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TECHNICAL CONTENT STATEMENT

This report was prepared as an account of work sponsored by

the United States Government. Neither the United States nor the United

	

r	 States Department of Energy, nor any of them- employees, nor any of their

contractors, sub-contractors, or their employees,makes any warranties,

express or implied, or assumes any legal liability or responsibility for

the accuracy, completeness or usefulness of any information, apparatus,

product or process disclosed, or represents that its use would not in-

fringe privately owned rights:

NEW TECHNOLOGY

No newtechnology is reportable for the period covered by this

report.
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i 1.	 SUMMARY

This is the 13th quarterly report of a study entitled an

Investigation of the Effects of Impurities and Processing on Silicon

Solar Cells.	 The objective of the program is to define the effects of

impurities, various thermochemical processes and any impurity-process

! interactions on the performance of terrestrial silicon solar cells.
i

L The Phase III program effort falls in five areas:	 (1) cell

processing studies (2) completion of the data base and impurity-perform-

ance modeling for _n-base-cells (3) extension of p-base studies to in-

clude contaminants likely to be introduced during silicon production,

refining or crystal growth (4) anisotropy effects and (5) a preliminary

study of the permanence of impurity effects in silicon solar cells.	 The

focus of this quarter's activity was tasks on (1), (3) and (4).

Gettering experiments with phosphorus oxychloride gas phase

` treatments at 950°C, 1000%, and 1150°C have been completed- for two Ti-

doped ingots (3x10 1 3 cm- 3 and 2.1x10 1 4 cm 3 Ti doping levels, respective-

ly), two molybdenum doped ingots (8x1011 and 4.2x1012 cm 3 MO ) and one

iron-doped ingot (3x101 4 cm
-3 Fe).	 For the Ti and Fe ingots two clear

trends were observed:	 (1) at any fixed temperature, e.g. 1100°C, as get-

- tering time was extended cell performance improved; (2) as gettering,, 	 1

temperature was increased at fixed heat treatment `time 'cell performance also

improved.	 For example, in these experiments the maximum improvement

for the 3x101 3 cm-3' Ti ,ingot occurred after 4' hours at 1100'C: the cell effi-

ciency was raised to 77% of the undoped baseline from an initial un-

treated value of 57% of baseline. 	 The iron-doped 'ingot recovered to

100% of the baseline cell value from the untreated value of 82%.	 (A small

decline in baseline efficiency at the higher temperature was noted ),

' Little or no improvement on the cell performance of the Mo-doped ingots

was obtained.

1
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First generation Co and W-c

to solar cells, Neither dopant coulc

source mass spectroscopy (SSMS) althc

occurred in each case. The detectioi

ed ingots were grown and processed

e detected in the ingots by spark

h depreciation in cell performance

imits of the SSMS place an upper

.L _..^ 1A-5 _..x 1A-6 .L_._ It .. --A

'W respectively. W reduces cell performance by degrading bulk lifetime;

Co like Fe and Cu appears also to affect junction properties.

Miniature solar cells and diodes were used to map the charac-

teristics of wafers from a 3 inch diameter ingot doped with Mn or Ti,.

Wafers were processed from the seed, center, and tang end of the ingot.

The cell performance showed no significant anisotropy or non-uniformi-

ty with position in the wafer or ingot. Cell efficiency within a given

wafer varied by no more than ± 5% of the average value. The magnitude

of the cell efficiency and OCD lifetimes for the large diameter (com

mer= '.al size) ingots agreed with the values obtained on our standard

l iiich diameter test ingot. A model has been developed to describe the

'	 behavior of solar cells bearing non-uniform distributions of impurities

F
or defects
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w	 2. INTRODUCTION

This is the 13th quarterly report describing activities con-

ducted under JPL Contract '954331. Phase III of this program is entitled

an Investigation of the Effects of Impurities and Processing on Silicon

Solar Cells.

The objective of this progra:a is to determine how various pro

f

	

	 cesses, impurities,and impurity-process interactions affect the proper-

ties of silicon and the performance of terrestrial solar cells made from

silicon. The development of this data base permits the definition of

the tolerable impurity levels in a low-cost Solar Grade Silicon. The

data further provide the silicon manufacturer with a means to select

materials of construction which minimize product contamination and per-

mit the cost-effective selection of chemical processes for silicon pur-

ification. For the silicon ingot, sheet or ribbon manufacturer the data

suggest what silicon feedstock purity must be selected to produce wafers

'

	

	 suitable for cell production and what furnace materials minimize wafer

contamination. The cell manufacturer may use the data to define an ac-

ceptable wafer purity for cell processing or to identify processes which

minimize impurity impact on efficiency. In short, the data provide a

basis for cost-benefit analysis to the producers and users of Solar Grade

E	 Silicon.

The program approach has been to evaluate the chemical, micro-

;:	 structural,-elecctrical, and solar cell characteristics of silicon wafers

infused with controlled amounts of various, metal contaminants. The

4
wafers are produced from Czochralski ingots and silicon web crystals

G	 The Phase III effort encompasses; five major topics: (1) expan-

sion of the activity directed to cell processing (2) completion of the
x.

data base and modeling of n-base'solar cells (3) extension the p-base

studies to include impurities likely to be introduced during silicon,

rp	 3
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production, refining oar crystal growth, (4) a consideration of the

potential impact of anisotropic impurity distribution in large Czochral-

ski and ribbon solar cells and (5) a preliminary investigation of ther
permanence of impurity effects in silicon solarcells. The focus of

t	 this quarter's activity was on tasks (1), (3) and (4). Highlights of

j	 this effort are described below.

i
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3. TECHNICAL RESULTS

3.1 Ingot Preparation and Evaluation

3.1.1 Ingot Preparation

During this quarter three main types of silicon ingots were

prepared: ingots for processing studies, first generation ingots repre-

senting materials of construction (cobalt and tungsten),and second and

third generation n-base ingots. Eleven ingots were grown and as before

each was prepared by the Czochralski Crystal growth method. Details of

the crystal growth equipment and 'conditions can be found in earlier

reports (1,2)	 The ingots prepared this quarter included:

1'P-type singly doped low resistivity (0.2 ohm-cm)

2 p-type singly doped (4 ohm-cm)

6 n-type singly doped (1.5 ohm-cm)

1. p-type high resistivity baseline (30 ohm-cm)
f

i	 1 p-type singly doped high resistivity (30 ohm-cm)

G	 3.1.2, Ingot Evaluation

The impurity content, electrical resistivity,and etch pit den-

sity of each ingot was evaluated as described previously (2,3). Resist
ivity and etch pit densities for ingots W-129 through W-154 are listed

in Table 1. In, general, there is no deviation from the established

norms (1) for either property.

The effective segregation coefficients used to determine the

3	 appropriate ingot melt concentrations are listed in Appendix 7.1. The

s	 upper limit values for tungsten and cobalt were recently determined on

the basis of mass spectrographic analysis of ingots W-145 and W-146 re-

spectively. The inability to detect tungsten in W-145 and cobalt in

f,
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Resistivity and Etch Pit Density

of Phase III Ingots

TCT Actual Etch
Ingot Resistivity Resistivity Pit Density
Identification (ohm-cm) (ohm-cm) ( /cm )

' W-129-00-000(7.6 cm)	 4.0	 (11) 4.7-340 IK-Gross Lineage

W-130-00-000 ( 7.6 cm)	 4.0	 (1s) 4.7 - 3.7 OK-Cross Lineage'

W-131 -Mn-008(7.6 cm)	 14:0	 (K) 6.0=3.8 OK-Gross Lineage

W-132-Ta-003 440	 (B) 3.8-3.4 1-20K

W-133-00-000 40	 (1,) 4.3-3.7 OK-Cross Lineage

W-134-T1-009 4.0	 (13) 4.9-4.4 0-10K

W-135-Fe-005 4.0 (B) 5,.3-2.1 0-Gross Lineage

W-136-Fe-006 4 . 0	 ((3) 3.3-2.7 1K-Gross Lineage

E W-137-Ti=010 4.0`(13) 4.6-4.4- 0-Gross Lineage
i

6 W-138-Mo-005 4.0	 (13) 5. 0-4.1 0-5K
i

W- 139-Mo-006 4.11	 (it) 4.0-2.3 O-Gross lineage

:. W-140-Ti-011(7.6 cm)	 4.0	 (13)	 _ 3.6-1.1 e5K-Gross Line age

t W-141-Mo /Cu-001 4.0	 (11) 4.7-3.0 2K-Gross Lineage	 `

w*142-00-000 0.2	 (i.) 0.22-0.20 _0-3K

1J-143-Ti-002 0.2(B) 0.21-0.15 0-Gross Poly

w 144 -Mo -001 0.2(13) 0.23-0.19 0-Gross Poly

b1- 145-14-001 4	 (8)'
4.5-4.0 2K-Gross _ Poly

} IJ	 0	 (.1)	 0M /i	 (14) 4.% 1K-Gr„-c::	 Ptdy
r

s W-I-47-n /Ni-002- I.5(I') 1.9-t.4 2-15K

W- L48-N/Mn-002 1.5 Q) 21.5-2.1 1K-Gross Poly

y W-149-N/Fe-003 1.5(P) 2.0-1.6 3K-Gross Poly

W-150-N/V-003 1.5(P) 2.0-1.5 1-5K

Wj -151-00-000 30(B) 35 .6-18.1 0-5K

14 -152-Ti-001 30(B) 31.,9-25 O-Gross Poly

[J-153-N/Ti-003 1.5(P) 2.i-1.1 0-10K

14-154-N/Cr-003 1.5(P) 2.1-1.4 3K-10K

Use of asterisk indicates low resistivity p-type ingot.

** Use of double asterisk indicates 30 ohm-cm p-type ingot.

+	 The first figure is etch pit density of the seed; second figure etch
' pit density of extreme tang, end of ingot. The first value shown is

indicative of dislocation density in slices used for _cell fabrication
Structural degradation commonly occurs at the tang end of the most
heavily-doped ingots dice to constitutional supezcooling.(1)`
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W-146 by mass spectrographic analysis placed upper limits on the intended

dopant concentrations. Target concentrations, calculated concentrations
i

based on melt analysis, measured impurity concentrations based on spark

source mass spectrographic analysis for all ingots are summarized in
E

Appendix 7.2. Mass spectrographic analysis and atomic absorption data

comparisons, when applicable, continue to agree within the expected lim-

its of error. A best estimate of the impurity concentration for each
Phase III ingot is compiled in Table 2.

x
{

	

	 The detectability of cobalt in a silicon spectrum by mass spec-

troscopy is hindered by the intense silicon background produced by the

lines of Si+ at m/e = 28 and 29. The most intense cobalt line at m/e
= 39 cr- ` 'nonds to a line of Si+2. The next most intense line of co-

balt	 29 1/2 is masked by intense lines of Si+ at m/e = 28 and
29, ag the limit of detectability at 0.033 ppma cobalt (1.7 x 1015
atoms[ cm3). The least intense line of cobalt at m/e = 19 2/3 is masked
by the lines of Sit+ at m/e 14, 14 1/2 and 15. The cobalt line at m/e
19 2/3 is also 3 times less intense than the line of cobalt at m/e

29 1/2. Since we -could not detect cobalt at a concentration less than
1,7 x 10 15 atoms/cm3 when the melt concentration was 1.5 x 10 20 atoms/

cm3 this placed an upper limit for the cobalt effective segregation co

u	 efficient of 1.1 x,10 5.

Tungsten in W-145 was not detectable at a concentration of 0.003

ppma (1.5 x 10 14 atoms/cm 3 ) using the longest mass spectrographic expo-

sure of 1000 coulombs. This concentration limit for the ingot taken with

ingot melt concentration of 9.7 x 10 19 atoms/cm3 yields an upper limit

for the tungsten effective segregation coefficient of 1.6 x 10-6

Carbon and oxygen concentrations of each ingot were measured

by infrared absorption. The amplitude of the absorption peak for 'carbon

at 606 cm 1 and oxygen at 1107 cm 1 wave numbers are proportional to the

carbon and oxygen concentrations, respectively. The constants of pro-

portionality used in this work were 2.2 for carbon and9.6 for oxygen.(2)

Normal carbon and oxygen concentrations found inCzochralski grown mater-3

ial are in the range of 2.5 x 10 16 atoms/cm3 to 5 x 101 7 atoms/cm' for

carbon and 50'`x 1016 atoms /cm3 to 150 x 10 16 atoms /cm3 'for oxygen. No

7	 I



Table 2,	 Best Estimate of Impurity Concentrations

,u

of Phase III Ingots

Best Estimate of
Ingot

Impurity Conc.
7dentif i.cation

( 1G1'''stoms/ cra`^)

W-129-00-000 (7.6 cm) NA

W-130-00-000 (7.6 cm) NA

W-131-M-008 (7.6 cm) 0.55

W- 1 '12 -T.-I-001 0.0002

c W-- 133- 00-000 Nn

W-13'4-T i -004 0.05

W-1 '15-1` 4 --00'1 l . 0

W-136-Fe-006
I0.3

I
14-137-Ti-010 0.21

W-138-Mo-005_ 0.001

W-139-Mo-006 0.0042

W-140-Ti-011 (7.6 cm) 0.18

14-141-Mo/Cu-001 0.004/4.00

W-142-00-000 NA

R
W- 143 -•Ti-002 0.20

W -144 -1•to -001 0.004

14-145-W-001 <0.15

_W-146-Co-001 <1-.7

W-147-N/Ni-002 0.40

W-148-N/Mn-002 0.60

W-149-N/Fe-003 0.60

W-150-N/V-003 0:03

W -'1.51-00-000 NA

Wes -152-Ti-001 Processing

W-153-N/Ti_-003 Processing

0

W-154-N/Cr-003 Processing

Low resistivity p-type ingot identification r::

30 ohm-cm p-type ingot identification

z
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Table 3.	 Carbon and Oxygen Concentrations-

' i of Phase III Ingots

Carbon Concentration	 Oxygen Concentration
Ingot Number	 x 10^ 6 atoms/cm3 	 x 10 16 atoms/cm3

-; W-129-00-000	 11.3 202

W-131-Mn-008	 5.3 164

W-133-00-000	 10.4 117

W-135-Fe-005	 9.4 118

W-137-Ti-010	 5.3 134

W-139-Mo-006	 6.5 149

W-141-Mo/Cu-001	 8.3 156

W*143-Ti-002	 ++ +-F

W-145-W-001	 5.8 149	 {

W-147-N/Ni-002	 14.0 157

`	 i W-149-N/Fe-003	 6.6 151

W*' 151-00-000 (300-cm)	 7.0 154

i

W-153-N/Ti-001	 7.5 160

s *	 low resistivity ingot

** high resistivity ingot

++ Due to free carrier absorption infrared methods cannot be used for
t

carbon and oxygen determination ire these samples,
r.

r: 9

z
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significant variations from these values were observed in the ingots

produced this quarter as indicated by the data for the odd numbered

ingots listed in Tabie 3.

3.2 Processing Studies

A sizeable portion of this impurity-interaction study is di-

rected toward investigating the effect of several thermochemical pro-

cesses on the cell performance of impurity- doped-silicon. These thermo

chemical processes are those which can be performed on the doped ingot

to reduce the harmful effects of metal contamination.

The program plan called for studying three impurities at two

different impurity levels ( ' ) ingots. One iron ingot produced was not

suitable for processing due to cellular breakdown during growth so a

total of 5 ingots have been studied so far.

The thermochem cal processes under study are: (1) POCZ 3 get

tering, (2) HU gettering and (3) damage gettering. These processes

are thermally activated. Thus, it should be possible to characterize

each by time, temperature and activation energy so that the results may

be extrapolated as to impurity level and gettering cycles.

The processing chart and the experimental plan were presented

in Figures 1 and 2 of one Twelfth Quarterly Report (4) Thus far, we have

completed all of the POU3 gettering experiments on the five ingots as

indicated below.

The POCQ3 gettering steps were

1 hr. - 950°C

Isochronal	 _1 hr. - 1000°G

1 hr. - 1100°C
Isothermal	 2 hrs.	 1100°C

3 hrs.	 1100°C

5 lirs . - 1100'C

The ingots studied were	 136 Fe 006 (3 h 10 1 " Pe)
r_

s
134 Ti 009 (5 x 10 13 Ti)
137 Ti 010 (2.1 x 10 14 Ti)

5
10
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138Mo005 (1 x 1012Mo)

139 Mo006 (4.2 x 1012 MO)

The data for these five ingots is compiled in Tables 4 through

8-and presented in graphical form in Figures 1 and 2.	 Figure 1 illus-

trates the results ofthe isochronal treatments with the log n-	 na-- -t

plotted vs time at 1100%.

Several comments are appropriate with respect to the data.	 In

Tables 4, S, and 6, the baseline cell efficiency (and other baseline

parameters) show a gentle decrease with increased treatment temperature.
This is in general agreement with previous results (1). 	 These results
reveal that the recombination lifetime of the baseline samples reached

a weak maximum after 1 gettering cycle (1 hr. at 1000% in POCk 3 ) and

further getter cycles caused a slight decline in lifetime.	 (A similar

degrading effect was noted in doped ingot at that time.	 We did not ob-

serve this in the present work and the reasons for such partial dispar-

ity in results are now being explored ). It may be that two competing

mechanisms are operative during gettering of the doped ingots. 	 The

first may be a simple diffusion of contaminants to the surface where they

' are removed, and a-second, yet to be understood phenomena may be one by

which increased gettering degrades the cell parameters. 	 In any case,

` the final value of the baseline parameters would set an effective limit

on the maximum improvement that may be expected when gettering a-doped

ingot.

The iron ingot (W136) exhibited a complete recovery to base-

line properties, i.e., n l /-n B ti 1.0, after gettering. 	 The result is

somewhat misleading.	 Although the cell efficiency of the iron ingot im-

proved from about 8.2% to ti_9%, the baseline decreased from 10% to below

9%,.	 Thus, in absolute terms, the iron ingot only recovered about 40% of

that required to match the original baseline properties.

For the two Mo ingots (138 and 139) gettering produced only

slight improvements (and then only at 1100°C) in cell efficiency compared 	 Y;.
H

to the untreated material.	 It must tentatively be concluded that POCk3

t 11	 _
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TABLE 4

I

1

POU- GETTERING EXPERIMENT BASELINE - W11700-000

^

INGOT - IV136FE006
k

(3x1014 Fe)

TREATMENT I SC (^) vOC (V) _ FF EFF (p)

None B 22.6 .559 .749 10.00
1 1 20.0 .536 .125 8.23

VB .887 _ .959 .968 .824

1HR-950°C B 21.8 .551 .739 9.36
2 1 21.5 .552 .717 9.03

I/B .986` 1.00 .970 .`965
f	

IHR-10000C B 21.4 .549 .726 8.99

4 3 1 21.7 .549 .720 9.13

I/B 1.01 1.00 _ .992 1.01

1HR-1100°C B 21.2 .541 -	 .693' 8.41

4 1 21.3 .546 .684_ 8.40
/B 1.00 1.01 .987 1.00

2HR-1100 0 C B 21.1 -.546 .690 8.38
'	 5 1 21.4 .555, .737 9.24
:. T/B 1.04 1.02 1.07 1.10

3HR-1100°C B- 21.3 .544 .715 8.77

'	 6 1 21.6- .5S3 .735'' 9.34
VB ,	 1.01 1.02 1.03 1.06

SHR-1100°C B 21.3-; S46 .702 8.63

7- 1 21.4 555 .719 8.,98
T` 8 1.01 1.02 1.02 1.04

.;,
12
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TABLE 5

POCZ	 GETTERING EXPERIMENT BASELINE - W11700-000

(AVERAGE VALUES) INGOT - W134Ti009
(5 xi 013Ti)

TREATMENT TSC (mA) V0C (V) FF EFF (o)

None B 22.40 .556 .729 9.60
1 I	 * 15.42 .491 .694 5.56

1/B .689 .882 -	 .953 S79

1HR-9S0°C B 21.30 .549 .729 8.98
2 I 15.36 .484 .699 5.30

I/B 7.21 ,882 .937 .590

1HR-1000 0 C B 21.34 .550, .746 9.25
3' I 15.68 .,492 .699 5.69

I/B .735 .895 .937 .615

'	 f	 - 1HR- 1100 0 C B 21.20 .545 .715 8.74
4 1 16.20` .500 .700 5.99

I/B .764 .917 .979 .685

1HR-1100°C B 21.65 .549 .741 9.32
S I 16.98 .505 .706 6.41

I/B .784 .920 .953 .688

3HR-1100°C B 21.67 .546 .720 9.01
6 I 17.06 .505 .697 6.35

I/B .787 .925 .968 .705

SHR-1100°C B 21.50 .543 .706 8.73
7 I 17.58 .513 .702 6.71

I/B 8.18 .945 .994 .769

It

I/B = value of the property divided by that for
the baseline. ingot .

i
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TABLE 6

POCQ- GETTERING EXPERIMENT BASELINE - ti11700-000

(AVERAGE VALUES) INGOT - 14137Ti-010
(2.lxl01=1Ti)

a

TREATMENT ISC(mA) VOC(V) FF F.FF(o)

None B- 22.35 557 753 9.91
1 1 12.63 .463 .686 4:24

I/B .S65 .831 .911 .428

1HR-950°C B 21.6 .550 .720 9.05
2 1 12.7 .467 .674 4.23

I/B .588 __ .849 .936 .467

1HR-1000°C B 21.3 .553 .718 8.93
3 I 13.6 .475 .669 4.55

I/B .638 .859 .932 .510

1HR-1100°C B 21.6 -.552 .728 9.20
4 1 14.1 .483 .675 4.57

I/B .653 .859 .932 529

2HR-1100 0 C B 21.5 .550 .722 9.03
5 I 14.5 .484- .671 S.00

I/B .674 .880 .929 .554

3HR-1100°C B 21.4 .547 .708 8.78
6 1 14.8' _.488 .681 5.19

I/B .692 .892` .962 .591

5HR-1100 0 C B 21.6 .544 .668' 8.29
7 1 15.4 .494 .685; 5.49

I/B .713 "908 1.03 .662

14
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TABLE	 7

POU3 GETTERING EXPERIMENT BASELINE - W117-000

INGOT - W138M0005i	 r
(lx1012Mo)

TREATMENT
ISC(mA) VOC(V) FF EFF

i None B 22.47 .559 .749 9.95
I 20.83 .529 .698 8.14
I/B .927 .946 .933 .818

I
1HR/950°C B 21.57 .546 .699 8.71

I
19.85 .519 .680 7.40

I
I/B .920 .951 .973 .850	 x

= 1HR/1000°C B 21.70 .551 .723 8.67
E

I 20.10 .522 .684 7.61
I/B .926 .947 :986 .878

1HR/1100 °C B 21.70 .546 .693 8.67
I 20.23 .520 .683 7.61

k I/B .932 .957 .986 .878

2HR/1100 0 C'B 21.40 .549 .702 8.73
I 20.07 .521 .671 7.62
I/B .938 .949 .956 .873

r 3HR/1100°C B- 21.50 .549 .723 9:02
1 20.12 .523 .687 7.64

I;
I/B .936 .953 .950 .847

5HR /1100°C B 21.37 .542 .719 8.85
1 20.17 .523 ,756 8.45
I/B .944 .965 1.05 .955

i

i 
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TABLE

POCR3 GETTERING EXPERIMENT BASELINE - W117-000

INGOT - W139M0006
(4.2x1012Mo)

~	 TREATMENT ISc'(mA) VOC(V) FF EFF (%)

None B 22.03 .550 .736
i

9.43
I 18.43 .507 .688 6.82
I/B .837 .922 .935 .723

1HR/950°C B 21.80 ,550 .709 9.00,
I 18.37 .503 .700 6.88
I/B .843 .915 .987 .764

1HR/1000°C B 21.80 .553 ,734 9.47
I 18.43 .505 .695 6.84
I/B .843 .915 .947 .722

IHR/1100°C B 21.80 .545 .700 8.79
1 18.70 .505 .665 - 6.65
I/B .858 .927 .950 .757'

3	

2HR/1100-C B 22.10 .555 .749 9.71
I 17.70 .503 .688 6.48
I/B .801 .906 .919 .667

3HR/1100°C B 21.65 .553 .732 9.26
I 18.98 .509 .701 7.1,7
I/B .877 .920 .958 .774

5HR/1100°C 'B 21.80 .551 .747 9.49
I 18.84, .512 .701 .7.15

's

I/B .864 .929 .938 .753

y
16
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gettering has very little effect on Mo contaminated wafers (at least in

impurity range studied so far).

The cell performance of the two Ti ingots show a gradual in-

crease during the gettering cycle, with the normalized efficiency_in-

creasing by 0.10 to 0.15. It would appear, however, that abnormally long

gettering cycles would be required to achieve anywhere near complete re-

covery.

i

	

	 From these first POCZ 3 gettering cycles, we can draw the fol-

lowing tentative conclusions:

1. Mo doped ingots are relatively unaffected by POCZ 3- getter-

ing.

2. The cell efficiencies of Ti-doped ingots improve with POCZ3

gettering but complete recovery to baseline values would

appear to require excessive times/temperatures.

3. The ingot with 3 x 10 14 Fe doping improves significantly,

reaching a maximum of 9.34% efficiency, (after 3 hrs. at

1100%). This is an improvement of one percentage point in
`	

absolute efficiency.

4. The baseline wafers degrade slightly with increasing getter-
k

ing cycles. This effect may effectively limit any recovery

in the ingot.

The results discussed here apply only to POCZ 3 gettering. Dur-

ing the next quarter, data on HCQ and back surface damage gettering may

shed more light on the magnitude of the ultimate recovery in cell prop-

erties that can be expected from gettering'.

3.3 Effect of Impurities on p-base Silicon Solar Cells

Our studies of impurity "effects in p-base solar cells are

fairly detailed and complete. The mechanism of cell performance reduc-

tion is understood to be primarily lifetime degradation via the intro

E

	

	 duction of contaminants` which form recombination centers in silicon.

Device performance canbe modeled very accurately on the basis of this

19
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i
E assumption.	 As a result, cell efficiency as a function of impuritya

content for p-base devices can now be projected with some confidence.(

Thus, Phase III activity has been shifted to focus on elements

likely to be introduced during silicon production, refining, or crystal

growth.	 As noted in secion 3.1, the first two elements to be investi-

gated are tungsten and cobalt, common components of the refractory hard-

r
ware used in process equipment and furnaces.

First generation ingots were grown from melts containing the

maximum concentration of tungsten or cobalt which could be tolerated

without crystal breakdown due to constitutional suPercooling.	 Spark

source mass spectroscopy failed to detect either element in the ingot

(Secion 3.15 placing upper limits on the tungsten in ingot W145 at

1.7x1015 dm- 3 and the cobalt in ingot W146 at 1.5 x 10 14 cm-3 .	 The es-

timated upper limits on the segregation coefficients, 10-6 to 10- 5 , are

in the range expected from past experience with other transition metals.012)

Wafers from each ingot were processed into solar cells by the

same standard sequence ( 1 ,2) involving POU 3 diffusion at 825°C that has

`
i been employed for all other ingots studied in this program.

The data for tungsten.-doped ingot W145, Table 9, shows an`aver-

age uncoated solar cell efficiency of 8.6% or about 89% of the uncontam-

inated baseline wafers. 	 We would expect, from the position of tungsten

in the periodic table, to observe-behavior somewhat similar to that of

molybdenum, a strong, lifetime killer.	 The data in Table 9, in fact, show

that the efficiencies_ of the tungsten-doped solar cells are depressed

primarily by a reduction in bulk lifetime.	 Since the ingot impurity con-

j centration remains to be determined, we cannot yet put the effects of

tungsten in context relative to the severity of the effects compared to

r
other impurities.

The situation for the cobalt-doped solar cells appears quite

different from that of tungsten. 	 Here the uncoated cell efficiencies

s vary from wafer to wafer over a range from about5.8 to 8.6% with an 	 ^_

i
average around 8% (85% of baseline), Table 10.	 There is considerable

20
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TABLE 9

j

81201 W145W001 MAX CONCFNTRATION W097 00 000
_OLII 12/18/78 Ayl:	 PO=91.00MW/CM t 2 NO AR COATING

I P I SC VOC I'P L06(10) N F FF FFF OrP POP6 2rnp

?)=* 21.90 •559 19.83 -6.532 1.92 -.89 -744 9. A.3 .n  *00 .!)n
IF 22.1 0 -553 _20.51 -8* 505 1-35 . 17 9767 9.9P 5.2..0 on . on
2P 22.10 -558.19.91 -6.275 `2.02 -1.02 .733 9.6? 4-_l -00 •^'^'
3H

_	 ..
22.10 -557 19-91 -6-267 2.02 - 1 - 02 .739 9. 0;0, 5• P r' e 0n • on

' 4P 22.-10> -558 19.89 -69217 ?-04 -1.00 -7:35 9.58 4 91 no .nn
5? 22'-00 -558 19.92 -6.297 2.01- -.9R -737 9.57 Za9  lenn •nf'
1C 21.10 -536 19.03 -6.460 1.87 - * 64 - 732 8.76 1 •n0
2C 21-00 -537 18.01 -5•SP I P-16 2. u3 o612 7. 30 1.56 ' • or) - ro
Ic 21.40 •531 18.55 -S•OP6 2.64 -1.47 .685 8.23 1•r1 b -00 on

4C 21.10 .539 19.23 -7.056 1 -67 --:1 3 .744 S.9u 10 g P no 000
SC 21,•20 -539 19.34 -7.315 1.60 -14 .737 R- 9 0 2.21 900 -r
r, C 2 	 -00 • 534 18.73 -5-910 2.11 - 1.04 -721 R - 55 1. r-Q . 00 . nr,
7C, 21.40 .535 18.63 - 5.066 2-6-3 -1.73 -695 9-a2 I.43 .nn .no
BC 21.10 -530 18.22 -4.885 2.76 -1.84 -6A6 B•11 I.01J *00 -0n
9C 21•,10 .541 19.28 -7.262 1.62 -•21 .747 9.01 P-34 no .n
10C 21•10 -541 19.16 -6-991 - 1.70 -•03 -732 R-84 ?.21 •0n 000
15;* 17.20 9540 10.86 -11.275 •95 21.77 .326 3.20 1:95 .00 n0
25 2.1.20 •538 1.8.94 -6.002 2.08 --95 -7P3 8-7? 1.95 .n0 . n n
35 21 .3 -0 • 539 19.23 -6.670 1 .80 --15 • 72-5 9o90 2- ?/ 0017 .00
LLC 21.30 .539 19.28 -6•(--37 1.81 -.59 .738 9.96 2.I^ .nn .nn
5_ 21.30 o539 19.07 -6o064 2.04 -.90 -725 8. 79 2.21 o nn . rr
FE. 21 - 10 -536 1805' - 5`• 772. 2-19 -1-14 -717 X -:58' 1 . R2 0.00 o nn
1i' 21 *00 .538 18.55 -5.930 2.11 -09 -687 -8.21 1. g ? 000 .nn
27 21.00 -_537 18.96 -6.577 1.83 -.45 -730 1-,71 2.21: .nn .00
3T 21. 10 .537 18.96 -6 316 1.93 --62 .726 R - 70 P- 3L .n0 on

w
14T 21-00 • 536 18.89 -6.338 1-92 --70 -729 9. 68 2.34 _ . 00, son
57 21.10 ,. 536 19 - 10 -6-749 1.76 --28- 732 8	 75 .	 1 •'? 5 -on . nn 

21-40 -538 19-38 -6•SO5 1.75 -: I5 .730 R. R9 2. zzi on . nn

AVERAGES:	 8,1201	 BAS'ELI NF W097 00 0`00
22.08 -557 20.01 -6. 710 1-89 -.77 -7/J 3 9.66 4-65 . nn . nn

S T. n ' .04 .002 -26 0898 .27 .47 .012 .13 . 5U ^•
iI1201	 `s'1^S1^001 MAX CONCENTRATION

21•.16 -537 18.92 -6.270 2-00 -.50 .717 g o 61, 1.9 L .nr .nn
STD .:14 -003 -36 -636 -33 .RF -OP9 ons 040 * ^

I D F- F..CFNT OF PA.SFLIRF
95.9 96-L 94 .6 106.6 106	 134-7 96.5 89.2 u1. 0^'

` 5T1)7. ..ti .f3 3.0 24.1 35	 219•'? So 6- 5-? 14.5 kkt** *	 k.

rr

L

r

F Table 9.	 Solar Cell I-V Data for a 4S2cm p-type ingot idoped wth

-
tungsten.
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TABLE 10

5 1204 W146CO001	 M 61^ CONCENT F ATI ON ^,,'l	 17 0 r.	 0 C., r,
SOL I 1 1 2/ P 6/ 78	 AM I :	 P 0 = 9 1 - 6 0 IN	 C M t 2	 NO A re rOATING

ID I Sc VOC I P LOCK 101) N F FF FFF OCD Prnn prpp

PR* 21-90 -556 19-64 - f,­ 031 P - I P I - P 5 -734 9-45 . no eon -OP
H? 22-00 -552 'PO - 2.1 - 7' - 563 1-56 --17 .755 9.69 5, . p n *no *on
2P P 1 - 9 0 -5/19 19-94 -6o978 1 * 72 - * ,;9 - 74/4 9- 46 11- 55 * no no

e 10 e SZ19 19 e 7^9 -5-97() P. 12, -- 9 9 . 7P4 9. P9 /J. 16 on -00

4P 22-30 551 20-2 16 -6 * 874 1 * 76 - e 4 /j a 7:^9 9.6.	 1 /j 6 P 4 on enn
5F 22-60 -550 Pn- 6^, -7-P5LI 1 - 64 ­ 23 -748 9 - 8,1 5-20 on n r
Ic 20-60 -530 17-83 -^ * 052 P- 63 1 - 30 -679 7-95 1 - ^'^O *00 *no
2C 20-50 - 5'28 18 - 3 :4 6, - P 5 3 1-93 --3P -713 Re 1 0; 1 * r10 on .00
sc 20-90 o- 5('^7 17-PI -4o668 2-95 -1 * 72 @ C-65 7e 74 1- 17 .00 6 on
4C6* P2-00 - 540 17-71 -3-550 4e75 /j * 8 7 - 6 .1 S 7-95 P e ^'; IJ eon . r r
5C 21-00 -531 19-25 -5-227 P. 5() -.6R .679 Penl 1-69 a 0 P on
6C Pl -90 - 9 LJ 1 19-33 -4-178 3-59 -P-90 .659 9 & P/j P. 6n . rr, on
7C 21*40 * 51JO 19-19 -6-P7? 1-96 --48 .720 Re g o Pe6r rn .00
sce* 21-90 -536 16-08 -2-769 7- F3 4 - 9 * 2,2 * 967 7. r, Zj 1 * 56 .0p no
9c 20-80 -531 17-4 13 -4-261 3 - 4 4 -P-96 - (-A3 7- 7b I - 4:^ r) on
loc.* 18.40 * 501 14 * 34 -3.183 5.05 - 5. 5Q .596 5.Ql - 111^ *no 600
I I C,-* PI-50 -53R 17-85 - 3 - 9 22 3 - Q 9 -4-29 -665 F-1^ P - S IJ *00 -00

21-60 - 5SR 17-70 -3 * 785 4-23 -IJ- PP - 6/J6 7-9h P. n $^ " n(I eon
2S-* 21-90 - 54^^ IF3 - 00 -,1 * 855 4-1,1 -3-82 -646 P * 1P P * 6(^ o rr) *no
3s.* PI-90 - 543 17- 7ZI -3-55,9 4-76 -5-39 .6,46 6-IP 2.00 . On On
4S6* PP-PO -541 17-63 - S - 3 0 6 5- 44' - 6- /j/j -633 Re 01i P. 311 * 00 600
5S 21-330 -535 18-73 -4-730 2.93 -2-0/5 -^6 q P. 9.46 P-60 enr eon
IT-* 19-40 514 15 * 16 - 3, 3 5R 5e19 -5-69 .601 6-34 .5p no *00
2T.* 19-50 * 506 l4oPR -3-095 6- 0 5 -4-53 -527 5-5P -Pr- son no
3T 21-20 -536 18-76 -5-756 2-19 - * 66 -702, 8-4,1 P- 117 -no nr

IT4 21-60 -533 16-60 -3-126 6-04 -6 * 57 * 595 7- 2Z, 1- 1 0 Pn nr)
5T 21-50 -537 19-13 -5 * 984 2-08 -e5n -706 8-65 2- 6o- onn @or;
6T PI-00 -531 16-06 -4-964 2-7Fi -1-55 -675 7-96 1-69 on eon

AVERAGES:	 81204,	 PASELINE 1-1117	 00 000
22-20 -551 20-P7 -7-167 l-,67 --P9 - 747 9 - 65 4.97 -00 9 00

_r-TD -P7 -001 -P6 -267 -03 eog oon6 *14 *P7
81204 W146CO001 MAX CONCENTRATI ON

21 - 15 - 534 18 - 36 -5-20Z^ 2-63 -1-29 - 6F 6 9-19 1 - 9,q nn .00
STD *44 -005 -53 -723 -5A -90 -021 -35 -56

PERCENT OF PASELINE
95-2	 -96.9 90.6 127-4 159 91-9 94-9 '39.8

STDTt 3-2 1-0 3.8 13-2 4 1 575.6 1.5 4.8 14-1

Table 10. Solar Cell I-V Data for a 40cm p-type silicon ingot
doped with cobalt.
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evidence of junction degradation in the cobalt-bearing wafers; the base-

line wafers appear free of this effect. Again, without concentration

data it is difficult to put the magnitude of the cell degradation in

perspective relative to the other impurities. However, the indication

of junction degradation and possibly lifetime reduction in the cobalt

doped cells is somewhat reminiscent of the behavior observed when iron'

and nickel (neighbors to cobalt in the periodic table) were introduced

into silicon solar cells(',,

I

i
We expect to analyze the behavior of cobalt and tungsten in(igreater detail as more ingots and better concentration data become

available.

^.	 3.4 Investigation of Anisotropy Effects in p-base Silicon Solar Cells

Once manufactured, a solar grade silicon feedstock will be pro-

cessed via some crystal growth technique to wafers or sheet. We do not	 -«

know whether radial or axialanisotropic impurity distributions intro-

duced during the growth of the crystals will produce cell performance

reductions over those which might be expected for uniformly doped wafers

Thus, a small portion of this program is directed at the evaluation of

commercial size Czochralski-ingots and wide silicon webs grown from melts

containing_ controlled amounts of contaminants. The first results from

3-inch diameter Czochralski ingots are reported below. In a parallel

study we have also developed a first order model for the performance of

solar cells which contain non-uniformities due to the variation in im-

purities, defects, etc.. across the device.

j	 3.4.1 Evaluation of 3-inch diameter Ti and Mn-doped 'Ingots

Two three-inch diameter ingots, W131, Mn 008 (5.5x10 14 cm 3 Mn)

j	 and W140 Ti011 (1.8x10 14cm-3 Ti)' were evaluated. Each process run con-

sisted of 7°large; wafers taken from seed, center and tang eng of the

ingot. 1 cm x 1 cm miniature solar cells were fabricated on 5 large

wafers by the standard process (1) Thirty mid, diameter mesa diodes wire
made on the remaining two wafers. Cell efficiency and OCD-lifetime

were measured on each miniature cell to map any anisotropy in ingot

characteristics. The results of these experiments are summarized in.

23
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Tables 11 and 12. The first digit in the ID column of the tables repre-

sents the wafer number and the following digits desgnate the miniature

cell number. Thus, an 1D number of 112 implies the data are from the

twelfth miniature cell of the first large wafer. The location of each

miniature cell (1 to 12) is shown in Fig. 3. Figures 4 and 5 show the

variation in the cell performance and the carrier lifetime of the mini-

ature cells fabricated on a few of the large Mn and Ti doped wafers.

i Figure 6 shows the OCD lifetime map on a large Mn-,doped crystal obtained

(	 by means of the 30 mil diameter mesa diodes. Work is in progress to
E

obtain a similar lifetime map for Ti doped crystal. Apart from esti-

mating the anisotropy due to the sedondary metal impurity', an attempt

also was made to see the variation in the electrically active, primary
dopant, boron. Resistivity was measured at various locations on the

large wafer by the tour point probe method and the results are shown in

Fig. 7.

The data in Tabla 11 indicate that Mn incorporation in 3"

diameter Czochralski crystals does not result in any striking anisotropy

of the electrical characteristics. The average cell efficiency due to
r

5.5x1014cm 3 Mn in the large crystal was approximately 83% of the value

for the uncontaminated baseline material The maximum variation in the

miniature cell performance across a wafer was 5%, and the variation

over the entire ingot, irrespective of seed, center on the tang end,

was within + 10%. As expected from the cell performance, the OCD

lifetime variation was also within the accuracy of the measurement

technique (about a factor of 2)-. The average miniature cell efficiency

was in very good agreement with the average cell performance on 1" dia-

meter ingot-093 (about 86% of the baseline) containing comparable a-

mount of Mn. Thus, the growth of large ingot has no appreciable in-

fluence on the incorporation of and the detrimental affect of the,impur-

ity. Our previous work established that Mn degrades the cell performance

primarily by lowering the bulk lifetime; therefore, it is reasonable to

r

	

	 say that impurity distribution is fairly uniform on 3" diameter Mn

doped crystal.

r
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!. TABLE 11

ORIGI,tNAL PAGE IS
c -P. 1026 W131MN008 ( 5.5£14) THREE INCH MATEFI AL 1111 7 00 000 ^^i^ e;?t t T zx t â j>

SOL10 12/8 /78	 AM1( PO-91.60Mk/CMi2	 NO PA COATING

1L 15C VOC 1P LOG(IO) N F FF EFF OCO PCDA PCDB
1
F 2k+ 21.90 .560 19.74 -6.290 2.0E -1.OP. •739 9.57 .00 •00 .00
t 11B 21.90 .555 20.12 -7.704 1.53 . 13 .749 9.63 4.29 .00 no
{ IRB 22.20 .555 20.53 -8.169 1.4P -	 .1P .761 9'.9P 3.90 .00 •00
i 1311. ► 22. P.0 • 552 19:82 = 5.940 P.15 -.96 .722 9.35 3.64 .00 .00 ''	 -
t 14B 2P,-30 .556 20.70 -8.521 1.35 ._2.1. .766 10.05 4.55 _.00 -00 1

21P 22.30 .556 20.74 -8.664 1.32 .19 .770 10.10 4.03 .00 .00
222 22.30 .556 20.74 -8.664 1.32 .19 •770 10.10 4.55 .00 .00
23P. 22.30 •556 20.61 -8.084 1.'.-44 •04 .762 9.99 4.94 -00 ` .00
24B 22.30 .556 20.65 -8.209 1.42 •02 .766 10.04 5.20 .00 .00

_ 318.+ 22.10 .560 20.05 -6.313 2.01 -1.84 .766 10.03 3.00 .00 ._00
•; 322 22.30 .560 20.39 -7.334 1.65 -.06 .745 9.93 4.94 .00 .00

3311 22.30 .560 20.61 -8.049 1.46 --07 .765 10.10 5.20 .00 no
84E 22.30 -558 20.18 -6.670 1 . 86 -.38 .733 9.65 4.69 .00 •00'
41B 22.30 .558 20.65 -8.233 1.42 .02 .766 10.08 4.68 .00 .00
42B 22.60 . 555 20.76 -7.673 1.54 -.07 .755 1O.OP. 4.29 .00 •00

6 11 20.60 .527 17.65 -4.800 . 2.63 -1.57 •670 7.69 1.56 .00 .00
12 20.70 :534 18.45 - 5.910 2.11 - 1.01 .719 8.41 1.56 .00 .00

F

_ 13 20.40 •536 18.32 -6.331 1.93 -.55 •723 8.36 .78 .00 .00
1 114 20.40 •525 17.30 -4.551 3.06 -2.03 •662 7.50 .46 -00 - .00
f 15 20.30 .539 18.53 -7.122 1.66 -•50 .750 8.69 1.30 .00 .00

16_ 20.30 .534 17.84 -5.512 2.34 --99 .697 7.99 .78 .no .00
17 20.40 .537 18.28 -6.099 P.03 -1.04 .728 8.43 .91 .Op .00
18 20.30 -539 18.48 - 6.920 1. 72 -.64 .749 6.65 1.30 .00 no
19 20.30 .538 18.40 -6.704 1.79 -.64 .740 8.55 1.30 .00 - 00
110 19.80 .536 17.77 -6.146 2.02 -1.16 •732 8.22 1.04 .00 .00
Ill-* 19.40 .536 16.10 -3.767 405 -6.73 •688 7.56 '1.-30 •00 -00
P. 20.60 .535 16.13 -5.433 2.38 -1.39 -705 8.2P 'f.OA .00 .00--
22 20.60 .531 17.93 -5.271 2.47 -+91 .682 7.69 -	 .91 .00 no

- - i 23 P1.10 .532 18.34 -5.078 2.61 -1.56 .690 'S.P.O .91 .00 .06
24 20.80 •536 18.44 -5.741 2.21,- -1.02 .711 8.39 1.04 .00 •00
25 20.50 .533 17.81 -5.148 2.57 -1.31 .685 7.92 .91 .00 .00
26 20.50 .538 18.40 -6.273 106 -.70 .725 8.46 1.56 -.00 .60
27 20.50 •537 18.31 -6.002 2409 -1.02 .723 8.42 1.30 .00 .00 i
28 20.50 .539 18.55 -6.619 143 -.64 .737 8.6P 1.56 .00 -00
29 20.50--536 18.12 -5.585 P.30 -103 .711 8.27 1.30 .00 .00
210 20.40 .537 18.25 -6.056 2.05 -1.01 .725 8.40 1.30 .00 .00
211 19.90 .536 17.79 -6.038 2.06 -1.01 .723 8.16 1.17 .00 .00	 i
212 19.80 .535 17.63 -5.830 2.17 -1.35 .72318.10 1.56 .00 .00
31 20.50 .534 17.82 -5.155 2.57 -1.31 .696 ` 7.94 .65 .00, .00
32 20.30 •537 18.09 -5.935 P.11 -.95 .717 ,9.27 .7.9 .00 ff 400

' -	 33 20.70 .531 17.63 -4.701 2.94 -1.53 .661 7.69 .65 .00 no
34 20.60 .535 18.18 -5.602 2.29 -1.03 .704_ R.PO 1.04 .00! .O0
35 PO.40_ -537 18.09 -5 . 76? 2.20 -1.02 .711 8.24 1.04 .00' •00
36 20.70 .539 16.50 -6.060 2.06 -.93 .720 9.50 1.43 .00! .00
37 20.50'.535 17.93 -5.260 2.50 -1.53 .699 9.10 .91 .00; .00
3t: 20.70 .536 18.11 -3.318 2.46 -1.2? .694- R.14 1.04 .00 .00
39 !0.b(1`. -535 18.17. -5...700. P. P3 -1.19 .713 ..8.27 . 1-.04 .pO •00
310 ?0.80 •538'18.70 -6.291 1.95 -•79 . 730 8.63 1.56 .00 .00

<311 PO.10 •534'17.75 -5.609 ?.P8 -1.17 .707 8.03 1.17- -00: .00
312 19.70 .527 17.01 -4.9,10 2.75 -1.96 .685 7.52 •91 .00 .00
41 20.40'.540 1 13.43 -6.703 1.80 -.54 .737 9.59 1.43 -00 -00
42 20.70 .540 18.75 -6.747 1.7R -.41 .735' 8.69 1.69 .00 •00
43 20.80 .541 18.74 -6 .413 1.91 -.71 .73?' 8.71 -1-.-69 .00' -00

j- 44 20.80 .540 18.88 -6.834 1.75 --39 -738 R.76 1.69. .00 .00
". 45.+ ..20.90 .540 17.07 -2.854 7 . 50 +++t+-.:.8 16 ... 9.74 1.95 .00 no	 4444

46.+ 21.00 .540'17.06 ,=2.805 `7.79 ++++* .811 -_9.72 1.95 .00 cnn
47 20.70 .538 18.61 '-6.293 1.95 -.83 .731 8.60 1.56 .00 .00
48 20.81) .534 18.31 -5.531 P.3P -1.02 .700 8.23 1.04 -OO - .00
49 20.50 .535 18.36 -6.1991.99 -.67 .721- 9.37 1.30 no .00
410 20.60 -532 18.25 -5.610 P.. 23 -1.22 -713 9.27 1.04 .00 •00
411 20.20 .534 18.17 -6.325 1.93 -•81 •.730 8.33 1.56 .00 •00
412 20.00 -•535 17 . 85 -5.994 2.08 -1.00 •721 9.16 1.56 -00 .00

20.60 .536 18.04 = 5.321 2.46 -1.35-.697` 8.14 1.04 .00 .00
52 20.50 .536 18.30 -6.020 2.07 -.87 .719 8.36 1.04 .00 -00
33 20.50 .538 18.15 -5.686 2.25 -1.10 .710 6.28 1.04 •00 .00
S4 20.50 .538 18.41 -6.306 1.95 -.60 .724 8.44 1.04 no •00
55 20.40 .537 18.39 -6.478 1.87 -.55 .729 9.45 1.30 .00 •00
SA 20.50 .534 18.14 . = 5.705 2.22 -.95 .706 8.18 .91 .00! •00
57 20.60 .537 18.57 -6.538 1.85 -.36 .726 8 . 49 ,1.43 .00 •00
58 20.50 .537 18.57 -6.776 1.76 --36".734 71.55 i-t7 .00 .00
59 20.30 .535 18.26 -6-5521-84 -.07 .717' 8.24 1.30 -00 .00
510 20.20-.535 -18.13 -6.247 1.96 -.74 .725 8.29 1.17 .00 .00
511 19.80,.534 17.87 -6.599 1.82 -.39 .728 9.14 .91 ..00 .06
512 19.70 .533 17.79 -6.716 1.78 -.17 .725- 8.05 1.17 .00 on

AVERAGESS 8106	 BASELINE W117 00 000
22.28 .557 20.56 -7.998 1.48 .03 •759 9.96 4.60 .00 .00

STD .15 .002 .21 .555 •,15 .16 .011 -16 .41 ♦ s

Table 11. Miniature solar cell parameters and OCD lifetimes on 3 in
;I

diameter Mn-doped wafers:
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TABLE 12a

A 1031 W140TI011	 c 1.5E14) THF'FF INCH 'i 	 T F.FIAL V'C: ^ On nor

L
j	 SOL10 12/1	 /78 A`11:	 P0=91.E+0Mt~'/CM t ?	 \1 0 AF "OPTING

'	 1 17 I SC VOc LP LOGO I 0) N R rr F.FF C'^^ nr7a Pril-F

2R* 21.90 * 555 19.71 -6.21:3 P * 04 -1.12 .73R 9.49 ,^C •00 •00
SIB PP-430 .553 PI * 07 -88153 1.42 *18 .759 10.1? S.. PO 000 .Op
12B * 22*30 .546 19.156 -5.145 P * 61 -1.51 •6176 8896	 _2. AC .00 :00
13B 22.20 -551 20.42 -7.672 1.53 -.15 9757 9 RP 5.ua .00 -00
14B 22-30 -551 20-46 -7.471 1@5 q -.?P. .7511 o.R . np . nO
PIP * * 22* 40 . 54 J3 19.89 -5-751 P- P -.99 . 7 1 .0 9.77 ?. A4- • 00 .00
?29.* 22.60 .546 -19.54 -4.579 'P-9P -1.79 .F a 7 8,97 % .0( •00 .00
23F 22 20 .553 20.43 -7•2 0 ^ 1 • 61 --PO -751 9.Rn ?.90 .00 - -no
24R 22.10 .553 20.35 -7.801 1-50 -.05 &757 9. 7Q .90 .00 .010
31P 22.00 .550 20.27 -7.816 1.49 --05 .758 9-70 ?. 6.6' .00 .04
32B PP-00 • 550 20.PI -7 * 682 1 • 5? • 10 * 749 9.50 1. SE, -00 -00
33B 22.20 .551 20.31 -7.310 1-63 -_- 10 . 7liR 9. 6P 4. ti5 . C,0

• Q0

34P 2,2.40 .550 20*54' -7.440 1 * 50 --PI .752 9-a1 41 ,5s •00 •Oi)
41P 22.00 -55-1 ,20. 12 - 7.308 1.63 --15 . 7Q6 9. F0 ?. 6t! .00 •OCr
4213 22.20 • 553 20.50 -P-091 1 - 41 4 • :13 - 759 90 R s G. 4P. -	 -00 00
43B 22.10 .555 20.47 -3.332 1.39 -20 . -76P 90R a a.FS .00 -00
449 22.10 • 555 20.50 -x.455 1-36 . 1R 766 9.9L 4'- NO -00  0
51P 22.20 • 553 20.62 -q-541 1 . 3L, . 1 7 . 763 9-97 5.2r) . 00 . r0
529 21.90 9556 20*P.0 -7.R77_1.49 -.15 * 7 1,,° 9.PP = 1 -00 .i C
11 '12.50.479 11.34 -7.444 1.Q4_ 99,5 -71 9 4.55 .91 .00 .0b
12 12.50 .477 11.30 -7.154 1.52 .58 .716 4.5? .91 •uR •QC7
13 12-60 * 477 21-37 -7.05.9 1- 54 .56 -714- 4.54 . n 1 -00 • 00
14 12.50 -47E 11-30 -7.143 1.5P .59 •716 /J .51 .91 •CG° •QO
15 12.60 .476 1 1.37 -7.047 -1 * 54 • 56 .712 4.52 . q 1 .0-0 -00
16 12.60 . 473 11e30 --6. 734 1-63 .39 . 705 4.45 09 1 -00 . no

M.	 17 IP-60 •476 11.40 -7.240 1*49 74 .716 4.54 ?'.nc .nG .00
18 12-60 -476 11-37 -7-047 1- 54' .56 -713 4.52 i . C  ..Oa . n(3
19 12.50 •475 11-27 -7.024 1 • 55 • 60 - 71 1 4.47 1 . 1 7 • 00 . no
110 12.50 .477 11-P7 -7.045 1-55 .60 .71P 4.4c) r 1 . Ca •Ca0
111 12.10 *475 10.93 -7.191 1.59 -84 .712 40,13 1.04 -0D .00

G	 112 12.10 .477 30*91 -7.071 1.s5 *69 .711 4.?4 .9, - _10 ,nn
21 12.20 .468 10.77 -6	 151 ` 1-85 *25 - €.3.' 4. 1 3 .01 • 00' .00

Y
	22 12-3D .474 10.9; -6-554 1 . 7n . 31 .7()0 4-3P .9 1 .00 . 0C?

23 12.30 .474 10 * 95 -6.477 ,1.73 •34 .F,96, 1t	 29 .7! .00 •00
24 12.10' •'474 10.97 -7. 4 2,5 1.44 •94 .717 4935 .:r1 -00 -(10
25 12. 30- . 474' 11-11 -7-167 1.51 973 - 714 4.40 .91 - 00' . fin
26 12-10 ,.474_ 10.97 -7.4P5 1 .44 .94 9717 4. 35 1 • C4 . ;;n- . n0V`	 27 12---G -474' 1 1 .1 1 - 7 * 1 67 1.51 -73 * 714 4.40 1- C . nr .()o28 12.20 .273 11*08 -6.996 1.55 .57 .7'.1 4 3? •5, ,G •00
29 -12.20 .472' 11.02 -7,089' °1.5P -47 .716 [_-3n

1.64
..20 .(in

210 12.00 .472 "10.89 -7.470 1./42 -93 -ji g 14.31 1.r.L• .00 .t7n
211 11.90 •471 10.78 -7.342 1.45 •137 .7L6. ta.P5 .91 .00 no
PIP 11.90" .471 10.78 -7-34P'1.45 .57 -716 4.25 1.04 .00- •00

Table 12.	 Miniature solar cell parameters and OCD lifetimes on 3 in diameter
i T-doped_ t.afers.
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C+1 1 ?. 7n -4900 1 l.46 - 7. t' < y 1.51, . l5 . VI 1 •	 -5.0 . 9 1 • 00 .00
32 1 2-RO .478 11-53 - 7.01 C 1.56 -77- • 7nR /a, 56 .9 1 .00 .00'
33 12.60 •473 11.45 - 7.557 1.41 1.12 .717 4.57 •91 .00 000
34 12.50 •475 11.27 -7.024 1.55 -AO .711 4. L 7 •91 •00 .00
35 1'2.60 •479 11.35 -7.040 1 . 56 • 77 .708 4.52. .7S •00 no
36 12.80 .490 11.49 -6.764 1.65 .37 .707 4 60 .91 0 00 000
37 12.70 0476 11.37 -69637 1.68 .19 97nF, 4.54 .91 040 .110
38 12.50 .475 11.21 -6.758 1.63 .45 .705 4.43 1.04 000• .p0
39 12.60 .476 11.33 -6. 4 59 1.60 -38 0711 4.51 1.01, .00 *00

t	 310-. 2.80 •4713 11.51 -6. g 56 1.61 - 26 .711 4- 6n .C)1 .00 000
311 12.50 •477 11.24 -6. 1312 1o6P •2.3 .71? 4.49 1. 11 4 -0Q .nn
312 1?-50 9475 11.21 - 6.758 1.63 .45 .705 4.43 .713 _.00 *on
41 12.00 .470 10.87 -7.356 1.44 •97 .714 4-?6 .7R .n C1__ .o,0
42 12.00 •470 10.82 -79184 1049 1.06 .707 4 .2? .7R .00-- 000
43 12.10 .472. 10.87 -60933 1.6O •36 .709 4.2R 1.04 •00 -QQ
44 12. 10 '• 471 10.92 - 7-091 1. 52 • 65 . 71 ? 4. ?9 .91 .00 .OQ
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49 12.00 -469 10.86 -7.232 1.47 .Al .'71F 4.27 1.n4 .00' -000

`	 410 11.90 •469 10977 -7.319 1.45- .97 .716 4.22 .91 006 -no
411 11. r 0 .471 10.47 -7.055 1.54 .42 .716 4.I4 .91 .0o .()n
L, 12 11-40 .469 10.07 -5065 1-95 -1.2b . 70? 3.97 1.04 .0n_ 900
51 12.1n .-478 10994 -7.224 ;1.50 094 .71? 4.3F ,a .C.O .00
52 12.?0 •475 11-01 -7 * 149 1 . S2 o97 -710 4.35 1`.0 4 .00 . n'0
53 12..00 • 469 10.62. -6. 210 1-193 son -691 1i. 1 1 . (j 5 . 00 . (1;0
54 12. 10 •474 10.97 -7-361 1-45 *76 - 719 '(1036 .. 04 • OC, . nn
55 12.10 9476 10096 , -7.512 1.42 I•13 .716 40-6 2.60 .:00 000
56 11090 .474 10.$3 -7.604 1.39 095 •723 4-31 091 .Oo no
57 12.20 .473 11.00 -7.010 1.55 •50 .713 4.35 0 q 1 .00 .00
59	 _ 12.30 •473 11.06 -6.996 1.55 -57 .711 4.3R .91 000 -0f1
59 12.10 9473 10.97 -7.15? 1.45 .7F -7I9 4-45 .7R? .n0 .00,
51.0 12000 .469 10-73 -6.677 1.65 .51 -. 700 4. 17 - 7R no .00
511 Il••80 .470 10.70 -7•517 1.40 1.34 .712 4-IS .713 .0,f' .0n
512

I

11.8'0 .469 10.52 -6 4SI 1:73 '-.11 9704 4	 1?. 78 .f1C.3 .n(?
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.36 7.50 8.68 7.99	 0.78 0.46 1.300-78
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7.69 :8.41	 1.56 1.56
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7.89 8.22	 0.91 1.04

8.46 7.92 8.38 8.2C	 1.56 0.911.04 0.91
I

8.40 8.-27 8.62 8.42	 1.30 1.301-56 1.30

	

8.10 8.16	 1.56 1.17

Figure 4. (a) Cell efficiencies {%) and (b) Corresponding OCD
lifetimes (}sec) for miniature solar cells distributed
across 3 inch diameter Mn-doped CZ wafers.r
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F figure 5. (a) Cell efficiencies (%) and (b) _ corresponding OC D
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0! .91 1 .1 1 .56 '1	 .3 1.43 1 .56

1.43 1.3 1.56 1.3 1.56 1.02
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Figure 6. OCD lifetimes (usec) measured on 30 mil diameter
mesa diodes distributed across a 5 inch diameter
Mn-doped CZ wafer:

i	 .

ij
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I
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4.86 4.8d 477 5.36 545 5.19 4.94

4.86 5.03 5.28 5.61 561 5.07 4.69

4.44 4.86 5.11 5.24 5.28 15.11 .65
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	 The results on ingot W-140-Ti-011, Table 12 and Fig. 5, also

reveal no striking anisotropy due to Ti incorporation in the large cry-

stal. The maximum variation in the miniature cell performance across

any wafer was + 5%, which is close to our experimental accuracy. Re-

gardless of whether the wafers came from the seed, center or the tang

end, the average miniature cell performance was ti 4.37% of the baseline,

with a scatter of less than + 10%. The average efficiency is very close

i
to the performance predicted by 1 cm x 1 cm cells made on 1" diameter

ingot-123, which have comparable Ti content (1 x 1014 cm-3 Ti resulted

Q;	 in 52% of the baseline efficiency)

Thus, our studies so far suggest that impurities like Mn and

Ti-, which reduce the cell performance primarily by lowering the bulk

lifetime, are distributed fairly uniformly throughout the 3" diameter

ingots. No striking anisotropy was detected. The variation in the

miniature cell performance across a wafer was ± 5% and over the entire

ingot (seed, center and tang) was ± 10%. The variation in OCD lifetime

was within the experimental accuracy of the measurement-technique. The
TM	

variation in the resistivity was also t 10%. The affect ofimpurities,

1	 like Mn and Ti, was found to be similar on 1" and 3" diameter crystals.

F	 3.4.2 Modeling the Behavior of Non-Uniform Devices

It would be fortuitous if impurities and defects were uniformly

distributed in a real solar cell. But since they are not, it is informative

to examine how uneven properties influence the performance of the cell.

`	 For analysis a non-uniform cell can be considered as several

t.	 parallel connected cells with differing areas and characteristics. Each

}

	

	 of these sub-cells can be represented by the lumped equivalent circuit

of Figure 8.

I,
R s	 _"

E	 j

I^	 T'	 Ij	 IB	 RSH	 V^	
r

e

F igure 8.
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Where IL is the light generated current,

' I Ij is the junction recombination current,	 -

IB is the diffusion current

t
RS and RSH are the series and shunt resistances

Since the cell is a distributed device, these parameters are area depend-

" ent.	 In particular, the resistances are usually better described in terms

` of specific resistant es, such that:
i

Rs	 Rsp /A	 (1)

and

sh	 Rshp/A	 (2)

In a typical good device	 the specific series Byp	 g	 p	 s p J. s about 0.3 ohm _cm2

and depends primarily on the contact grid design and the diffusion sheet

resistance..	 In the specific shunt resistances, RshP is typically greater

than 50kilohms and is a, consequence of junction defects, e.g. precipi-

tates, pipes, localized crystal_ defects and physical damage. 	 In a case,--

i
where shunt conductance is large, it is likely to be highly non-uniforms

j
over the cell area.	 The remaining elements in Figure 8 are controlled
by the carrier lifetimein the various regions of the cell, plus, as is

observed in the case of IV 	 the illuminating ; spectrum.	 While IL can-`

not be expressed in closed form for a real spectrum, a good approxima-

tion can be obtained by using an energy equivalent monochromatic illum-

ination (1) and by assuming all the light is absorbed in the cell base.

A	 0IL -	 (3)

LX + 1 -
L n

where JLO =
	

the maximumphoto-current density

j LA	 =; the absorption length of the incident light

f Ln	 =	 the -base diffusion length

The junction and base _currents for a diffusion length limited

device are written as:

1. = AJ 02 (exp	 V + IRS	 Y 1)	 (4)

2 VT

I = the terminal current
33
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r

Wq Dn ni 	 a	 C2
J0 2 _

2	 L2nd	 Lnd

y C2	 = a constant

^. W	 = the depletion width

Lnd	 the diffusion length in the depletion region

F D	 2-­ . the diffusion const.
is n

I B = AJ01	 (exp	 V + IRs	 _ 1

VT

J0 1 	_	 q	 ni	 _
	 C1 (5)

,, NA Lnb	
Lnb

NA	 =	 base acceptor concentration

-

1

We can now write an expression for the terminal current - voltage behav-

ior of a single device as a function of its diffusion length, area and

the two specific resistances.;

I= I	 - I	 - I	 - I	 (6)
L	 7	 B	 R h

AJLC 	 C 2A	 V + I	
R
	

ASP/	
- l	 1+ 1	 exp

_

2VtLna
nbi

_	 G^-A	 V + I	 Rs /A	 _ 1 
- _V + I RS

P/	 P
/A

exp
Lnb	 Vt	 Rshp/A	

(7)

For the non..-uniform device with several dissimilar areas func-

tioning in parallel, the voltages for each sub-:device are the same and

the,total current is simply the sum of the currents given by Equation 7

`: ( for each of sub-devices.

The peak power andefficiency are determined from:

dP	 =	 I	 dI	 = 0	 (8)
1 dV	 dV

t-,
obtaining I and dI from eq. 7.	 Eq. 8 is linear in V so that the compos--

1 to device equation is a linear sum of the equations representing the

sub-devices.

r
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These equations enable characterization of the composite de-

vice in terms of the properties of its sub-regions and, therefore,

allow the prediction of cell performance from data on the anisotropy

i

	

	 of the crystal properties Furthermore, as grain boundaries can be

approximately characterized in terms of effective diffusion length,

area and resistances, we can also model the behavior of polycrystal-

line devices. An illustrative case for a two region device is shown

graphically in Figure 9. The IV curves are shown for the two sub-devices

and the combined device.

Note that I3	 I1 + I2 5 I1

By plotting -I2 against voltage we obtain the total current, I3 as the

length of vertical vector drawn from 'I2 to I 1 at any voltage. From this

figure, it is apparent that VOC of the total device occurs where I1 =

-L2 , that is, where I1 crosses -I2. One can also see that the poorer

device, 12, extracts energy from the better one for voltages above its

open-circuit value.

Another view of anisotropy effects is shown in Fig. 10. The

cell consists of two elements, one with an assumed efficiency of 15.5%,

i	 the other with an assumed efficiency of 4 %. The total cell perform

	

(	
ance is calculated with the relative area as'a parameter for two cases.

The lowest curve assumes the defective devise has a fixed, area-independ-

ent shunt resistance of 100 ohms. The other curve assumes a specific

shunt resistance of 100 ohms.

The 'broken line is a linear approximation obtained by simply

F

	

	
adding the sub-cell power contributions, that is, assuming there is no

I
interaction between the two sub-cells.

It is important to include the series resistance effects in

	

j	 these calculations since the distributed resistance acts as an area de-

pendent decoupling resistance between good and bad regions of the device.

E,

	

	 This decoupling resistance increases as the defective area diminishes.

Thus, the impact of a small region with low lifetime is less than would

be predicted if the resistance were neglected.
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Curve 714455-6

30 13=11+I2= 1
1 -1^ 12)

—	
Vp3

I1
VP1

20

10

c
CV

Volts

1	
.2	

.3	
,4	 .5 ,6

.7

0 V

-I2	 Vp2

J Lo =. 0330	 C1 =1.800£ --09	 VT =. 026

Rspl =. 50
	 Rsp2 = '50

i R s1 =.556	 R s2 =5.000
t —10

Rshp1=1.000E+05	 Rshp2=1.000E+02

Rsh1=1, Ill E+05	 Rsh2=1.000E+'03

Ent =200
	 Ln2 -10

'A1=. 90 ,	 A Z =.10	 A3 =1.00

-20
JSC	 .0308	 .0138	 .0291

VOC	 .5708	 .4719	 .5379

J P	 .0292	 ' .0096	 .0271
V P	 .4797	 _ .3754	 .4592

Fill	 .7958	 .5550	 .7953
fff	 15.5652	 4.0014	 13.8461

`	 T igure 9. Calculated I-V curves for two regions of a solar cell
with dissimilar properties.' Shown also is the I-V curve
for the composite; cell.	 The current I2 is plotted neg-
atively so that the total current, 13 = 11 + 12 is simply
the vector drawn from I2 to 'I1.
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10

1	 0	 0.5	 1
Area Device 2

Total Area

F igure 10. -Calculated performance of a non-uniform device as a'
function of the relative area of the defective region.
The lowest curve assumes constant shunt- resistance.
The middle curve assumes an area dependent shunt resistance.

j	 The dashed curve is 'a simple linear approximation assuming
no interreaction between the two regions.
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The degree of decoupling will depend in an unpredictable

manner on the size and location of the defective area as a function of
I^

its placement relative to the contact grid.

This model analysis can be used to interpret the implications

of the impurity anisotropy experiments which provide contour maps of
i

lifetime and shunt resistance from which the sub-areas of the model can

be defined.

Data for lifetime anisotropy in a manganese doped wafer is

shown in Fig. 6 in section 3.4.1. These results are typical of recent

jstudies and show so little non-uniformity that its effect can be neglect-

ed. The model calculation for this is indistinguishable from the lin-

ear approximation. It is generally apparent that the effects of aniso-

tropy are small except in the case where the regional differences are
I	

very large.
I-

3.5 Permanence of Impurity Effects in Silicon Solar Cells

Experimental evidence shows that solar cell performance is

a function of device processing and that the degree of degradation due
i

to specific impurities also varies with process history. Since the use-

ful life of solar cells in the field must be many years, it is of some

interest to determine how stable the performance of cells made on impure

silicon will be over extended periods. That is, how; permanent will be

the characteristics of solar cells fabricated on solar grade silicon.

We are conducting some preliminary studies to evaluate the importance

of this question.

Two impurities which, produce strong degradation in cell per

r
formance,_ Ti and Mo, were chosen for the first experiments. Wafers

from ingots W123 Ti _008 (ix10 1 4Ti) and W077 Mo 001 (4.2x10 1 2 Mo), along

with baseline ingot W097, are being processed according to the matrix

depicted in Figure 3' of the 12th Quarterly report (4)	So far the solar

cells have been made on wafers from each ingot inorder to characterize
I

the properties prior to temperature stressing.,; For example, data from
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the baseline wafer are given in Table 13. Following the ther

experiments at the various times and temperatures shown in th

the new performance data will be compared with the baseline v

i

1

j

i

c

E,
r

F

f
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TABLE 13

SOLAR CELL PROPERTIES OF INGOTS- FOR 1'ERAtkNENCE STUDIES

j

I

g

i

` ( V I sG VoC - I 1J LOG( I0) N A. F FFF 9n^

X 2,Ii* 21-90 - 5-55 19. 03 -6 * 129 ?• 0g - 1 •'2n - 737 9 - Z 7 _ - 00
rn 9 21-90 • 555 19.99 -7.059 1.72 -.51 . 790 9. F 68
° 10 21.-80 .553 19.95 -7.250 1-65 --4 1 • 753 Q. 60 5.20
w 11 22#00 • 551 19.76 -6-174 2.04 - .95 . 732 9. 2

a 12 21-60 . 552 19.99 -7-372 1 .61 -- 34 - 755 Q. 60 4. 55
W 13 22. 10 - 555 20. 35 - 7. 6R 6 1.54 - - P5 • 761 q .87 9

14 22.00 -553 2.0.01 -6.f_i4^ 1 - 7R --6() . 74(, 9. 60 zi
15 ?2.00 • 550 19.43 -5.508 2.39 - 1.3h . 711 9. In g.	 L,

' 25 -	 1 4r. 30 . L:'32 12. 75 -6• G24 1.76 .21 0 699 5. o r) E5
' 26 1 4.40 . 413? 12.86 -6.460 1.74 - n7 . 704 5, 1 7 .6900 1 ZI- 30 . 493 , 12-76 -C,- si n 1- 73 . i,n_ . 695 R. In . 6r0 2 14. 20 .4c3l 12.62 -6o 257 1 -R2 -- 03 -697 5. n L, . 55E 29 1 zi. 30 .4g0 _ 12. 73 -6.332 1.79 .01 -700 5. OR . 65

N 30 14.40 4i1 12. •77 - f - I 'Zi'l 1.97 -.25 .69 L9 5.1t
3 31 14.40 .478 1P-76 -6.,116 1.87 --25 -696 5.07 •65

32 14.30 .47xI 129 6zi -_6. 1R4 l .8- li .4F, ,.6,g3_ /J.9 ;3 5
LJ ]q. 50, . -9PP 16.4,3 -6.001 1 -Qf, , 7n3 r,.90 65

42 18 .90 -506 10- - A-0A5 1.95 -. 72 . 71 5 7-,0.-, . 65
	

;.
l43 1s,-b0 -505 16.48 -5.8.9n P. o5 - . 7z, .'7n5 7- nn .65,
44 Su.40 503 10	 44 -6 . 199 1 . 58 --5? .714 6. Q 9 .5-
45 1K-90 .503 16.75 -s.R69 2.n3 -.r,5 .7r4 7.07 .[,5
Z16 Is-60 . 50;4 1 (,. 5n -5-616 2.06 - 1 . n 1 . 7 1 1 7. n? . 6--'2 Ho l.^7 11;.50 . 5n<4 16.9 57 -	 . 277 1 o39 -. C;Q . 7Pr,

, 7.-1 r) . 65
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4.	 CONCLUSIONS

The first detailed gettering experiments we conducted on Fe,

Ti and Mo-doped ingots indicate that for Fe and Ti contaminants: (1)

1 raising the temperature during POCR 3 gettering at constant time --im-

proves solar cell-performance and (-2) for fixed gettering temperature,

extending the time also ina.reases cell performance. 	 The temperature

and time ranges investigated were ;950 to 1100°G and 1 to 5 hours. 	 In

contrast, virtually no improvement in solar cells ;made on Mo-doped waf-

ers was gained by gettering treatments. 	 Despite the fact that getter-

ing improves the efficiency of contaminated devices, the benefits are

small (absolute efficiency increases up to 1.5 percentage points since the

devices require prolonged exposure to high temperature, at least for

= the impurity concentrations studied so far.

P

The commercial size (3 in diameter) Czochralski ingots doped

with Mn or Ti were mapped via miniature solar cells and diodes in an
4

attempt to discover any non-uniformities in electrical characteristics

due to anisotropic impurity incorporation.	 No significant variation in

cell performance or OCD lifetime either across a wafer or along the

ingots could be found.	 The magnitudes of solar cell efficiencies mea-

sured on the large ingots were quite close to that found on small (1 in)

diameter test ingots bearing similar amounts of impurity. 	 Thus, at least

for Ti and Mn non-uniform impurity distribution does not appear to de-

grade cell performance in larger ingots`. 	 Moreover, the small ingots pre-

'	 I diet well the impurity-cell performance behavior of the larger ingots.'

The first generation W-doped ingot produced solar cells whose
F
` performance was degraded to about 89% of the baseline values. 	 The re-

duction in cell efficiency is due primarily to a loss in bulk lifetime.

In contrast,, the first Co-doped ingot produced solar cells whose I-V

' parameters suggest that junction quality as well as bulk lifetime are

degraded.	 This behavior is similar -to that displayed by Cu and Fe-doped
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5 PROGRAM STATUS
i

5.1 Present Status

The program plan for Phase III of this program is depicted in

Figure 11. The program is generally on schedule. Work on the aniso-

tropy studies was initiated ahead of plan.`

6 During this past quarter:

Eleven ingots were prepared for subsequent chemical, electri-

cal and cell evaluation.

• Spark source mass spectroscopy, microstructural evaluation,

resistivity probing, and carbon/oxygen analysis were per-

formed on all ingots grown.

	

i	 _

• Gettering experiments at three temperatures (950° 1000° and

1100°) and various times were completed on iron, titanium and

molybdenum-bearing ingots.

	

}	 • Evaluation of the first generation cobalt and tungsten-doped	 >'

ingots was completed.

s An assessment was made of the uniformity of electrical char-

acteristics and solar cell performance in commercial-size	 -'

F
(3 inch diameter) Ti and Mn-doped ingots.

o A model was developed to predict the cell performance in

non-uniform devices.

• Studies of permanence effects `in,Ti and Mo-doped ingots were

initiated.

f5.2 Future Activity

During the next quarter effort will be directed primarily into->

I`al processing - continued efour areas. (1) thermochem^,c pr	 g_	 on	 evaluation ofv

	

^_	 phosphorus gettering effects and HCQ gettering (2) evaluation of second
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Avven6ix 7.1- Segregation Coefficients

1:lement S^ re ation Coefficient_—
t

Al 3 x 10 
2 

(2.8 x 107
3)

B 0.8

C 0.05

p
Ca ?

Cu 8.0 x 10y4

`
Cr 1.1 x 10-5

Fe
6

6.;4x10

Mg 3.2 x 10-6

1..3 x 10-5

}
Mo 4.5 x 10 8

Ni 3.2 x 10_5

r 	 I

Ph 0.35

Ta
8,10_7

{
Ti 2.0 x :106

V 4x 10-6

%n 105

Zr <1.6 x 10_8

Co <1.1x1;05

s W <1.,6 x 10_6

` 47



A

F

f

r Appendix 7.2 •. Impurity Concentrations

of Phase III ingots

Ingot	 Com-entration
irget Calculated Measured

Ident if ication	 10 11 'atoms/cm 3_..- -	 ------ - -
Concentration
W5atoms/cm3

Concentration
101 5atoms/cm3

W-129-00-000 (7.6 cm)NA NA NA

W-130-00-000 (7.6 cm)NA NA NA

W-131-Mn-008 (7.6 cm)0.6 0.55 0.55

` W-132-Ta-003 0.0002 0.0009 <0.5

W-133-00-000 NA NA NA

W-134-TI-009 0.05 0.01 <0.25 
r.

W-135-Fe-005 1.0 0.78 <1.5

I4- 136-Fe-006 0.3 0.24 <1.5

W-137-Ti-01-0 0.2 0.2 <0.25

W-138-Mo-005 0.007, 0.0008 <0.5

W-119-Mo-006 0.0042 0.0054 <0.5

` W- 1 40- T 1-01 1	 (7.6 i m) o. 1`fi (1.1 f{ 0.2 1

W-141-Mo /Cu-00l o.001,14.42 0.00'1/3.69 <0.5/4.00

1 * 1 42-00-000 NA NA NA

W-143-Ti-002 0.20 0.17 <0.25

ti
*

W-144-Ito-001 0.0042 0.0044 <0-.50

3:- 14-145-W-00L <0.15 <0.15 <0.15

I4-146-Co-001 <1.70 <1.70 <1.70

W-147-N/Ni-002'
0.40 0.33 <1. 50

W-- 14S--N /Mn-002 0.60 0.76 0.55

14 -149-N/Fe-003
0.60	 - 0.58 <1.50

t•,-150-N/V-003
0.03 0.03 <0.15

= *X -
14 -1.51-00-000

NA
NA NA

*>^
W 152-Ti-001 0.2 Processing <0.25

c
W-153-N/Ti-003 0.01 Processing <0.25

¢. W-154-N/Cr-003 0.55 Processing Processing

r
Low Resistivity p-type`Ingots

*ft Use of double-asterisk indicates 30 ohm-cm p-type ingot.
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