HR-1100°C
7

Igc(mA)

22,
12.

35
63

.565

21.
12.

21.
13.

21,
14,

21.
14.

21.
14.

21.
15.

Voc (V)

.557
.463
.831

.550
.467
.849

.553
475
.859

.552
.483
.859

.550
.484
.880

.547
.488
.892

.544
494
-.908

14

FF

. 753
.686
.911

.720
.674
.936

.718

.669

.932

2728
.675
.932

.722
671
.929

.708

.681

. 962

.668

685

1.03

EFF (%)

9.91
.24
.428

ES

.05
.23
.467

S

- 8.93

4.55
.510

9.20
4.87
.529

.03
.00
.554

[7218ts]

.78
.19
.591

Uy Co

8.29
5.49
.662



TABLE 7

POCR3 GETTERING EXPERIMENT BASELINE - W117-000
INGOT - W138MO0OS5
(1x1012M0)
TREATMENT I (@A) Voo - FF EFF (%)
None B 22.47 .559 .749 9.95
I 20.83 .529 .698 8.14
/B .927 .946 .933 .818
1HR/950°C B 21.57 .546 699 8.71
I 19.85 519 .680 7.40
/B .920 .951 .973 .850
1HR/1000°C B 21.70 .551 723 8.67
I 20.10 .522 .684 7.61
/B .926 .947 .986 .878
1HR/1100°C B 21.70 546 693 8.67
T 20.23 .520 .683 7.61
I/B  .932 .957 _ .986 .878
DHR/1100°C B 21.40 549 .702 8.73
I 20.07 521 671 7.62
I/B .938 949 .956 - .873
3HR/1100°C B 21.50  .549 .723 9.02
I 20.12 .523 .687 7.64
I/B .93  .953 .950 .847
SHR/1100°C B 21.37 542 .719 8.85
I 20.17 .523 .756 8.45

I/B 944 .965 1.05 . .955

15



TABLE 8

POC23 GETTERING EXPERIMENT BASELINE - W117-000

INGOT - W139MO006
(4.2x1012Mo)

TREATMENT Iy, (mA) VooV FF EFF (%)
None B 22.03 .550 ; 736 9.43
I 18.43 .507 ; .688 6.82
I/B .837 .922 1,935 .723
1HR/950°C B - 21.80 .550 .709 9.00
I 18.37 503 .700 6.88
I/B 842 .915 .987 764
1HR/1000°C B 21.80 .553 734 9,47
: I 18.43 .505 .695 6.84
1/B .843 .915 .947 722
IHR/1100°C B . 21.80 545 .700 ; 8.79
I 18.70 .505 . .665 6.65
I/B .858 - .927 - .950 757
2HR/1100°C B 22.10 .555 749 9.71
, I 17.70 .503 .688 6.48
1/B .801 .906 .919 667
3HR/1100°C B 21.65 .553 .732 9.26
I 18.98 .509 .701 7.17
I/B .877 .920 .958 774
5HR/1100°C B  21.80 551 747 9.49
I 18.84 512 - .701 7.15

I/B .864 929 - 5 +938 753
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gettering has very little effect on Mo contaminated wafers (at least in

impurity range studied so far).

The cell performance of the two Ti ingots show a gradual in-
crease during the getteriné cycle, with the normalized efficiency in-
creasing by 0.10 to 0.15. It would appear, however, that abnormally long
gettering cycles would be required to achieve anywhere near complete re-
covery. 7

From these first POCL3 gettering cycles, we can draw the fol~-

lowing tentative conclusions:

1. Mo doped ingots are relatively unaffected by POCR3 getter-

ing.

2, The cell efficiencies of Ti-doped ingots improve with POCLjg
gettering but complete recovery to baseline values would

appear to require excessive times/temperatures.

3. The 1ingot with 3 x 101* Fe doping improves significantly,
reaching a maximum of 9.347% efficiency, (after 3 hrs. at
1100°C). This is an improvement of one percentage point in

absolute efficiency.

4., The baseline wafers degrade slightly with increasing getter-
ing cycles. This effect may effectively limit any recovery

in the ingot.

The results discussed here apply only to POCL3 gettering. Dur-
ing the next quarter, data on HCL and back surface damage gettering may
shed more light on the magnitude of the ultimate recovery in cell prop-

erties that can be expected from gettering.

3.3 Effect of Impurities on p-base Silicon Solar Cells

Our studies of impurity effects in p-base solar cells are
fairly detailed and complete. The mechanism of cell performance reduc-
tion is'understbod to be primarily lifetime degradation via the intro- i
duction of contaminants whicﬁ form reéombination centers in silicon.

Device performance can be modeled very accurately on the basis of this

.19



assumption. As a result, cell efficiency as a function of impurity
content for p-base devices can now be projected with some confidence.(l)
Thus, Phase III activity has been shifted to focus on elements

likely to be introduced during silicon production, refining, or crystal
growth, As noted in secion 3.1, the first two elements to be investi-
gated are tungsten and cobalt, common components of the refractory hard-

ware used in process equipment and furnaces.

First generation ingots were grown from melts containing the
maximum concentration of tungsten or cobalt which could be tolerated
without crystal breakdown due to constitutional supercooling. Spark
source mass spectroscopy failed to detect either element in the ingot
(Secion 3.1) placing upper limits on the tungsten in ingot W145 at
1.7x10!5¢n™3 and the cobalt in ingot W146 at 1.5 x 10!* cm™3. The es-
timated upper limits on the segregation coefficients, 107® to 10-5, are

in the range expected from past experience with other transition metalsﬁl’z)

Wafers from each ingot were processed into solar cells by the
same standard sequence (1,2) involving POCRy diffusion at 825°C that has

been employed for all other ingots studied in this program.

The data for tungsten-doped ingot W145, Table 9, shows an aver~-
age uncoated solar cell efficiency of 8.6% or about 89% of the uncontam-
inated baseline wafers. We would expect, from the position of tungsten
in the periodic table to observe- behavior somewhat similar to that of
molybdenum, a strong lifetime killer. The data in Table 9, in fact, show
that the efficiencies of the tungsten-doped solar cells are depressed
primarily By a reduction in,bulk lifetime. Since the ingot impurity con-
centration remains to be determined, we cannot yet put the effects of
tungsten in context relétive to the severity of the effects compared to

other impurities.

The situation for the cobalt-doped solar cells appears quite
differént,from that of tungsten. Here the uncoated cell efficiencies
vary from wafer to wafer over a range from about 5.8 to 8.6% with an

>averageraround 8% (85% of baseline), Table 10. There is considerable »
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Solar Cell I-V Data for a 4Qcm p-type silicon ingot -
doped with cobalt. ,
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evidence of junction degradation in the cobalt-bearing wafers; the base-
line wafers appear free of this effect. Again, without concentration
data it is difficult to put the magnitude of the cell degradation in
perspective relative to the other impurities. However, the indication
of junction degradation and possibly lifetime reduction in the cobalt
doped cells is somewhat reminiscent of the behavior observed when iron
and nickel (neighbors to cobalt in the periodic table) were introduced

into silicon solar cells(!,2),

We expect to analyze the behavior of cobalt and tungsten in
greater detail as more ingots and better concentration data become
available. '

3.4 Investigation of Anisotropy Effects in p-base Silicon Solar Cells

Once manufactured, a solar grade silicon feedstock will be pro-
cessed via some crystal growth technique to wafers or sheet. We do not
know whether radial or axial anisotropic impurity distributions intro-
duced during the growth of the crystals will produce cell performance
reductions over those which might be e%pected for uniformly doped wafers.
Thus, a small poriion of this program is directed at the evaluation of
commercial size Czochralski-ingots and wide silicon webs grown from melts
containing controlled amounts of contaminants. The first results from
3-inch diameter Czochralski ingots ;re reported below. In a parallel
study we have also developed a first order model for the performance of
_ solar cells which contain non-uniformities due to the variation in im-

purities, defects, etc. across the device.

3.4.1 Evaluation of 3-inch diameter Ti and Mn-doped 1egots

: Two three-inch diameter ingots, W131, Mn 008 (5.5x101%cm™3 Mn)
and Wl40 Ti011 (1.8x101%cm™3 Ti) were evaluated. Each process run con-
- sisted of 7 large wafers taken from seed, center and tang eng of the
ingot. 1 cm x 1 cm miniature solar cells were fabricated on 5 large

(1)

made on the remalning two wafers. Cell efficiency and OCD lifetime

wafers by the standard process Thirty mil diameter mesa diodes weve

- were measured on each minlature cell to map any anisotropy in ~ingot

characterlstlcs. The results of these experiments are summarized in,
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Tables 11 and 12. The first digit in the ID column of the tables repre-
sents the wafer number and the following digits desgnate the miniature
cell number. Thus, an ID number of 112 implies the data are from the
twelfth miniature cell of the first large wafer. The location of each
miniature cell (1 to 12) is shown in Fig. 3. Figures 4 and 5 show the
variation in the cell performance and the carrier lifetime of the mini-
ature cells fabricated on a few of the large Mn and Ti doped wafers.
Figure 6 shows the OCD lifetime map on a large Mn-doped crystal obtained
by means of the 30 mil diameter mesa diodes. Work is in progress to
obtain a similar lifetime map for Ti doped crystal. Apart from esti-
mating the anisotropy due to the sedondary metal impurity, an attempt
also was made to see the variation in the electrically aétive, primary
dopant, boron. Resistivity was measured at various locations on the
large wafer by the four point probe method and the results are shown in
Fig. 7.

The data in Tablie 11 indicate that Mn incorporation in 3"
diameter Czochralski crystals does not result in any striking anisotropy
of the electrical characteristics. The average cell efficiency due to
5.5x101%cm™? Mn in the large crystal was approximately 837 of the value
for the uncontaminated baseline material. The maximum variation in' the
miniature cell performance across a wafer was * 57, and the variation
over the entire ingot, irrespective of seed, center on the tang end,
was within T 10%. As expected from the cell performance, the OCD
lifetime variation was also within the accuracy of the measuremert
. technique (about a factor of 2). The average miniature cell efficiency
was in very good agreement with the average cell performance on 1" dia-
meter ingot-093 (about 867 of the baseliné) containing comparable a-
‘mount of Mn. Thus, the growth of large ingot has no appreciable in-
fluence on the incorporation of and the detrimental affect of the impur-
‘ity. Our previous work established that Mn degrades the cell performance
primarily by lowering the bulk lifetime; therefore, it is reasonable to
say that impurity distribution’is fairly uniform on 3" diameter Mn

doped crystal.
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Table 11.. Minfature solar cell parameters and OCD lifetimes on 3 in
diameter Mn-doped wafers. .
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The results on ingot W-140-Ti-011, Table 12 and Fig. 5, also
reveal no striking anisotropy due to Ti incorporation in the large cry-
stal. The maximum variation in the miniature cell performance across
any wafer was T 5%, which is close to our experimehtal accuracy. Re-
gardless of whether the wafers came from the seed, center or the tang
end, the average miniature cell performance was ~ 4,377 of the baseline,
with a scatter of less than ¥ 10%. The average efficiency is very close
to the performance predicted by 1 cm x 1 cm cells made on 1" diameter
ingot—123, which have comparable Ti content (1 x 10'% cm™3 Ti resulted

in 52% of the baseline efficiencY).

Thus, our studies so far, suggest that impurities like Mn and
Ti, which reduce the cell performance primarily by lowering the bulk
lifetime, are distributed fairly uniformly throughout the 3" diameter
ingots. No striking anisotropy was detected. The vériation in the
miniature cell performance across a wafer was ¥ 5% and over the entire
ingot (seed, center and tang) was + 10%. The variation in OCD lifetime
was within the experimental accuracy of the measurement-technique. The
variation in the resistivity was also 1 10%. The affect of impurities,

like Mn. and Ti, was found to be similar on 1" and 3" diameter crystals.

3.4.2 Modeling the Behavior of Non-Uniform Devices

It would be fortuitous if impurities and defects were uniformly
distributed in a real solar cell. But since they are not, it is informative

to examine how uneven properties influence the performance of the cell.

For analysis a non-uniform cell can be considered as several
parallel connected cells with differing areas and characteristics. Each

of - these sub—-cells can be represented by the lumped eQuivalent circuit

of Figure 8.
1

Rs -
AAA o---
i
e b oy  Roy V.
- O~ —{

Figure 8.
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Where IL is the light generated current,

I, is the junction recombination current,

IB is the diffusion current

RS and RSH are the series and shunt resistances
Since the cell is a distributed device, these parameters are area depend-
ent. In particular, the resistances are usually better described in terms

of specific resistanc es, 'such that:

Ry = R, /A | (1)
and
Ran 7 Bapp/A | | (2)

In a typical good device, the specific series R - is about 0,3 ohm cm?
and depends primarily on the contact grid de51gn and the diffusion sheet

resistance. In the specific shunt resistances, is typlcally greater

5
than 50 kilohms and is a consequence of junction dZiects, e. g precipi-
tates, pipes, localized crystal defects and physical damage. In a case,
where shunt conductance is large, it is likely to be highly non-uniform
over the cell area. The remaining elements in Figure 8 are controlled
by the carrier lifetime in the various regions of the cell, plus, as is

observed in the case of I by the illuminating spectrum. While I~ can-

L’ e L

not be expressed in closed form for a real spectrum, a good approxima-

tion can be obtained by using an energy equivalent monochromatic illum~-
ination (1) and by assuming all the light is absorbed in the cell base,

AJ ; ;
I = L0 ;' (3)

where JLO

FLX = . the absorption length of the-incident 1light

Ly

the maximum photo-current density

the base diffusion length

The junctiocn and base,purrehts'fdr a diffusion length limited

device are written as:

Ij AJoz (eXP(V + IRg )' ) ' (4)

I‘= the termlnal current ;
' 33



Wqg D n ° C
Jop = —R_1L_ = ’
C, = a constant

the depletion width

Lnd the diffusion length in the depletion region

+ the diffusion const.

B
VT
q n? C1
Jo1 = i = _: (5)
NA nb Lnb
NA- = base acceptor concentration

We can now write an expression for the terminal current - voltage behav-
ior of a single device as a function of its diffusion length, area and

the two specific resistances.

I=1I1 -1,-1, -1 (6)

L i B RSh

Mg C,A VI R A
I L +1 . exp P -1

e L 2V

L “nd t

nb

v
- b T Rt o VTR o
Lnb Vt Rshp/A

For the non-uniform device with several dissimilar areas func—
tioning in parallel, the voltages for each sub-device are the same and
the total current is simply the sum of the currents giveﬁ by ‘Equation 7

for each of sub-devices.
The peak power and efficiency are determined from:

dP - .,y dL =0 j (8)
v PP ' »

obtaining I and dI from eq. 7. Eq. 8 is linear in V so that the compos-
ite device equatggh is. a linear sum of therequatibns representing the

sub-devices.
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These equations enable characterization of the composite de-
vice in terms of the properties of its sub-regions and, therefore,
allow the prediction of cell performance from data on the anisotropy
of the crystal properties. Furthermore, as grain boundaries can be
approximately characterized in terms of effective diffusion length,
area and resistances, we can-.also model the behavior of polycrystal-
line devices. An illustrative case for a two region device is shown

graphically in Figure 9. The IV curves are shown for the two sub-devices

s ()

By plotting -I, against voltage we obtain the total current, I3 as the

and the combined device.

Note that Iz = I7 + Ip

length of vertical vector drawn from I, to - Ij at any voltage. From this

figure, it is appareﬁt that V_ ., of the total device occurs where I; =

0C
-I,, that is, where I; crosses-Ip. One can alsc see that the poorer
device, I,, extracts energy from the better one for voltages above its

open-circuit wvalue.

Another view of anisotropy effects is shown in Fig. 10. The

cell consists of two elements, one with an assumed efficiency of 15.5%,

the other with an assumed efficiency of 4 %. The total cell perform-

ance is calculated with the relative area as a parameter for two cases.

' The lowest curve assumes the defective device has a fixed, area-independ-

ent shunt resistanée of 100 ohms. The other curve assumes a specific

éhunt resistance of 100 ohms.

The broken line is a linear approximation obtained by simply
adding the sub-cell power contributiors, that is, assuming there is no

interaction between the two sub-cells.

It is important to include the series resistance effects in
these calculations since the distributed resistance acts as an area de-
pendent decoupling resistance between good and bad regions of the device.
This decoupling resistance increases as the defective area diminishes.
Thus,- the impact of a small region with low lifetime is less than would

be predicted if the resistance were neglected.
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Figure 9. Calculated IV curves for two regions of a solar cell
S with dissimilar properties.
for the composite cell.
atively so that the total current,
the vector drawn from I, to Ij.
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Shown also is.the I-V curve
The current I, is plotted neg-
I3 = I; + I is simply
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Figure 10.

Curve 714457-A
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Calculated performance of a non-uniform device as a
function of the relative area of the defective region.

The lowest curve assumes constant shunt resistance.

The middle curve assumes an area dependent shunt resistance.
The dashed curve is a simple linear approximation assumlng :
no interreaction between the two regions. '
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The degree of decoupling will depend in an unpredictable
manner on the size and location of the defective area as a function of

its placement relative to the contact grid.

This model analysis can be used to interpret the implications
of the impurity anisotropy experiments which provide contour maps of
lifetime and shunt resistance from which the sub-areas of the model can
be defined. '

Data for lifetime anisotropy in a manganese doped wafer is
shown in Fig. 6 in section 3.4.1. These results are typical of recent
studies and show so little non-uniformity that its effect can be neglect-
ed. The model calculation for this is indistinguishable from the lin-
ear approximation. It is generally apparent that the effects of aniso-
tropy are émall except in the case where the regional differences. are

very large.

3.5 Permanence of Impurity Effects in Silicon Solar Cells

Experimental evidence shows that solér cell performance is
a function of device processing and that the deéree of degradation due
to specific impurities also varies with process history. Since the use-
ful life of solar cells in the field must be many years, it is of some
interest to determine how stable the performance of cells made on impure
silicon will be over extended periods. That is, how permanent will be
the characteristics of solar cells fabricated on solar grade silicon.
We are conducting some preliminary studies to evaluate the importance

of this question.

Two impurities which produce strong degradation in cell per-
formance, Ti and Mo, were chosen for the first experiments. Wafers
from ingots W123 Ti 008 (1x101“Ti) and WO77 Mo 001 (4.2x1012 Mo), along
with baseline ingot W097, are being processed according to the matrix
depicted in Figureb3 of the 12th Quarterly report(”). So far the solar
cells have been made on wafers from each ingot in order to characterize

the properties prior to temperature stressing. For example, data from

38



the baseline wafer are given in Table 13..: Following the thermal stress
experiments at the various times and temperatures shown in the matrix,

the new performance data will be compared with the baseline values.
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SOLAR CELL FROPERTIES OF INGOTS FOR PERMANENCE STUDIES
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4. CONCLUSIONS

The first detailed,gettering experiments we condueted on Fe,
Ti and Mo-doped ingots indicate that for Fe and Ti contaminants: ¢B)
raising the temperature during POCRj3 gettering:atﬁconstant time. dm~-
proves solar cell performance and (2) for fikeo géttering temperature,
extending the t1me also increases cell performance. The temperature
and time ranges 1nvest1gated were 950 to 1100°C and ltos hours. 1In
contrast virtually no improvement 1n solar cells made on Mo-doped waf—
ers was gained by gettering treatments. Despite the fact that: getter—
ing improves the efficiency of contaminated devices, the benefits are
small (absolute efficienoy increases up to 1.5 pefcentage points since the
devices require prolonged exposure to high temperature, at least for

the impurity concentrations studied so far.

The commercial size (3 in diameter) Czochralski ingots doped
with Mn or Ti were mapped via miniature solar cells and diodes in an
attempt to discover any non-uniformities in electrical characteristics
due to anisotropic impurity incorporetion. No significant variation in
cell performance or OCD lifetime either across a wafer or along the
ingots could be found. The magnitudes of solar cell efficiencies mea-
sured on the large ingots were quite close to that found on small (1 in)
diameter test ingots bearing similar amounts of impurity. Thus, at least
for Ti and Mn non-uniform impurity distribution does notkappear to de-
grade cell performance in larger ingots. Moreover, the small ingots pre-

dict well the impurityéoell performance behavior of the larger ingots.

The first generation W-doped ingot produced solar cells whose
performance was degraded to about 89% of the baseline values;: The re-
" duction in -cell efficiency is due primarily to a loss in bulk lifetime.
In contrast, the first Co-~doped ingot produced solar cells whose I-V e
parameters suggest that junction quality as well as bulk lifetime are

 degraded. This behavior is similar to.that displayed by Cu and Fe-doped

41



cells, as might be guessed from the relative positions of each element

in the periodic table. No conclusion can yet be drawn as to the rela-
tive effects of Co or W compared to other impurities since it has not

been possible to chemically detect these impurities in the ingot yet.
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5. PROGRAM STATUS

5.1 Present Status

~ Tﬁé brogram plan fpf Phase III of this program is depicted in
Figure 11} The program is generally on schedule. Work on the aniso-

tropy studies was initiated ahead of plan.

e During this past quarter:

e Eleven ingots were prepared for subsequent chemical, electri-

cal and cell evaluation. ‘

® Spark source mass spectroscopy, microstructural evaluationm,
resistivity probing, and carbon/oxygen analysis were per-

formed on all ingots grown.

e Gettering experiments at three temperatures (950°, 1000° and
1100°) and various times were completed on iron, titanium and
molybdenum-bearing ingots.

e Evaluation of the first genetation cobalt and tungsten-doped

ingots was completed.

e An assessment was made of the uniformity of electrical char-
acteristics and solar cell performance in commercial-size

(3 inch diameter) Ti and Mn-doped ingots.

o A model was‘developed to . predict the cell performance in

non-uniform devices.

e Studies of permanence effects in Ti and Mo-doped ingots were

initiated.

5.2 Future Activity

During the next quarter effort will be directed primarily into
four areas: . (1) thermochemical processing - continued evaluation of

phosphorus gettetiﬁg effects and HCR gettering (2);eva1uation'of second
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and third generation n-base ingots, as well as multiply-doped ingots (3)

modeling the behavior of n-base solar cells containing metal contamin-

ants (4) assessment of permanence effects (thermal stressing) in Ti

and Mo-doped solar cells.
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7. Appendices
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- Aovendix 7.1 -Segregation Coefficients

i

Flement Segrepation Coefficient
i - ’ ‘ -
AL 3% 1072 (2.8 x 107°)
B _ 0.8
c 0.05
Ca @ | ?
Cu 8.0 x 107"
cc C 1.1 x 1070 |
Fe ‘ 6.4 x 107°
Mg 3.2 x 1078
Mn | 1.3 x 107
Mo 4.5 x 1078
N 3.2 x 1077
Ph . 0.35
N
~Ta !\,1_0_7 1

Ti 2.0 x 107°
v ' v 4 x 10—6; ,
7n , 1()_5
VAY <1.6 x 10"8
o <1.1 x 107°

' 6

w o - <1.6 x 10~
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Appendix 7.2 - Impurity Concentrationg

of Phase III ingots

Tapo 'T"fﬂsl. Calculated‘ Measured
Memtifcatton 101 vatoms/ent i mromaien _soiscniration
W-129-00-000 (7.6 cm)NA NA NA
W-130-00-000 (7.6 cm)NA NA NA
W-131-Mn-008 (7.6 cm)0.6 0.55 0.55
W-132-Ta-003 0.0002 0.0009 0.5
W-133-00-000 NA NA NA
W-134-T1-009 0.05 0.03 <0.25
W-135-Fe-005 1.0 0.78 <1.5
W-136-Fe-006 0.3 0.24 <1.5
W-137-T1-010 0.2 0.2 <0.25
W-138-Mo-005 0.001 0.0008 <0.5
W-119-Ma-006 0.0042 0.0054 <0.5
W-140-T1=011 (7.6 ¢m)0. 18 0.18 <025
W-141-Mo/Cu-001 0.004/4.42 0.001/3.68 <0.5/4.00
wE142-00-000 NA NA NA
wzlé3-Ti—002 0.20 0.17 <0.25
W-144-Mo-001 0.0042 0.0044 £0.50
W-145-W-001 <0.15 <0.15 £0.15
W-146-Co-001 <1.70 <1.70 ¢1.70
W-147-N/Ni-002 640 0.33 <150
W--148--N/Mn-002 0.60 0.76 0.55
W~149~-N/Fe-003 0.60‘ 0.58 <1.50
w;ijO-N/V~OO3 0.03 0.03 <0.15
w*;lsl—oo—ooo ‘ NA NA NA
W 152-Ti~001 e Processing <0.25
W-153-N/Ti~003 0.01 Processing <0.25
W-154-N/Cr~003 0.55 Processing Processing

~ * Low Resistivity p-type Ingots

5"** Use of double asterisk indicates 30 ohm-cm p-type ingot. B _ o
A ¥ ' o ORIGINAL PAGE 18
OF POCﬁiiﬁjAlEEY

48





