https://ntrs.nasa.gov/search.jsp?R=19800013348 2020-03-21T18:26:20+00:00Z

SILICON MATERIALS TASK OF THE LOW COST SOLAR ARRAY PROJECT (PHASE IID)

DRD No. SE-7

DRL No. 52

.

Dist. Category UC-63 DOE/JPL-954331-80/9 JPL NO. 9950-299

Effect of Impurities and Processing on Silicon Solar Cells

Phase III Summary and Seventeenth Quarterly Report

ىرىمى بەن ئە**رىر**ى 15% ئارلىقى ئەر مەنبىيە مەتبار بەر مەتبار بەر يەركىمۇرىمۇرى بەر مىپ، بەر

Volume 1: Characterization Methods for Impurities in Silicon and Impurity Effects Data Base

Januar .980

R. H. Hopkins, J. R. Davis, A. Rohatgi, R. B. Campbell, P. D. Blais, P. Rai-Choudhury, and R. E. Stapleton Westinghouse Research and Development Center and

H. C. Mollenkopf and J. R. McCormick Hemlock Semiconductor Corporation

Contract No. 954331

The JPL Low Cost Silicon Solar Array Project is sponsored by the U. S. Dept. of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DOE.

SILICON MATERIALS TASK OF THE LOW COST SOLAR ARRAY PROJECT (PHASE III)

Effect of Impurities and Processing on Silicon Solar Cells

Phase III Summary and Seventeenth Quarterly Report

Volume 1: Characterization Methods for Impurities in Silicon and Impurity Effects Data Base あるろう シ

January 1980

والمحمد معلوم المعارية المراسم المحمد والمحمد

3

Ť.

R. H. Hopkins, J. R. Davis, A. Rohatgi, R. B. Campbell,
P. D. Blais, P. Rai-Choudhury, and R. E. Stapleton
Westinghouse Research and Development Center and
H. C. Mollenkopf and J. R. McCormick
Hemloc. Semiconductor Corporation

Contract No. 954331

The JPL Low Cost Silicon Solar Array Project is sponsored by the U. S. Dept. of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DOE.

Westinghouse R&D Center 1310 Beulah Road Pittsburgh. Pennsylvania 15235

TECHNICAL CONTENT STATEMENT

A St. St. States, 1997.

the rodal-

·

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employes, nor any of their contractors, sub-contractors, or their employes, makes any warranties, express or implied, or assumes any legal liability or responsibil⁴⁺" for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NEW TECHNOLOGY

No new technology is reportable for the period covered by this report.

PREFACE

This volume describes the experimental methods used to study the behavior of impurities in silicon solar cells, and the data base accumulated during a study entitled "An Investigation of the Effects of Impurities and Processing on Silicon Solar Cells" conducted under JPL Contract 954331. A companion volume, Volume 2, presents an analysis of the impurity effects in the context of using cheaper, less pure grades of silicon to manufacture low cost terrestrial solar cells.

A number of individuals contributed to the study; the main areas of activity for each are listed below.

R. H. Hepkins - Program Manager and Silicon Web Studies

- J. R. Davis Device Testing, Data Synthesis and Modeling
- A. Rohatgi Detailed Device Analysis and Deep Level Spectroscopy

1

- R. B. Campbell Thermochemical Processing and Aging Studies
- R. E. Stapleton Thermochemical Processing

P. Rai-Choudhury - Device Processing

H. C. Mollenkopf - Principal Investigator, Crystal Growth and Analysis

J. R. McCormick - Impurity Analysis

Successful completion of the technical effort depended on the capable assistance of D. N. Schmidt (cell processing and testing), B. F. Westwood (process experiments and photolithography), A. M. Stewart (material characterization and web growth), H. F. Abt (metallization), C. F. Seiler (device measurements), S. Karako (DLTS measurements), and T. Zigarovich (mask preparation). Dr. P. G. Mc Mullins suggestions on the DLTS work were very useful.

Debbie Labor prepared the report manuscript; the text was edited by Suraiya Farukhi.

Dr. Alan Yamakawa served as technical monitor for the program at the Jet Propulsion Laboratory.

ii

TABLE OF CONTENTS

Page

ì

APPROACHES INTO A ST

7

.

· · · · · · · · ·

,

ì

-

1.	SUMM	ARY		1		
2.	INTR	DUCTIO	N	3		
3.	EXPERIMENTAL EVALUATION OF IMPURITY EFFECTS IN SILICON AND SOLAR CELLS					
	3.1	Impuri	ty Selection	4		
	3.2	In.30t	Preparation and Evaluation	6		
		3.2.1	Crystal Growth	6		
		3.2.2	Ingot Characterization	10		
	3.3	Electr	ical Characterization of Impurity-Doped Silicon	15		
		3.3.1	Impurity Analysis by Deep Level Transient Spectroscopy (DLTS)	17		
			3.3.1.1 Background	17 18		
			Measurements	22 28 35		
		3.3.2	Detailed Dark I V Analysis of Impurity-Doped Solar Cells	35		
		3.3.3	Spectral Response Measurements	40		
		3.3.4	Laser Scanned Photoresponse Characterization	40		
		3.3.5	Recombination Lifetime Measurements	42		
			3.3.5.1 Photoconductive Decay (PCD) Lifetime Determination	42		
			3.3.5.2 Open Circuit Decay	45		
	3.4	Solar	Cell Measurements	45		
		3.4.1	Cell Fabrication	46		
		3.4.2	Solar Cell Characterization	46		
		3.4.3	Solar Cell Data Base	49		
4.	DATA CELLS	BASE F	OR IMPURITY EFFECTS IN SILICON AND SILICON SOLAR	50		

TABLE OF CONTENTS (Cont.)

.

:

.

, . .

ŧ

Ϋ,

.

-

			Page
	4.1	Analysis of Metallurgical Grade Silicon	50
	4.2	Pesidual Impurities in Polycrystalline Silicon	51
	4.3	Dopants for Controlled Metal Additions to Silicon	52
	4.4	Segregation Coefficients of Metal Impurities During Czochralski Silicon Growth	54
	4.5	Resistivity and Defect Density of Czochralski Ingots .	56
	4.6	Carbon and Oxygen Analyses of Silicon Ingots	63
	4.7	Target and Measured Ingot Impurity Concentrations	67
	4.8	Best Estimates of Impurity Concentrations in Silicon Ingots	75
	4.9	DLTS Spectra for Selected Impurities	85
	4.10	Deep Levels and Trap Densities Measured by DLTS on As-Grown Ingots	92
	4.11	Deep Levels and Trap Densities Measured by DLTS in Impurity-Doped Solar Cells	98
	4.12	Summary of Deep Levels and Capture Cross Sections for Impurities in Silicon	100
	4.13	Phtoconductive Decay Lifetime of Czochralski Ingots and Solar Cells	101
	4.14	Solar Cell I-V Data for Impurity-Doped Ingots	108
5.	SELEC	TED THERMOPHYSICAL PROPERTIES OF SILICON	109
6.	PROGR	AM STATUS	111
7.	REFER	ENCES	113

ív

\$

LIST OF FIGURES

4

۴.

.....

í,

-

ť

Figure	2	Page
1	Impurity Matrix	5
2	Location of Ingot Samples	11
3	Capacitance Transient Due to Minority Carrier Trap	19
4	Capacitance Transient Due to Majority Carrier Trap	20
5	Evolution of a Capacitance Transient with Time and Tempera- ture	21
6	Schematic Diagram of the DLTS Apparatus	23
7	Schematic Diagram of the Signals in the DLTS Set-Up	24
8	Bias Arrangment for the DLTS Set-Up	25
9	Schematic Diagram of the Weighting Function and the Input Signal to the Lock-in Amplifier	27
10	Relationship Between the Parameters τ_p and T_B	29
11	DLTS Spectra for Vanadium Doped N-Type Silicon	30
12	Vanadium-Induced Deep Levels in Silicon	31
13	DLTS Signal as a Function of Pulse Width for the $E_V + 0$. V Trap Induced by V in Silicon	33
14	Capture Rates of V-Induced Traps	34
15	Schematic Diagram of the Sample Arrangement used for DLTS Measurements	36
16	Transformed Dark I-V Curves for Fe-Doped 4 Ω -cm Silicon Solar Cells	39
17a	Helium Neon Laser. Equipment Consists of an Optical Bench with Mirrors, two Galvanometer Driven Scan Mirrors (center) which Sweep Laser Beam in a Raster Pattern Through the Microscope (Right) where it is Imaged in a 2 mm spot on the Surface of a Cell Inserted Into the Holder Mounted on an X-Y Micro-Manipulator Stage	41
17Ъ	Diagram of the Optics of the Westinghouse Raster Scanned Light Spot System for Studying Semiconductor Devices	41
18	Schematic Diagram of the Laser-Excited Photoconductive Decay Lifetime Measurement Apparatus	44
19	Standard Solar Cell and Test Pattern Design	47

v

LIST OF FIGURES (Cont.)

r F

7

· * - + + * *

Figure	2	Page
20	Czochralski and Silicon Web Diagnostic Cells and Test Structures	48
21	DLTS Spectra for V-Induced $E_V + 0.42$ eV Trap (Ingot-09)	86
22	DLTS Spectra of Ti-Induced E_{C} - 0.26 eV Trap (Ingot-121).	87
23	DLTS Spectra for Ti-Induced $E_V + 0.30$ eV Trap (Ingot-137) .	88
24	DLTS Spectra for Mo-Induced $E_V + 0.30$ eV Trap (Ingot-77).	89
25	DLTS Spectra of Al-Induced $E_V + .185 \text{ eV}$ and $E_V + 0.51 \text{ eV}$ Traps (Ingot-38)	90
26	DLTS Spectra of Nb-Induced E _V + 0.12 eV Trap	91
27	Program Plan (Schedule)	112

7

vi

LIST OF TABLES

Table		Page
1	Crystal Growth Furnace Characteristics	7
2	Typical Detection Limits of Analytical Techniques Employed in this Investigation	14
3	Concentrations of Unintentionally-added Impurities	16
4	Typical Impurity Concentrations in Metallurgical Silicon	50
5	Polycrystalline Silicon Analysis	51
6	Characteristics of Dopant Materials	52
7	Segregation Coefficients	54
8	Summary of Electrical and Defect Characteristics for All Ingots	56
9	Carbon and Oxygen Concentrations for Representative Ingots.	63
10	Ingot Impurity Concentration	67
11	Best Estimate of Impurity Concentrations	76
12	Deep Levels and Trap Center Concentrations in As-Grown Silicon Ingots	93
13	Deep Levels and Trap Center Densities Near the Junction Region of Silicon Solar Cells	99
14	Measured Energy Levels and Capture Cross Sections for Impurities in Silicon and Solar Cells	100
15	Bulk Lifetimes (Photoconductive Decay) for Silicon Ingots Before and After Phosphorus Diffusion	102
16	Solar Cell I-V Data	116

vii

.

*

1. SUMMARY

This is Volume 1 of a two-volume summary report of the activity performed during Phase III of the Silicon Materials Task of the LSA Project. The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and $POCl_3$ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon (4) effects on cell performance of anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects.

This phase of the work is now completed. In this volume two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, the reader will find discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis. As tools for the sensitive study of impurity behavior in silicon, we think these are topics of importance and of general interest. In the latter portion of the report considerable data are tabulated on the composition, electrical, and solar cell characteristics of impuritydoped silicon. Included therein for example, are lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra: deep level capture cross sections

and trap densities for many impurities; photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots. The last section of the report is a compilation of useful thermophysical properties of liquid and solid silicon.

•

.

he .

In Volume 2 of the report we present a detailed analysis of the effects of impurities on silicon ingot structure, electrical characteristics and cell performance and the implications of these results with respect to solar grades of silicon.

2. INTRODUCTION

÷

This report is a summary of the study conducted under Phase III of JPL Contract 954331. The progran's priective is to define the effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells, so that poly-silicon manufacturers, wafer manufacturers, and the producers of solar cells can develop costbenefit relationships for the use o cheaper, less pure solar grades of silicon.

In previous summary reports for Phases I and II^{1,2} we described how we established empirically what concentrations of commonly encountered impurities could be tolerated in typical p or n-base solar cells, then developed a preliminary analytical model from which the cell performance could be projected as a function of the kinds and amounts of contaminants in the silicon base material. During Phase III, the impurity data base has been expanded considerably and the model has been refined and broadened to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, and synergic behavior. Studies of non-uniform impurity distributions in commercial-size Czochralski ingots and wide ribbon (web) crystals and potential long term (aging) behavior of impurities were also undertaken. Our results are based on the detailed analysis of nearly 200 silicon ingots.

As in the earlier program summaries,^{1,2} we strived to make this report extremely comprehensive and up-to-date (at the risk of reiterating some earlier data) so that the document can stand alone, as a convenient source of information on impurity effects in silicon as they are currently understood. To facilitate the "handbook" aspect of the report, it is separated into two volumes as noted earlier. The first is a complete description of techniques used to evaluate impurities in silicon coupled with tabular compilations of the important findings;

although the emphasis of the report is on the last 18 month's activity, previous analytical results and device data have been revised so far as possible to reflect the most recent information. The second volume of the summary presents an analysis of the experimental results and their implications for the use of solar grades of silicon.

3. EXPERIMENTAL EVALUATION OF IMPURITY EFFECTS IN SILICON AND SOLAR CELLS

3.1 Impurity Selection

From the outset this study has been oriented towards the needs of the silicon solar cell community represented primarily by the producers of polycrystalline silicon; the ingot, sheet, or ribbon manufacturers who transform polysilicon to wafers; and the cell manufacturers who employ the wafers to make devices, modules, and arrays. Thus the impurities chosen for study were based on: (1) the presence of the contaminant in metallurgical grade silicon, a raw material in several low cost silicon production processes, (2) the likelihood of introduction during polysilicon production, (3) potential use as a construction material for silicon manufacturing or crystal growth and (4) use as a material for device manufacturing.

The initial impurity matrix¹ included Al, B, Ca, Cr, Cu, Fe, Mn, Ni, P, Ti, V and Zr, common components of metallurgical grade silicon (see section 4.1 for a typical analysis of this material³). By adding possible construction materials, potential system contaminants and device contact metals, we developed the matrix depicted in Figure 1 which forms the basis for the present investigation. The impurity ranges examined were dictated by the following criteria:

	Dwc. 1710874
Impurity	Approximate Concentration Range (10^{15} cm ⁻³)
Aluminum*	3 - 50
Boron*	
Calcium	0. 1
Carbon**	20 - 500
Chromium (†)	0.1-1.1
Cobalt	0. 054 - 3. 0
Copper (†)	0.4-60
Iron (†)	0. 02 - 1. 5
Magnesium	0. 003 - 0. 03
Manganese (†)	0.01 - 1.3
Molybdenum	0. 000046 - 9. 0042
Nickel	0.4-4.0
NIODIUM	<0. 044
Oxygen**	500 - 1700
Palladium	6. 5
Phosphorus*(†)	1. 0 - 150
Silver	2. 20
Sodium	
Tantalum	0. 0003 - 0. 004
Tin	4846
Titanium (†)	0. 00036 - 0. 36
Tungsten	0. 0015 - 0. 00014
Vanadium (†)	0.0004 - 0.4
Zinc	<0. 001
Zirconium	<0. 0007

* Boron, phosphorus and aluminum are electrically active impurities and therefore cause variations in resistivity when used as a secondary impurity.

** Oxygen and carbon concentrations measured in approximately 50 ingots doped with additional impurities. Two carbon doped ingots prepared to determine effect of carbon.

† See Text

Figure 1 Impurity Matrix

- 1) the maximum solid solubility of the impurity in silicon,
- 2) the maximum liquid impurity concentration which permits single crystal growth, ⁵
- 3) the detection limits of the chemical analysis methods, 6,7 and
- 4) the threshold concentration for solar cell performance degradation. 1,2

The maximum impurity concentration for a given species was fixed by criteria 1) or 2) while the minimum concentration was determined by criterion 4).

Each test ingot contained an electrically active dopant, either B or P, as well as the secondary metal contaminant. The target resistivities were 4-6 Ω cm for the p-type B-doped ingots and 1-3 2 cm for the n-type P-bearing ingots. A limit J number of 0.2 2 cm p type ingots were grown (+, Figure 2), as well as two 30 Ω cm p type ingots containing Ti.

3.2 Ingot Preparation and Evaluation

3.2.1 Crystal Growth

1

All ingots save five which were float-zoned were prepared by Czochralski pulling. This method offers several advantages including: 1) a relatively for doping profile, 2) the addition of impurities either before or after melt-down, 3) the ability to significantly vary growth conditions and 4) the possibility to sample the melt at the completion of crystal growth to determine melt impurity concentration. Two crystal growth furnaces were used during the program. Phase I ingots were prepared in an NRC-2805 crystal growth furnace. To provide more material & obsequent ingots were grown in the HAMCO CG-800 crystal growth furnace. The characteristics of both pieces of equipment are summarized in Table 1.

A new quartz crucible was used for each ingot. Prior to loading the crucible into the furnace, the graphite heating element and graphite furnace parts are baked-out for a period of four hours at

6

Table 1. Crystal Growth Furnace Characteristics

1

.

.

- ,

.

Furnace Type	NRC 2805	Hamco-800CG
Charge Wt.	0.85-1.2kg	1.2-5.0kg
Crucible Size	10.2 x 12.6cm	15.2 x 12cm
Ingot Dia.	2-5cm	1.0-8.5cm
Ingot Length	15-20cm	20-30.5cm
Growth Atmosphere	l Atm. Argon	1 Atm. Argon
Gas Flowrate	10 1/min.	50 1/min.
Seed Rot.	13-22 rpm. cw	10-15 rpm. cw
Crucible Rot.	3-5 rpm. ccw	3-6 rpm. ccw
Pullrate	2.5-20 cm/hr.	2.5-15 cm/hr.
Crucible Liferate	variable	variable

BRING PLAK "S

1500 degrees centigrade. Vacuum bake-out is employed with the NRC furnace while an argon ambient is used with the HAMCO CG-800.

Ť.

Ś

 $\{ y_i \}_{i \in I}$

Number-one Dow Corning semiconductor grade silicon nuggets or one piece crucible charges were used throughout the entire program. Typical characteristics of this material can be found in Section 4.2. The impurities in the polycrystal ine silicon are sufficiently low in concentration that their presence does not affect solar cell performance. Numerous undoped baseline audit ingots were prepared throughout the program to evaluate both the charge material and potential contamination from the growth furnaces. No degradation in the cell performance of devices made from these ingots has been observed.

High purity (99.99% or better) metal dopants were employed throughout the program. The form, purity, and melting points of these materials are listed in Section 4.3. Impurities with high melting points and low vapor pressures are added to the crucible charge prior to meltdown. Impurities melting at temperatures below silicon, or which exhibit high vapor pressure, are added to the molten silicon prior to initiation of crystal growth. The amount of impurity added to the melt was based on the target impurity concentration in the ingot and the best available value for the effective segregation coefficient.

The effective segregation coefficient for each metal contaminant was determined as follows. The melt was purposely doped with a carefully weighed amount of metal. A single crystal ingot was grown and then analyzed by a combination of spark source mass spectroscopy and neutron activation (see section 3.2.2). A rapidly quenched sample of the residual melt was extracted and analyzed by atomic absorption spectroscopy. The ratio of the solid (ingot) impurity concentration C_S and liquid impurity concentration C_g gives k_{eff} . The values of k_{eff} are tabulated in Section 4.4.

Growth conditions varied little from ingot to ingot. Unless noted otherwise, pull speed ranged between 7 and 8.5 cm/hr; crystal rotation rate was about 10 rpm and crucible rotation rate about 3 rpm.

The majority of the ingots had 3 cm diameters; several Phase III ingots were grown with more conventional 7.6 cm diameters. All the crystals were oriented along <111> and grown in an argon atmosphere. Limited experiments were conducted at pull rates as low as 2 cm/hr. or as high as 15 m/hr. For the rapidly-pulled ingots we found the segregation coefficient increased by about a factor of 1.5 compared to ingots grown at 7 cm/hr. Specific information on growth conditions for each ingot are kept in a master file of ingot data sheets and is available on request.

֥ ,•

1

Five ingots were grown by the float zone method using a Fiemens VZA-3 float zone. One baseline ingot was grown using a previously grown Czochralski ingot as feedstock. The other four ingots were prepared from doped polycrystalline silicon. Chromium and aluminum metals were used to dope two of these ingots without experimental difficulty. Use of titanium metal directly as a dopant caused loss of zone stability and the formation of polycrystalline structure. A vacuum cast heavily doped polycrystalline silicon rod was subsequently prepared and welded into the polycrystalline feedstock to be zone refined. This technique pro ed successful, and a titanium doped ingot was grown.

Besides the nearly 200 silicon ingots produced so far as part of the program, about 60 dendritic web⁸ growth runs have also been carried out to evaluate impurity effects in ribbon-type silicon materials. These crystals, up to 4 cm in width, were grown from 60g (Phase I and II) and 180g (Phase ITI) melt charges at speeds ranging between 79 and 120 cm/hr. The same type metal dopants and polycrystalline feedstock used for the Czochmalski ingots were also used to grow web crystals.

All ingots were centerless ground to the nominal 3 or 7.6 cm diameter after growth, and then etched (7 parts $HNO_3/1$ part HF) to remove sur ace damage. The web crystals were cleaned by swabbing with HF to remove oxide deposited on the surface during growth.

3.2.2 Ingot Characterization

-

Several complementary analytical methods were employed to characterize the crystal quality, chemistry and electrical properties of the as-grow ingots. The sampling procedure is depicted in Figure 2. Specimens for etch pit density, IR transmission, spark source mass spectroscopy (SSMS), and neutron activation (NAA) were taken primarily from region (1) although some analyses were also performed on material from region (3). All wafers came from region (2). The weight of ingot used through the seed end analytical material and solar cell blank slices was limited to no more than 25 percent of melt weight. This assured small variations of the impurity concentration along the length of material evaluated. Neutron activation analyses of seed and tang end samples from several doped ingots indicated total changes in impurity concentration along the length of the ingot to be a maximum of 47 percent (i.e, in the case of manganese). Variation within the region devoted to solar cell blanks was significantly less than this extreme.

During Phase I a total of 75 solar cell blanks were cut from each ingot; in Phase II and III this number was increased to 150. Analytical samples taken from Phase I material were limited to slices for SSMS measurements, infrared absorption, resistivity, and for etching experiments to determine dislocation density. Additional slices for neutron activation analysis, lifetime measurements, and independent JPL testing were cut from Phase II and III ingots. Analytical slices were excised with an OD diamond saw, while all solar cell blanks were cut with an ID diamond saw. A tapered bevel was ground along the length of each ingot producing a flat at the circumference of each wafer. The length of this flat increased from the seed to tang end of an ingot so the relative positions of each wafer could be identified.

Resistivity

Resistivity was measured on the seed and tang end of eac' ingot with a Siltec-1000 four point probe. Longitudinal resistivity measurements were also made at 1 cm intervals along the ingot length.

Dwg. 7712A33

1973 C

7

(1)	(2)	(3)

(1). 3 cm Seed Analytical Material (IR, SSMS, NAA, etching)

(2). 12.5 cm Solar Cell Blank Material

ς,

7

:

(3). 3 cm Tang Analytical Material (SSMS, NAA, etching)

Ingot Wt. 0. 3 - 0.6 kg. (3 cm dia.), 2. 8 - 3.3 kg (7.6 cm dia.)Charge Wt. 0. 85 - 1.5 kg. (3 cm dia.), 2. 8 - 3.3 kg (7.6 cm dia.)

Figure 2 Silicon Ingot Sampling

The targeted and measured resistivities for all ingots are collected in Section 4.5. Except for a few ingots where suspected metal-boron interactions produced resistivities up to 9 Ω cm, the target 4 to 6 Ω cm (N_A = 4×10^{15} cm³) resistivity was achieved with no difficulty. Ingots compensated with phosphorus also produced higher resistivities, as expected. The n-type ingot resistivities fell in the target range 1 to 3 Ω cm (N_D = 4×10^{5} cm⁻³.

Etch Fit Density

The etch pit density was measured on seed and tang specimens following Sirtl etching.⁹ The slices examined were taken from the extreme ends of regions (1) and (3), Figure 2. The etch pit density of the solar cell blanks was most comparable to that of the seed material, typically 10^3 cm⁻² or less, as can be seen from the data compilation in Section 4.5. Tang and densities sometimes reached 10^5 to 10^6 dislocations cm⁻² when structural breakdown occurred due to impurities (see Volume 2). As high as 30 percent of the ingots were dislocation free although no special effort was taken to achieve this result.

Carbon and Oxygen Analysis

Carbon and oxygen concentrations were measured by infrared absorption. The amplitude of the absorption peak for carbon at 606 cm⁻¹ and oxygen at 1107 cm⁻¹ are proportional to the elemental concentrations. Constants of proportionally for this work were 2.2 for carbon and 9.6 for oxygen. As can be seen from the tabulation in Section 4.6 the carbon and oxygen contents of the ingots we sampled fell in the typical ranges for Czochralski crystals: 2.5×10^{16} to 5×10^{17} cm⁻³ for carbon and 5×10^{17} to 1.5×10^{18} cm⁻³ for oxygen. In two purposely-doped ingots greater carbon concentrations were achieved.

Impurity Analysis

Precise and accurate determination of impurity concentrations is fundamental to the success of the program. The maximum melt concentration which could be achieved for the majority of elements studied was in the range of 1×10^{20} atoms cm⁻³ to 4×10^{20} atoms cm⁻³. Higher melt concentrations resulted in polycrystalline ingot growth. This concentration

limit coupled with the extremely small effective segregation coefficients for many of the impurities (Section 4.4) means that ingot concentrations ranging from below 10^{12} cm⁻³ to as high as 10^{16} cm⁻³ are encountered. The corresponding detection limits for chemical analysis are thus from about 0.02 parts per billion to 200 parts per billion, ranges generally accessible only by spark source mass spectroscopy or neutron activation analysis, as suggested in Table 2. Chemical separation combined with neutron activation analysis provides the lowest detection limits; however, budgetary limitations and the longer turnaround times on the measurements limited the number of ingots we analyzed this way.

Each ingot was analyzed by SSMS, NAA or by both methods. A vacuum cast sample, collected from the residual melt of each growth run, was analyzed by emission spectroscopy or atomic absorption to provide the melt impurity concentration. Segregation coefficients determined for the most heavily doped ingots were used to calculate the ingot impurity concentration in cases where the ingot impurity level fell below the detection limits of all the analytical methods.

Analytical slices for SSMS or NAA (Figure 2) were given a double sequential etch in a lHF: 1HNO_3 solution. Excess nitric acid was used to terminate each etch cycle and samples were then rinsed in deionized water. SSMS analysis of updoped samples prepared in this manner produced photoplates clear of any of the impurities under investigation. Slight traces at m/e = 40, and 20 (attributed to argon,) and a trace at m/e=48 (ascribed to the oxygen molecule) were, however, noted.

The measured concentrations of the intentionally added impurities are compiled in Section 4.7. In the tables the target concentration is derived by multiplying the melt concentration (based on atoms of melt and atoms of impurity element added) times the effective segregation coefficient. The target values shown in Section 4.7 have been updated to reflect the best available values of k_{eff} . The calculated concentrations represent the product of measured melt concentration corrected for the amount of melt solidified and the effective segregation coefficient. Measured concentrations are averaged SSMS data;

Method of Analysis	Resistivity	Infrared	Mass Spec	NAA (ppba)/
Impurity	(ppba)	(ppba)	(ppba)	Routine (ppba)
Aluminum	4		50	
Boron	<1		3	
Carbon		15×10^2	500	
Chromium			3	0.04/5
Cobalt			50	0.006/31
Copper			15	0,006/3
Iron			30	$1/20 \times 10^{3}$
Magnesium			5	$\sim 20/3,800 \times 10^3$
Manganese			3	.002/2
Molybdenum			10	0.01/5
Nickel			30	$0.2/8 \times 10^3$
Niobium			3	
Oxygen		∿10 0		
Palladium			10	0.84/40
Silver			6	0.008/100
Tantalum			10	0.001/5
Tin			3	0.028/8500
Titanium			5	0.5/-
Tungsten			3	0.0001/13
Vanadium			3	~20/-
Zinc			5	3/600
Zirconium			12-15	0.5/200

Table 2. Typical Detection Limits of Analytical Techniques Employed in this Investigation (References 6 and 7)

5

-:

the second second

2

. . . .

ł ۰.

• '

:.

the figures in parenthesis are NAA data. The N/A entries indicate that no impurity, save the desired donor or acceptor, was added to the ingot.

Some effort also was expended to provide assurance that unintentionally added impurities were not present in doped and undoped ingots. Since the sensitivity of the SSMS measurements is inadequate to detect the majority of potential contaminants below the concentration of approximately 1.5×10^{14} atoms cm⁻³, NAA was used to survey over 20 selected ingots. Typical concentrations of the unintentionally-added impurities are given in Table 3. Note that all detected impurity concentrations are well below concentrations which would have any impact on solar cell performance.

An evaluation of the statistical significance of the chemical analysis data is presented in Volume 2 of this report. However, we note here that good agreement exists between the target and calculated concentrations in Section 4.7 except for impurities $1i^{1/2}$ Zn which vaporize easily during growth. While we considered the melts properly doped when the calculated value was within \pm 60 per cent of the target value, agreement was usually much better than this.

Based on the totality of the analytical data and the measured segregation coefficients for each impurity, we have derived a best estimate of the impurity concentration for each ingot produced during the program. These best estimates, Section 4.8, are used as a basis to evaluate the electrical and solar cell data, to compare impurity behavior, and to formulate conclusions with respect to solar grades of silicon.

3.3 Electrical Characterization of Impurity-Doped Silicon

Since a major objective of this program is to quantify the relationships between the impurity content and electrical characteristics of contaminated silicon, we have developed and utilized several sophisticated

*Neutron activation analysis was performed at General Activation Analysis, San Diego CA, and Kraffwerk Union A.G., Erlangen, FDR.

and the state of the second second

TABLE	3.	Concentrations	of	Unintentionally-added	Impurities
TADLE	J .	concentrations	0I	ourncentronarry-added	Impurities

1. alt

1. A. A.

	Concentration		
Impurity	Atoms/cm ³	(ppba)	
Antimony	8.1×10^{11}	(0.0026)	
Arsenic	7×10^{12}	(0.14)	
Chromium	2×10^{12}	(0.04)	
Copper	5×10^{12}	(0.1)	
Gallium	2.5×10^{12}	(0.07)	
Gold	$\sim 1 \times 10^9$	(.00002)	
Iron	$<5 \times 10^{13} *$	(<1)	
Nickel	$<5 \times 10^{12}$	(<0.1)	
Titanium	$<8 \times 10^{13}$	(<1.6)	
Zirconium	$<3 \times 10^{13}$	(<0.6)	

* Iron was detected at concentrations of $1 \times 10^{14} - 1.7 \times 10^{14}$ atoms/cm³ in ingots heavily doped with nickel.

16

techniques to evaluate the effects of trace amounts of impurities. In the sections that follow we describe how such methods as deep level spectroscopy, detailed I-V analysis, photoresponse, recombination lifetime measurement, and laser spot scans can be coupled with standard solar cell I-V measurements to build up a detailed picture of impurity behavior in single and polycrystalline ingots. Evaluation, correlation, and modeling of the data collected is the subject of Volume 2 of the report.

3.3.1 Impurity Analysis by Deep Level Transient Spectroscopy

Deep level transient spectroscopy provides a means to evaluate the type and concentration of electrically active contaminants present in silicon at levels well below the limits accessible by standard chemical methods like those described in Section 3.2. The method can be used to evaluate both silicon ingots and solar cells, as well as to observe changes in impurity activity due to thermal processing. We outline below the manner in which DLTS measurements are made, analysis of the data, and procedures for specimen preparation; typical impurity spectra, tabulations of deep levels and trap densities in ingots and cells, and capture cross section data can be examined in Sections 4.9 to 4.12.

3.2 1.1 Background

Deep ciels play a significant role in controlling the carrier lifetime in semiconductors. Impurities introduce recombination centers in silicon and, thereby, degrade solar cell performance. In the absence of recombination centers, carriers recombine by the process of band to band recombination and lifetime is fairly long. Deep levels act as "stepping stones" for the recombination process and the lifetime is reduced. In the presence of a deep level the carrier lifetime becomes a function of the energy (E_T) , density (N_T) , and the capture cross section (σ) of the impurity level.

Deep level transient spectroscopy has become an attractive and powerful technique to characterize the recombination centers in semiconductors because a) it is capable of providing information about energy, density, and the capture cross section of the centers, b) ic can be used to distinguish between the majority and minority carrier traps, c) it is very sensitive (detection limits well below chemical methods), rapid and straight forward to analyze and d) it can detect both radiative and non-radiative centers over a wide range within the bandgap. This technique was developed by Lang¹⁰ and is well documented in the literature¹¹. Because the method is so useful we describe it in some detail below.

3.3.1.2 Generation of Capacitance Transients

1

ź

The DLTS technique is a capacitance transient thermal scanning technique. Figures 3 and 4 illustrate pictorially how capacitance transients are generated to study the traps in the junction of a semiconductor device. A reverse biased device is pulsed to fill the traps in the depletion region. At the end of the pulse, the capacitance does not return to its original value because of the trapped charges. At temperatures where sufficient excitation energy is present, these charges are released by thermal emission, producing a capacitance transient. In this technique the device temperature is raised from liquid N₂ temperature to vary the emission rate or the time constant of the transient, Figure 5. These transients are processed by a signal averager to provide an output signal as a function of device temperature which passes through a maximum. The sign of each peak indicates the hole or electron trap. The proper choice of experimental parameters can give the activation energy, density, concentration profile and the capture rate of the trap.

Majority carriers alone can be injected by a majority carrier pulse which reduces the reverse bias as well as the depletion region width (Figure 3). In order to study inority carrier traps, an injection pulse is applied either by forward biasing the device or by photo injection, (Figure 4). An injection pulse introduces both majority and minority carriers and the resulting population of the states is

en de la construcción de la constru La construcción de la construcción d i na internet. T

.

ŝ

Ϋ.

~ 1

Figure 4 Capacitance Transient Due to Majority Carrier Trap

Dw.g. 7709.79

determined by the competition for the capture of the two types of carriers. The relative ratio of the injected minority and majori y carriers can be varied by controlling the magnitude of the injection current. Under high level injection [maj]/[min] approaches unity and the trapped minority carrier population approaches $\sigma_{\min}/(\sigma_{\min}+\sigma_{\max})$. The minority carrier capture measurements are generally less reliable and more complicated than the majority carrier measurements because the injected carrier density must be determined by a detailed analysis of injection mechanism^{10,12}.

3.3.1.3 Experimental Arrangement for DLTS Measurements

The DLTS measurement system consists of a sensitive capacitance meter with good transient response, pulse generators, a signal integrator, an X-Y recorder and a variable temperature cryostat. Previously we described a DLTS system which used a double boxcar integrator^{2,13}. Since then we have developed a DLTS system which utilizes a lock-in amplifier as the integrator.

}

The system, Figure 6, consists of a time base generator which provides the reference signal for the lock-in amplifier, a hold signal for a sample and hold module, and a trigger pulse for the bias pulse generator. All of these signals are derived by digital counting circuits from a crystal controlled clock. Figure 7 illustrates how the signals at various stations of the system are related. The trigger pulse can be moved anywhere within the holding interval 2X, where X = 0.02N msecs and N can be selected on the time base generator ranging from 0-8000. The D.C. bias is applied through the capacitance meter; the bias pulse to inject the carrier is applied through a pulse transformer, Figure 8.

The transients are sent first to a capacitance meter. The output of the capacitance meter is transmitted to a sample and hold module, prior to the lock-in, which functions to blank out the large output transient caused by the bias pulse and its subsequent recovery. The output of the lock-in amplifier given by equation (1), is displayed on an x-y recorder as a function of the device temperature.

Dwg. 1708887

ì.

Figure 6 Schematic Diagram of the DLTS Apparatus

ŗ

والمرابعة والمرابع والمراجع والم

-

DWG. /709A77

•

<u>.</u>

• • • • [•]

-- · -,

1. e

· • •

e 8 Bias Arrangement for the DLTS Set-Up

Figure 8

$$L = \frac{G_L}{T_B} \int_0^{T_B} S(t) W(t) dt$$
 (1)

· . ·

where $T_B = 10X$, C_L is the gain of the amplifier, W(t) is the weighting function or the reference signal and S(t) is the output of sample and hold module. The sample and hold module give a constant output during the holding interval.

Assuming exponential transients inputs to the lock-in can be written as (see Figure 9):

$$S(t) = \begin{cases} K \text{ for } 0 < t < 0.1 \ T_{B} \\ \Delta C_{o} \ G_{c} \ \exp \left(-\frac{t - 0.1 \ T_{B} + T_{d}}{\tau} \right) \text{for } 0.1 \ T_{B} < t < 0.9 T_{B} \ (2) \end{cases}$$

$$K \text{ for } 0.9 T_{B} < t < T_{B}$$
and
$$W(t) \begin{cases} +1 \ 0 < t < 0.5 \ T_{B} < t < T_{B} \end{cases} \qquad (3)$$

where G_c is the gain of the capacitance meter, ΔC_o is the capacitance change at the end of the bias pulse, and the delay time T_d is the interval between the end of the bias pulse and the end of the holding interval.

Equations (1), (2), and (3) give

$$L = \frac{G_{c} G_{L} \tau_{e} \Delta Co}{T_{B}} \left\{ 1 - \exp\left(-\frac{T_{e}}{2\tau}\right) \right\}^{2}$$
(4)

where $T_e = 0.8 T_B$

The time constant of the transient for which the output is maximum (τ_p) is obtained by $dL/d\tau = 0$ which gives

$$\left(1+\frac{T_{d}}{\tau}\right) - \left\{ \exp\left(-\frac{T_{e}}{2\tau}\right) \\ p \end{array} \right\} \left\{ \frac{T_{e}}{\tau} + \left(1+\frac{T_{d}}{\tau}\right) \\ p \end{array} \right\} = 0$$
(5)

D-0. 7711A15

Figure 9 Schematic Diagram of the Weighting Function and the Input Signal to the Lock-in Amplifier
This transcendental equation is solved for τ_p by Newton's method using a computer program. Figure 10 depicts the relationship between τ_p and T_B for $T_d = 1$ msec. Thus the emission rate or the time constant of the transient (e = $\frac{1}{\tau}$) at the peak temperature is fixed by the choice of T_B and T_d .

3.3.1.4 Determination of Trap Parameters

Activation Energy of the Trap: A different value of T_B is selected for each scan which moves the peak to a different temperature Figure 11; Typical impurity spectra for other impurities appear in Section 4.9). Each peak gives an emission rate at the peak temperature. The emission rate is given by

$$e = \frac{N_c \sigma V_{th}}{g} \exp(-\Delta E/KT)$$
 (6)

. . .

where g is the degeneracy of the level, N_c (or N_v) is the effective density of states in the band with which trapped carriers communicate. If the capture cross section (σ) is independent of temperature, then the activation energy (ΔE) represents the depth of the trap from the band edge to which carriers are emitted. For $\sigma = \sigma_o e^{F_\sigma/KT}$, the trap depth is given by $\Delta E - E_\sigma$. The product $N_c \cdot V_{th}$ is proportional to T^2 , therefore, the activation energy of the trap is determined from the Arrhenius plot of log e/T^2 versus 1/T, as illustrated for vanadium in Figure 12.

<u>Trap Density</u> The density of the trap center (N_T) can be obtained from the knowledge of ΔC_0 provided the pulse is large enough to fill all the traps, the trap and the doping density is spatially uniform and $N_T << N_D - N_A$. For these conditions

$$N_{T} = 2 \frac{\Delta C_{o}}{C} (N_{D} - N_{A})$$
(7)

where C is the capacitance of the reverse biased depletion region and $N_D - N_A$ is the net doping (for n-type material). Equation (7) can be derived from the relationship between the capacitance and the charge in the depletion region. ΔC_O is obtained from equation (4) by substituting

---- the the ----

Curve 719747-A

Relationship Between the Parameters τ_{p} and T_{B}

ñ., (

. .

* * * *

monthly 1

1

ă

Curve 719451-A

* • • 1

the values of τ_p , obtained from the equation (5), and the measured peak height (L_{max}). A more general and accurate expression for N_T is given by

$$\delta \left(\frac{\Delta C}{C}\right) = \left(\frac{\varepsilon}{qW^2 N}\right) \frac{N_T(X)}{N(X)} \delta V$$
(8)

where $\delta \left(\frac{\Delta C}{C}\right)$ is the incremental change in relative capacitance signal when a small change δV is made in the bias pulse of amplitude V. X is the depletion width during the bias pulse of amplitude V, and W and N are the depletion layer width and the doping density at the edge of the depletion layer when no bias pulse is applied. Deep levels and trap densities measured on as grown ingots and solar cells studied during the program are compiled in Sections 4.10 and 4.11 respectively.

Capture Rate. The capture process into an initially empty trap is described by $\frac{11}{11}$

$$N(t) = N_T (1 - e^{-Ct})$$
 (9)

where N(t) is the density of traps filled by a bias pulse of the trap. N_T is the total trap density and c is the capture rate of the trap. N(t) values are obtained from the peak heights as the bias pulse width is altered, as shown i Figure 13. N_T is obtained from the height of the saturating pulse width. The capture rate is obtained from the plot of ln N_T-N(t) $\frac{N_T-N(t)}{N_T}$ versus t, Figure 14. The capture cross section is determined from the relationship $c = \sigma N V_{th}$ where Y is the injected carrier density and V_{th} is the thermal velocity. N is equal to the doping density for the majority carrier pulce but for the minority carrier injecting pulse is may be difficult to determine. Measured values of majority and minority carrier cross sections for the impurity levels observed in as grown ingots are tabulated in Section 4.12.

"It should be recognized that while DLTS provides majority carrier capture cross sections, there is no necessary relationship to the minority cross section which controls the solar cell performance. The effective recombination cross sections for minority carriers can be deduced by means of the impurity-performance model as described in Volume 2 of this report.

Curve 718332-8

Figure 13 DLTS Signal as . Function of Pulse Width for the E_V+0.42eV Trap Induced by V in Silicon

1.

i N

Figure 14

Capture Rates of V-Induced Traps

3.3.1.5 Sample Preparation for DL.3

Both as grown ingots and solar cells were evaluated by DLTS. Thirty mil diameter Ti-Si Schottky barrier diodes were fabricated on p type wafers by electron beam evaporation. The 300Å Ti layer was overcoated with 2000Å of Au to form a front contact; the back contact was Ti (1500Å), Pd (500Å), and Ag (20,000Å). On n-base wafers thirty mil Al-Si Schottky barriers were formed by evaporating 1 μ m of Al onto the silicon surface followed by a half hour anneal of the wafer at 450°C.in N₂. The back contact was also a 1 μ m thick Al layer.

To analyze the solar cells the front metal contact (Ti-Pd-Ag grid) was removed while the back contact was retained. Ti and Au were then evaporated on the front surface. (Electron beam evaporation was used to evaporate 300\AA Ti and then 2000 Å Au on top of it) An array of thirty mil dots was mesa etched using the photoresist technique.

For testing the diodes were mounted on a TO5 header (Figure 15). In this way the devices were electrically isolated but were in good thermal contact with the header.

3.3.2 Detailed Dark I V Analysis of Impurity-Doped Solar Cells

Detailed dark I-V analysis has proved a powerful tool for separating and analyzing the effects introduced by impurities is the junction and base regions of the solar cell. This approach is particularly helpful in characterizing the behavior of impurities like Cu, Ni and Fe which produce non linear effects not readily described by our impurityperformance model². An abbreviated description of the method appears in this section; a more detailed account can be reviewed in the last summary report.²

Detailed examination of dark I-V data can give reasonably accurate shunt and series resistances, a good estimate of the current losses in the depletion region and in the bulk of the device. In the analysis, the shunt resistance can be approximately determined from a reverse bias measurement ¹⁴ at V_p of 0.5 to 1 volts.

$$R_{\rm sh} = V_{\rm R} / I_{\rm R}$$
(10)

and the second second

Dwg. 6435A40

(a)

ç

· V · 4-

(b) - Top View of the TO5 Header

The series resistance, R_s , can be obtained from lighted and dark I-V data. The I-V relationship under illumination can be approximated by

$$V + IR_{s} = nV_{T} \cdot ln [(I_{L} - 1)/I_{o} + 1)]$$
 (11)

and in the dark by

$$V-IR_{s} = nV_{T} \cdot \ell n \ (I/I_{o} + 1) \tag{12}$$

where V and I are the magnitude of terminal voltage and current. Under the open circuit conditions, equation (11) becomes

$$V_{oc} = nV_{T} \cdot \ln (I_{L}/I_{o} + 1)$$
(13)

and in dark if we measure V_1 at I = I_L equation (12) becomes

$$V_1 - I_L R_s = nV_T \cdot ln (I_L/I_0 + 1)$$
 (14)

equations (13) and (14) give

$$R_{s} = \frac{V_{1} - V_{oc}}{I_{L}}$$
(15)

Having determined R and R, their effect can be removed by the following transformations

$$V' = V - IR_s \text{ and } I' = I - I_sh$$
 (16)

The dark characteristics can now be approximated by the sum of two exponential funcations, one representing the base controlled current (I_b) and other I associated with the junction depletion region. The base component¹⁶

$$I_{b} = I_{01} (\exp(V/V_{T}) - 1)$$
 (17)

where $I_{01} = \frac{Aqn_i^2}{N_A} \sqrt{\frac{n}{\tau_n}}^n$ for n⁺p device with wide base. Notice the ideality factor n is unity in accord with theory¹⁷.

The junction current

$$I_{j} = I_{02} (\exp (V/nV_{T}) - 1)$$
 (18)

For a recombination center in the middle of the band gap^{15,17} $I_{02} = Aqn_i W_{dep}/2 \tau_{dep}$ and $n \approx 2$. From the double exponential I_b and I_j can be separated numerically or graphically¹⁸ recognizing that below about 0.3 volts the total current, I_x , is nearly I_j so I_b can be obtained by extrapolating I_i and subtracting it from I_x .

$$I_b(V) = I_x(V) - I_j(V) \text{ for } V > 0.3 \text{ volts}$$
 (19)

The operating point of a solar cell lies near 0.5 volts so that a slight displacement of the bulk current component on the log I-V plot can significantly alter cell performance. This shift of the upper segment of the curve to the left reflects a reduction in the bulk carrier lifetime of the material due to the impurity present. In contrast, changes in I_j , characterized by an upward displacement of the lower segment of the I-V curve, must be considerably greater to produce an affect on cell performance comparable to I_b .

The features described in the foregoing discussion are illustrated well in Figure 16, transformed I-V curves for solar cells purposely contaminated with Fe. At lower concentrations $(9x10^{14} \text{ cm}^{-3})$ Fe reduces bulk lifetime, displacing the upper I-V segment relative to that of the uncontaminated baseline cell. As more Fe $(1.5x10^{15} \text{ cm}^{-3})$ is added to the silicon, precipitates form in the junction region of the device; the junction current increases and a considerable upward shift in the lower segment of the I-V curve takes place.

Transformed I-V plots, consisting of I_b and I_j , have been used to examine impurity effects on the junction and the bulk regions of many of the devices we have studied. A description of the results forms part of Volume 2 of the report.

38

و و مع الم ما م

Curve 693689-8

Figure 16 Transformed Dark I-V Curves for Fe-Doped 4 Ω -cm Silicon Solar Cells

A

 39

.: .

A. S. San .

3.3.3 Spectral Response Measurements

Special equipment has been designed and assembled at Westinghouse to facilitate several types of optical measurements on solar cells or their constituents. The equipment includes a tungsten halogen light source, monochromator and silicon photodetector to provide measurements of reflectivity and photoresponse over the silicon photosensitive wavelength range from less than 0.4 micron to greater than 1.1 micron. The use of a galvanometer driven mirror to deflect the monochromatic light beam into various optical channels allows great flexibility in application of the equipment. In its reflectometer mode, the direct and specimen-reflected beams are compared automatically and ratioed in an analog multiplier to give a direct readout of reflectivity as a function of wavelength. In the spectral response mode, photocurrent from a photosensitive specimen is compared automatically to that from a standard detector of calibrated spectral response.

The equipment has been used to measure and compare changes in the spectral response of silicon solar cells as a function of impurity content and wafer substructure, especially for Ti-doped single crystal and polycrystalline material.

3.3.4 Laser Scanned Photoresponse Characterization

Laser spot scanner apparatus has been assembled at the Westinghouse R&D Center to study a variety of solar cells as well as other photosensitive devices. The equipment consists essentially of a laser source and a pair of galvanometer-driven deflection mirrors capable of providing a raster scan of the focused laser beam over a convenient field of view. For the main optics a conventional microscope is used, providing the standard resolution available in such systems, i.e., down to the micron level. Figure 17a shows the light spot scanner, with the He-Ne (6330A wavelength^{*}) low power laser, scanning mirrors, optical microscope, and auxiliary optics. Figure 17b is a schematic of the optical arrangement.

^{*}In silicon, light of this wavelength penetrates about 2 μ m.

*** g

¥.

w note .

· · · · ·

Figure 17a Helium neon laser. Equipment consists of an optical bench with mirrors, two galvanometer driven scan mirrors (center) which sweep laser beam in a raster pattern through the microscope (right) where it is imaged in a 2 mm spot on the surface of a cell inserted into the holder mounted on an X-Y micro-manipulator stage.

Figure 17b Diagram of the optics of the Westinghouse raster scanned light spot system for studying semiconductor devices.

ORIGINAL PAGE IS OF POOR QUALITY

and the

The display usually consists of a TV type image on a CRT, with the video information provided by transducing as necessary any of several inputs, such as light reflected from the specimen, light transmitted through the specimen, and photocurrent, if any, induced in the specimen. The first two modes provide images of the type that would be obtained in a conventional optical microscope. These are useful as location references for the main use of the system, which is under the third mode. For quantitative data on reflection, transmission or photocurrent, single line traces of signals proportional to these quantities can also be displayed.

This equipment has proven very valuable in the study of impurity-grain boundary interactions in polycrystalline solar cells by allowing quantitative assessment of suppressed photocurrent collection in the vicinity of grain boundaries.

3.3.5 Recombination Lifetime Measurements

3.3.5.1 Photoconductive Decay (PCD) Lifetime Determination

PCD measurements require only low temperature specimen preparation and correlate well with solar cell performance.¹ Thus we have used the technique extensively to track the response of impuritydoped silicon to various thermal and gettering treatments and to compare the properties of as-grown and diffused wafers.² Initially we used an LPE GaAs IR emitting diode as the pulsed light source for measurements.¹ That approach suffered from the relatively high absorption of the 0.94 μ m radiation in silicon, the low radiation intensity of the source, and the rather long radiation decay time of the pulse. We replaced the LED with a YAG:Nd laser to facilitate the analysis of low resistivity and low lifetime specimens produced later in the program.²⁰

The diagram in Figure 18 depicts the main features of the laser excited PCD apparatus. The monochromatic radiation wavelength is 1.06 μ m, a spectral location for which the absorption coefficient, α , for high purity silicon is 11.70 cm⁻¹ at 298°K.⁴ The 1/e depth for intrinsic silicon is 0.85 mm (34 mils) and the transmitted radiation

after passing through a 10 mil wafer is 75 percent of that at the incident surface. Absorption due to free carriers is small at 1.06 μ m and may be neglected for resistivities greater than 0.07 ohm-cm. The absorption coefficient does, however, increase with temperature.

а, "

The most recent refinement to the system was an improvement to the trap light to handle a higher density of traps in the silicon.¹⁹ A GE type H7635, 160,000 CP, 50 watt quartz halogen cycle sealed beam lamp was installed to assure that, even for high concentrations of shallow levels, all traps will be filled during the PCD measurement. Radiation from the lamp, collimated by an ellipsoidal reflector is focussed by an f = 1 (f.1.= 15cm) double convex lens onto the silicon sample. A C.25mm thick silicon wafer filters the incident radiation to reduce sample heating and promote uniform trap filling.

In practice the system was calibrated by measuring the effective bulk lifetime τ_r as a function of thickness for a number of specimens then determining S, the surface recombination velocity mathematically from a curve fit of the data. Experimental conditions are then chosen to minimize errors from the decay of higher order bulk modes and obtain the correct injection levels. For example, errors due to the electric field will be less than 5% when the field is limited to 1.0 volt/cm. Errors due to injection level will be less than 5% when the injection ratio is limited to 5×10^{-3} . Errors due to the effects of higher modes $[\tau_r' = (\tau_{1/2} - \tau_{1/4})/\ln 2]$ an be kept in the range + 0-50% when the ratio $(1/\tau)/(1/r_{000})$ is greater than 1.0. With the leeway allowed in the electric field and injection level τ_r can be accurately determined after the higher modes have decayed or the signal has decayed to less than 10% of initial signal at t = 0. From the surface recombination velocity and the measured τ_r reliable values of the bulk recombination lifetime τ_r can be derived. For further details reference 20 may be consulted.

Dwg. 5415A30

े ह

ېر م

...

PCD lifetime measurements for all the ingots and solar cells evaluated during this program are tabulated in Section 4.13. The iormat of the data tables has been changed somewhat from that employed earlier.^{1,2} Diffusion length as well as bulk recombination lifetime is now listed for most of the specimens, reflecting the fact that diffusion length is the crucial parameter controlling carrier collection. Individual values of standard deviation have been deleted from the tables, the precision of the PCD measurements having been shown to have a probable error of 5.7 percent.^{1,2}

3.3.5.2 Open Circuit Decay

In addition to the photovoltaic I-V data collected by the methods described in the next section, measurements were made of rinority carrier lifetime in the solar cells themselves. The measurements were made using the open circuit voltage decay method.¹ Data are taken using a Tektronix type-S plug-in. The forward current injection level was set at 20 mA/cm² which results in a base carrier concentration approximately equal to that produced by 100 mW/cm² illumination. Under these conditions we obtained reliable base lifetime data which were in good agreement with those obtained using the photoconductive decay method.¹

3.4 Solar Cell Measurements

A central purpose of the program is to determine the effects of various impurities and process interactions on solar cell performance. To this end, a solar cell and a number of test structures were designed. The fabrication sequence and cell design were optimized not for high efficiency <u>per se</u> but for ease of processing, reproducibility, and to provide an acceptable diagnostic for characterizing the impurity effects. Coated cell efficiency for uncontaminated baseline devices are, however, about 14% AM1, as noted below.

3.4.1 Cell Fabrication

C.N. 16

Solar cells were febricated by two conventional processes. ² The precleaned wafers were phosphorus diffused at $8^{\circ}0^{\circ}$ C for 50 minutes for n+p cells; p+n cells were boron diffused a⁺ 875° C for 30 minutes. This resulted in a junction depth of 0.35 µm for both n and p-base cells. The corresponding sheet resistances we e 60 and 90 ohms/square. The 1.03 cm² active area of the cells is defined by a mesa etch, 5 to 8 µm in depth. The front contact grid, a Ti-Pd-Ag metallization, is a five finger pattern, Figure 19, with a 5.4% area coverage. The test structure also includes six van der Pauw patterns for measuring diffused layer sheet resistance; six small test diodes; four small solar cells (0.0576 cm² active area); and a test pattern for measuring the specific contact resistance. The master masks were generated and are stored in a computer graphics system which greatly facilitates any needed modifications. The test structure is truncated when used to evaluate rectangular pieces of silicon web, Figure 20.

Contacts were sintered at 550°C for 15 minutes in hydrogen. The average efficiency of base-line cells (no added impurities) was about 10% without anti-reflection coatings. With coatings the average efficiency was 14.1%. The usual experimental run consists of 15 to 25 wafers from the metal-doped ingots along with 5 to 8 uncontaminated baseline wafers.

3.4.2 Solar Cell Characterization

Current-voltage measurements were made under illumination from a quartz-iodine (ELH) simulator. The light level was set at 91.6mW/cm² for the AMI spectrum based on the calibration of a NASA standard cell (JPL cell no. S/N005). An air-cooled heat sink was used to hold the cell samples; it included a calibrated secondary reference cell with which the light level was checked during each set of measurements. The lighted I-V datawere obtained digitally and stored in a computer data base. A number of data reduction programs were used to examine various cell properties. The primary method of analysis was based on the singleexponential model:

46

An he was a start of the second start of the s

Dwg. 1691873

ŝ

. .

• • • • •

Figure 19 Standard Solar Cell and Test Pattern Design

17 A 34

47

ŝ

- _-

Figure 20 Czochralski and Silicon Web Diagnostic Cells and Test Structures

ORIGINAL PAGE IS

$$I = I_{sc} - I_{o} [exp((V + IRs)/nV_{T}) - 1]$$
(20)

where V_T is the thermal voltage. The fit gives the parameters I_o , R_S and n. The peak power point (I_p) was determined by solution of the following condition:

$$dP/dI = I(dV/dI) + V = 0$$
 (21)

V is obtained from Eq. (20) and the cell efficiency was then determined by:

$$Eff = (V_{p} \times I_{p} \times 100) / (91.6 \times A_{o})$$
(22)

where A_0 is the total area of the cell. The curve fill factor, (FF), is given by:

$$FF = Eff/(V_{OC}I_{SC})$$
(23)

3.4.3 Solar Cell Data Base

na ven name i se a tra i se

More than 10,000 devices have been evaluated during the program. The large amount of data gathered has necessitated the use of a computer for data storage, reduction and analysis. A data base system was developed which contains the measured cell data and ingot analysis along with necessary sample and run identifiers. Sufficient coding is provided to permit addressing data by content or by location. An editing program also was developed so data can be modified, corrected or edited.

Data sheets for each impurity-doped ingot, have been printed from the data base. These form the bulk of Section 4.14 where they can be used for ready reference.

49

4. DATA BASE FOR IMPURITY EFFECTS IN SILICON AND SILICON SOLAR CELLS

4.1 Analysis of Metallurgical Grade Silicon

ŗ

1. 1. 1

Listed below are typical concentrations of impurities found in metallurgical grade silicon formed by the carbothermic reduction of silica sand in an arc furnace. The impurities present are mainly transition metals with Al, Fe, Cr, Ca, Ti and V the dominant species. The data are from reference 2, a study conducted by Dow Corning Corporation.

Impurity Element	Concentration (ppma)
Al	1300
В	11
(a	250
Cr	390
Cu	60
Fe	4200
Mg	<5
Mn	120
Ni	100
P	10
Ti	500
v	230
Zr	30

TABLE 4 TYPICAL IMPURITY CONCENTRATIONS IN METALLURGICAL SILICON

4.2 Residual Impurities in Polycrystalline Silicon

The starting material for all ingots was Dow Corning Semiconductor Grade polycrystalline sili . A typical analysis of the residual impurities in this material, Table 5 below, shows that the metals are undetectable by spark source mass spectroscopy, and are present at fractions of a part per billion with the exception of Al. At these concentrations the residual impurities have no effect on solar cell performance.

Analytical Method Impurity	NAA (ppba)	Mass Spec (ppba)	Mass Spec/Freeze Out (ppba)
	(4×10^{-2})		~0.01
Cu	6×10^{-3}	<20	~0.01
Fe	<2	<30	~0.1
Mn	<1.5	<3	~0.01
Ni	<0.2	<30	ND
Ti	<4	<5	ND
v		<3	ND
Zn		<5	ND
Zr		<12	ND

TABLE 5 POLYCRYSTALLINE SILICON ANALYSIS

Mass Spec/Freezeout

Al ∿ 4.8 ppba;

and an an and a second second

. ...

Carbon 100 ppba - 500 ppba

51

4.3 Dopants for Controlled Metal Additions to Silicon

2

Ł

ŕ,

÷

15 A **48**2

· · · •

The form, purity and melting temperature of each metal used to dope the silicon ingots and web crystals are listed in Table 6. Where possible, four nines purity (or better) grades of metal were chosen, V, Ni and Mo being notable exceptions. In the worse cases trace impurities are expected to be no greater than 1/1000 the concentration of the primary metal dopant.

TABLE 6 CHARACTERISTICS OF DOPANT MATERIALS

Impurity Element	Purity (%)	Form	Melting Point (°C)
Aluminum	99.99	wire	660
Calcium	99.9	block	851
Carbon	99.999	graphite rod	3550
Chromium	99.999	pellets	1900
Cobalt	99.99	polycrystal rod	1555
Copper	99.9997	zone refined ingots	1083
Iron	99.999	sponge	1535
Magnesium	99.99	ingot	651
Manganese	99.99	flake	1244
Molybdenum	99.98	pellets	2610
Nickel	99.98	sponge wire	1455
Niobium	99.99	polycrystal rod	2468

•___

· · · •

TABLE 6 CHARACTERISTICS OF DOPANT MATERIALS (Cont.)

Impurity Element	Purity (%)	Form	Melting Point (°C)
· ·			
Palladium	99.99	polycrystal rod	1555
Silver	99.999	polycrystal rod	960.8
Tantalum	99.99	polycrystal rod	2996
Tin	99.9995	polycrystal rod	232
Titanium	99. 95	crystal	1668
Tungsten	99.999	polycrystal rod	3410
Vanadium	99.9	dendrite	2190
Zirconium	99.99	foil	2127

· •

· · -

- with the and an every of the set of t

4.4 <u>Segregation Coefficients of Metal Impurities During Czochralski Silicon</u> Growth

Listed in Table 7 are our best estimates of the segregation coefficients for elements studied during this program. The effective segregation coefficient is defined as $k_{eff} = C_S/C_\ell$ where C_S is the impurity concentration in the solid silicon ingot and C_ℓ is the impurity content of the liquid from which the ingot grew. Values of C_S are derived from the weighed average of SSMS and NAA analyses of the ingots while C_ℓ is obtained by atomic absorption or emission spectroscopic analysis of a vacuum cost melt sample (see section 3.2).

The data in Table 7 represent current values of k_{eff} for each impurity; some revisions have been made to earlier values as the analytical base has improved.

Element	Segregation Coefficient
A1	3×10^{-2} (2.8 x 10^{-3})
В	0.8
C	0.05
Ca	?
Cu	8.0×10^{-4}
Cr	1.1×10^{-5}
Fe	6.4×10^{-6}
Mg	3.2×10^{-6}
Mn	1.3×10^{-5}
Мо	4.5×10^{-8}
Ni	1.3×10^{-4}
P	0.35

TABLE 7. Segregation Coefficients

54

a street as an a street of

1 4.5

وريكة فيراحك حاصر

TABLE 7 Segregation Coefficients

ł

Element	Segregation Coefficient
Та	2.1×10^{-8}
Ti	2.0×10^{-6}
v	4×10^{-6}
Zn	10 ⁻⁵
Zr	$<1.6 \times 10^{-8}$
Со	2.0×10^{-5}
W	1.7×10^{-8}
Pd	5×10^{-5}
Ag	1.7×10^{-5}
Sn	0.032
Nb	$<4.4 \times 10^{-7}$

,*¹

. 0

4.5 Resistivity and Defect Density of Czochralski Ingots

P.

Columns one and two of Table 8, show the target and measured values of resistivity for all the ingots grown on this program. A nominal value of 4 to 6Ω -cm for p type and 1 to 3 Ω -cm for n-type material was expected. Most measured resistivities fall in these ranges. A few ingots grown to examine resistivity effects themselves had resistivities in the range 0.1 to 1Ω -cm or near 30 Ω -cm. The third column of the table is the etch pit density obtained by counting the number of pits per unit area on wafers which had been Sirtl etched. Typical wafers made into solar cells exhibited densities less than 10^3 cm⁻² (wafers taken from the tang ends of ingots often show considerably higher defect densities due to the onset of structural breakdown).

TABLE 8 SUMMARY OF ELECTRICAL AND DEFECT CHARACTERISTICS FOR ALL INGOTS

Ingot Identification	TGT Resistivity (ohm-cm)	Actual Resistivity (ohm-cm)	Etch Pit Density (/cm ²)
W-001-00-000	4.0 (B)	2.8-3.2	0
W-002-00-000	4.0 (B)	3.0-4.0	0
W-003-00-000	4.0 (B)	3.1-3.6	0
W-004-Cr-001	4.0 (B)	4.6-4.3	0.5-150K
W-005-Mn-001	4.0 (B)	3.6-3.1	0.6-80K
W-006-Ni-001	4.0 (B)	4.1-3.5	0.3-0.96K
W-007-Cu-001	4.0 (в)	5.2-3.7	0-1.2K
W-008-Ti-001	4.0 (B)	4.2-3.1	1.8-150 K
W-009-V-001	4.0 (B)	4.1-3.4	0-150K
W-010-Ni-002	4.0 (B)	3.9-3.4	2-46K
W-011-Zr-001	4.0 (B)	4.4-3.6	0.4-9K
W-012-Cr-002	4.0 (B)	4.1-3.9	0.4 -100K
W-013-Mn-002	4.0 (B)	4.3-3.2	0.2-150K

TABLE 8 (continued)

1

*

W-014-00-000	4.0 (B)	4.3-3.2	1.0-5K
W-015-Zn-001	4.0 (B)	3.9-3.6	0.5-6K
W-016-Fe-001	4.0 (B)	4.6-5.2	0-1.2K
W-017-Cu-002	4.0 (B)	3.8-3.6	2.2-32K
W-018-Fe-002	4.0 (B)	5.9-5.0	0-1.2K
W-019-Cu-003	4.0 (B)	3.8-3.5	0.2-1.5K
W-020-00-000	4.0 (B)	4.0-2.9	0-0.4K
W-021-Mg-001	4.0 (B)	3.8-3.4	0.5-2.5K
W-022-00-000	4.0 (B)	4.1-3.2	0.5-14K
W-023-00-000	0.2 (B)	0.17-0.16	2.5-72.5K
W-024-M3-002	4.0 (B)	3.8-3.6	3.7-2.5K
W-025-00-000	4.0 (B)	5.1-4.7	2-2.5K
W-026-Mn-003	4.0 (B)	4.5-3.9	1-16.5K
W-027-Mn/Cu-001	4.0 (B)	8.4-6.3	1.25-4K
W-028-A1-001	4.0 (E)	2.9-2.4	0.75-18K
W-029-Cr-003	4.0 (B)	5.2-4.6	0-0.5K
W-030-Cr/Cu-001	4.0 (B)	7.3-6.9	0.5-45K
W-031-Cr/Mn-001	4.0 (B)	8.8-4.7	1.25-Gross Lineage
W-032-Mg-003	4.0 (B)	4.54.1	0-10K
W-033-Ti-002	4.0 (B)	4.5-4.2	0-2.5K
W-034-00-000	4.0 (в)	4.4-4.2	0.25-0.5K
W-035-V-002	4.0 (B)	4.4-3.9	1.5-2K
W-036-2r-002	4.0 (B)	4.4-4.1	0.5-30K
W-037-Zr/Ti-001	4.0 (B)	5.1-4.5	0.5 - Gross Lineage
W-038-A1-002	4.0 (A1)	2.2-1.6	0-0.75K
W-039-Ni-003	4.0 (B)	5.2-4.3	2-30K
W-040-Cr/N1-001	4.0 (B)	5.3-4.0	1- Gross Lineage
W-041-Ni/Cr/Cu-001	4.0 (B)	5.1-4.7	2-50K
W-042-Ti-003	4.0 (B)	3.8-3.7	1.5-1.5K

57

يو يحافظه المحافظ والجمع الدام

;

i

2

7

W-043-Fe/Ti-001	4.0 (B)	5.7-2.8	0.75-13.5K
W-044-Fe-003	4.0 (B)	3.8-3.8	0-90K
W-045-Cr/Fe/Ti-001	4.0 (B)	5.3-4.3	0.5-15 K
W-046-Fe/V-001	4.0 (B)	5.7-5.3	0.5- Gross Lineage
W-047-Cu/Ni/Zr-001	4.0 (B)	4.8-4.4	1.5-5K
W-048-Ti-004	4.0 (B)	4.5-3.8	0.5-40K
W-049-V-003	4.0 (B)	4.4-3.9	0-2К
W-050-Ti/V-001	4.0 (B)	4.6-4.4	0.5-0.5K
W-051-Cu/Ti-001	4.0 (B)	5.0-4.4	0.5-Clusters
W-052-Ni-004	4.0 (B)	4.2-3.8	4K-Gross Lineage
W-053-Poly	4.0 (B)	4.5-4.2	N/A (poly)
W-054-00-000	4.0 (B)	4.3-3.8	0-4.25 K
W-055-Cu-004	4.0 (B)	4.1-3.7	0.5K-25K
W-056-Cu-005	4.0 (B)	4.4-3.75	2.5K-10K
W*-057 - 00-000	0.5 (B)	0.46-0.47	0.5K - 1.25K
W*-058-00-000	0.2 (B)	0.22-0.18	0-0.2K
W*-059-00-000	0.05 (B)	0.05-0.053	0-2K
W-060-00-000	1.5 (P)	2.1-1.0	9-1K
W-061-Cr/Ti-001	4.0 (B)	5.0-4.0	3 K-Clusters
W-062-N/Cu-001	1.5 (P)	2.0-0.95	0.4-4K
W-063-N/Cr-001	1.5 (P)	2.2-1.7	1K-40K
W-064-N/Mn-001	1.5 (P)	2.2-1.35	1K-3K
W-065-N/Ti-001	1.5 (P)	1.9-1.7	0-2K
W-066-Ti-005	4.0 (B)	6.0-3,9	1K-4K
W-067-Cr/Mn/Ti-001	4.0 (B)	5.5-5.2	1K-4K
W-068-Cr-004	4.0 (B)	5.2-5.1	1K-5K
W-069-Fe-004	4.0 (B)	5.8-5.0	0.4 K- Gross Lineage

58

یت سیندی ۱۹۹۸ - جمعی در این کی جمعی میچو ≣ایر این میچو کی در این می i.

r ...

.

٩,

.*

W-070-A1-003	4.0 (B)	2.2-1.1	0 –1K
W-071-00-000	4.0 (B)	4.1-3.3	1K-4K
W-072-Cr-005	4.0 (B)	5.0-4.5	0- 2K
W-073-Cr/Mn/Ni/Ti/V-0	01 4.0 (B)	5.0-3.8	1K-40K
W-074-Cr/Mn/Ni/Ti/V-0	02 4.0 (B)	4.4	400-30K
W-075-Ti/V-002	4.0 (B)	4.8-3.9	0-10K
W-076-Poly-002	4.0 (B)	4.8-3.0	N/A (Poly)
W-077-Mo-001	4.0 (B)	4.3-3.8	O- Gross Lineage
W-078-00-000	4.9 (B)	4.3-3.3,	0-80К
W-079-00-000	1.5 (P)	2.3-1.1	1K-10 K
W-080-Ph-001	4.0 (B)	6.3-3.8	0-5K
W-081-N/Ni-001	1.5 (P)	2.2-1.4	1K-4K
W-082-N/V-001	1.5 (P)	1.8-1.5	0-6K
W-083-N/Fe-Cul	1.5 (P)	2.1-1.3	lK-Gross Lineage
W-084-N/A1-001	1.5 (P)	7.5-1.9	1K-80K
W-085-N/Zr-001	1.5 (P)	2.4-1.3	1K-20K
W-086-C-001	4.0 (B)	4.0-3.5	ок-20к+
W-087-Ca-001	4.0 (B)	3.8-3.4	0 ⁺⁺
₩ * -088-Cr-001	0.2 (B)	0.2-0.18	1K-20K
W*-089-Cu-001	0.2 (B)	0.21-0.19	0-20K
W*-090-Mn-001	0.2 (B)	0.21-0.20	1K-3K
W-091-Cr/Mn-002	4.0 (B)	5.5-3.5	o-Gross Lineage
W-092-Ph-002	4.0 (B)	1.7-5.6	0-1K
W -093-Mn-004	4.0 (B)	4.9~5.3	1K-5K
W-094-Mn-005 (Poly)	4.0 (B)	2.8-4.2	N/A
W-095-Mn-006 (F)	4.0 (B)	4.2-4.9	0-12K
W-096-Mn-007 (S)	4.0 (B)	4.6-4.6	0-2K
W-097-00-000	4.0 (B)	3.2-4.2	0
W-098-Mo-002	4.0 (B)	3.6-4.3	0-10K
W-099-Fz-001	4.0 (B)	4.2-4.4	5K-20K
W-100-Cu/Ti-002	4.0 (B)	3.4-5.2	0-Gross Lineage
W-101-FZ-002	4.0 (B)	4.4-4.9	3к-20к
W-102-Ti-006 (Poly)	4.0 (B)	3.8-6.4	N/A
W*-103-Ti-001	0.2 (B)	0.23-0.25	0-30K
W-104-Cu/Ti-003	4.0 (B)	3.8-4.2	2K-Gross Lineage
W*-105-V-001	0.2 (B)	0.23-C.26	3K-Gross Lineage
W-106-N/A1-002	1.5 (ዞ)	2.1-2.9	0

1

÷

.

2

t t

5

W-107-Fz/A1-001	2.0 (B)	1.0-2.2	6К-15К
W-108-N/V-002	1.5 (P)	2.3-1.4	0
W-109-C-002	4.0 (B)	4.6-3.6	ХX
W*-110-Fe-001	0.2 (B)	0.16-0.15	1K
W-111-Cu/V-001	4.0 (B)	4.6-4.3	1K
W-112-Ta-001	4.0 (B)	3.5-2.9	O-Gross Lineage
W-113-Fz/Cr-001	4.0 (B)	5.6-4.9	8K-Twin
W-114-00-000	0.2 (B)	0.19-0.10	0-4K
W-115-N/Cu-002	1.5 (P)	2.2-1.4	2K-10K
W*-116-Ph-001	0.2 (B)	0.44-0.50	0-50к
W-117-00-000	4.0 (B)	4.1-3.7	0-Gross Lineage
W-118-Ph-003	4.0 (B)	1.17 -	0-1K
W-119-N/Fe-002	1.5 (P)	2.1-1.5	l'Gross Lineage
W-120-N/Cr-002	1.5 (P)	1.9-1.6	O-Gross Lineage
W-121-N/Ti-002	1.5 (P)	2.2-1.4	2к-40к
W-122-Ti-00?	4.0 (B)	4.1-4.5	10k-Gross Lineage
W-]23-Ti-008	4.0 (B)	2.8-3.6	0-20K
W-124-Mo-003	4.0 (B)	4.1-3.8	0-4K
W-125-Mo-004	4.0 (B)	3.9-3.6	O-Gross Lineage
w-126-Multi-001	4.0 (B)	4.5-3.6	O-Gross Lineage
₩-127-Fz/Ti-001	4.0 (B)	7.3-6.2	ЗК
W-128-Ta-002	4.0 (B)	4.5-3.7	0-3К
W-129-00-000 (7.6 cm)	4.0 (B)	4.7-3.0	l K-Gross Lineage
W-130-00-000 (7.6 cm)	4.0 (B)	4.7-3.7	OK-Gross Lineage
W-131-Mn-008 (7.6 cm)	4.0 (B)	6.0-3.8	OK-Gross Lineage
W-132-Ta-003	4.0 B)	3.8-3.4	1-20K
W-133-00-000	4.0 (B)	4.3-3.7	OK-Gross Lineage
W-134-Ti-009	4.0 (B)	4.9-4.4	0-10К
W-135-Fe-005	4.0 (B)	5.3-2.1	0-Gross Lineage
W-136-Fe-006	4.0 (B)	3.3-2.7	lK-Gross Lineage
W-137-Ti-010	4.0 (B)	4.6-4.4	0-Cross Lineage
W-138-Mo-005	4.0 (B)	5.0-4.1	05К
W-139-Mo-006	4.0 (B)	4.0-2.3	O-Gross Lineage
W-140-Ti-011 (7.6 cm)	4.0 (B)	3.6-1.7	5K-G.oss Lineage
W-141-Mo/Cu-001	4.0 (B)	4.7-3.0	<pre>?K-Gross Lineage</pre>
W*-142-00-000	0.2 (B)	0.22-0.20	0-3K

بر 2

W*-143-Ti-002	0.2 (B)	0.21-0.15	O-Gross Poly
W*-144-Mo-001	0.2 (B)	0.23-0.19	O-Gross Poly
W-145-W-001	4 (B)	4.5-4.0	2K-Gross Poly
W-146-Co-001	4 (B)	4.7-4.2	1K-Gross Poly
W-147-N/Ni-002	1.5 (P)	1.9-1.4	2-15K
W-148-N/Mn-002	1.5 (P)	2.5-2.1	1K-Gross Poly
W-149-N/Fe-003	1.5 (P)	2.0-1.6	3K-Gross Poly
W-150-N/V-003	1.5 (P)	2.0-1.5	1-5K
w**-151-00-000	30 (B)	35.6-18.1	0-5K
***-152-Ti-001	30 (B)	31.9-25	O-Gross Poly
W-153-N/Ti-003	1.5 (P)	2.1-1.1	0-10K
W-154-N/Cr-003	1.5 (P)	2.1-1.4	ЗК-10К
W-155-N/Mo-001	1.5 (P)	1.9-1.8	1-4K
W-156-N/Mo-002	1.5 (P)	1.7-1.3	3K-Gross Poly
W-157-N/Ti/V-001	1.5 (P)	2.0-1.6	1-10K
W-158-N/Ti/V/Cr-001	1.5 (P)	2.1-1.6	1K-gross Lineage
W-159-N/Cr/Mn/Ti/V-001	1.5 (P)	2.0-1.8	1-2K
W*-160-Ti-001	1.0 (B)	1.3-1.0	2-8K
W**-161-Ti-002	30 (B)	31.8-23,7	1–15К
W-162-Ni/Ti-001	4.0 (B)	4.5-4.0	OK-Clusters
W-163-Ni/V-001	4.0 (B)	4.8-4.4	1K-Clusters
W-164-Ni/Mo-001	4.0 (B)	4.7-3.2	OK-Clusters
W-165-Co-002	4.0 (B)	4.5-3.8	0-5K
W-166-Fe-007	4.0 (B)	4.7-3.0	OK-Gross Lineage
W-167-Nb-001	4.0 (B)	4.0-5.7	OK-Poly
W*-168-Ph-002	0.5 (B)	0.41-0.50	3-10K
W*-169-Ph-004	1.0 (B)	0.9-1.4	ОК
W-170-Ph-005	2.9 (B)	1.1-2 5	1–3K
W-171-W-002	4.0 (B)	4.3-4.1	0-2К
W-172-Cu-CO6 (7.6 cm)	4.0 (B)	3.4-2.7	0-10К
W-173-Fe-008 (7.6 cm)	4.0 (B)	5.9-3.6	3K-Poly
W-174-Ta-004	4.0 (B)	+.3-3.8	OK-Twin
W-175-W-003	4.0 (E)	4.1-3.3	0-10К
W-176-00-000	2.0 (P)	2.0-1.3	ОК
W-177-N/Cr/Mn-001	2.0 (P)	2.2-1.4	OK-Poly
W-178-N/Mn/Ti-001	2.0 (P)	2.1-1.7	2K-Poly

61

:.

TABLE 8. (continued)

W*-179-Ph-006	0.35 (B)	0.3-0.3	0-2K
W*-180-Ti-001	0.5 (B)	0.51-0.49	2-5K
W-181-Cr-006	4.0 (B)	5.4-4.0	OK Clusters
W-182-Cr-007	4.0 (B)	4.2-3.6	0-4K
W-183-Nb-002	4.C (B)	3.6-2.9	0-5K
W-184-Pd-001	4.0 (B)	4.2-3.9	9-4K
W-185-Cu/Ti-004	4.0 (B)	4.7-4.6	0-Poly
W-186-Co-003	4.0 (B)	4.1-3.7	0-2K
W-187-Co-004	4.0 (B)	3.8-2.9	Processing
W-188-W-004	4.0 (B)	4.7-3.5	0-2K
W-189-Nb-003	4.0 (B)	4.0-3.3	2 - 10K
W-190-Cu/2r-001	4.0 (B)	4.4-2.9	OK-Gross Lineage
W-191-Cu/Ta-001	4.0 (B)	4.4-3.6	0-10K
W-192-Ag-001	4.0 (B)	5.6-5.2	0-2к
W-193-Sh-001	4.0 (B)	4.3-3.6	Э-2К
W-19/-Ti-012	4.0 (B)	3.4-2.9	0 - 1K
W-195-Ti/V-Mo-001	4.0 (B)	3.9-3.2	2-5K
W-196-Ti/V/Mo/Ta-001	4.0 (B)	3.6-3.0	0-2к
W-197-Ti/V/Mo/Ta/Cu-001	4.0 (B)	4.0-3.4	0-2к

★ Low resitivity p-type ingot (< 1 ohm-cm)</p>

** Use of double asterisk indicates 30 ohm-cm p-type ingot

- *** This first figure is etch pit density of the seed; second figure etch pit density of extreme tang end of ingot. The first value shown in indicative of dislocation density in slices used for cell fabrication. Structural degradation commonly occurs at the tang end of the most heavily-doped ingots due to constitutional supercooling.
- + Twinning due to high carbon concentration occurred after approximately three inches of crystal growth
- ++ Multiple crystal growth due probably to CaO formation

4.6 Carbon and Oxygen Analyses of Silicon Ingots

ŧ

3

ž

3

٤.

The carbon and oxygen content of selected Czochralski ingots is the subject of Table 9. Infrared absorption measurements were used to obtain the concentration values; for a few low resistivity ingots free carrier absorption precludes using this approach. In general the measured concentrations fall in the ranges expected, and typically found, in crystals grown by the Czochralski technique. In float zoned ingots the carbon and oxygen concentrations fall below detection limits as expected.

Table 9. Carbon and Oxygen Concentrations for Representative Ingots

Ingot Number	Carbon Concentration <u>x 10 atoms/cm</u>	Oxygen Concentration <u>x 10 atoms/cm</u>
W-001-00-000	7.5	94
W-003-00-000	12.5	94
W-005-Mn-001	6	126
W-007-Cu-001	7.5	49
W-009-V-001	18	100
W-011-Zr-001	8	87
W-013-Mn-002	5	160
W-015-Zn-001	9	100
W-017-Cu-002	5.5	78
W-019-Cu-003	4.2	96
W-021-Mg-001	8	110
W-023-00-000	**	**
W-025-00-000	9.6	96
W-027-Mn/Cu-001	<2	110
W-029-Cr-003	2.5	150
W-031-Cr/Mn-001	11	110
W-033-Ti-002	10	100
W-035-V-002	5.1	135
W-037-Zr/Ti-002	8.3	190
W-039-Ni-003	2	170

63

والمراجع المراجع المراجع
41 -

.

đ

Ingot Number	Carbon Concentration <u>x 10¹⁶ atoms/cm³</u>	Oxygen Concentration <u>x 10¹⁶ atoms/cm³</u>
W-041-Ni/Cr/Cu-001	9	115
W-043-Fe/Ti-001	7.3	159
W-045-Cr/Fe/Ti-001	10	118
W-047-Cu/Ni/Zr-001	2.3	140
w-049-v-003	10.3	170
W-(151-Cu/Ti-901	6.6	166
W-053-Poly	39	142
W055Cu004	11.3	· 118
W*-057-00-000	***	***
W*-059-00-000	***	***
W-061-Cr/Ti-001	<2	181
W-063-N/Cu-001	4.4	164
W-065-N/Ti-001	<2	176
W-067-Cr/Mn/Ti-001	<2	226
W-069-Fe-004	<2	146
W-071-00-000	7.6	115
W-073-Cr/Mn/Ni/Ti/V-001	4.2	145
₩-075-Ti/V-002	11.6	194
W-077-No-001	2.5	134
W-079-00-000	<2	157
W-081-N/Ni-001	5	216
W-083-N/V-001	5.5	136
W-085-N/2r-001	<2	:6
W-087-Ca-001	4.5	69
W*-089-Cu-001	**	**
W-091-Cr/Mn-002	20	111
W-093-Mn-004	7	161
W-095-Mn-005	4.2	151
₩-097-00-000	13.2	142
W-099-FZ-001	<2	<5
W-101-FZ-002	<2	<5
W*-103-Ti-001	☆ ★★	***
W*-105-V-001	***	\$; `, ★
W-107-F2/A1-001	< 2	< 5
W-109-C-002	< 2 - 14	190 - 44

111

64

Ċ,

24.8

1.1. · · · · ·

.

Ingot Number	Carbon Concentration x 10 ¹⁶ atoms/cm ³	Oxygen Concentration <u>x 10¹⁶atoms/cm³</u>
W-111-Cu/V-001	12.1	86
W-113-FZ/Cr-001	<2	< 5
W-115-N/Cu-002	8.3	112
W-117-00-000	4.9	160
W-119-N/Fe-002	5.0	125
W-121-N/Ti-002	4 . 7	121
W-123-Ti-008	2.7	137
W-125-Mo-004	8.4	128
W-127-FZ/Ti-002	<2	< 5
W-129-00-000	11.3	202
W-131-Mn-008	5.3	164
W-133-00-000	10.4	117
W-135-Fe-005	9.4	118
W-137-Ti-010	5.3	134
W-139-Mo-006	6.5	149
W-141-Mo/Cu-001	8.3	156
W*0143-Ti-002	***	***
W-145-W-001	5.8	149
W-147-N/Ni-002	14.0	157
W-149-N/Fe-003	6.6	151
W**-151-00-000 (30Ω-cm)	7.0	154
W-153-N/Ti-001	7.5	160
W-155-N/Mo-001	9.2	183
W-157-N/Ti/V-901	5.7	103
W-159-N/Cr-Mn/Ti/V-001	8.7	183
W**-161-Ti-002	6.0	138
W-163-Ni/V-001	5.0	128
W-165-Co-002	11.2	106
W-167-Nb-001	6.0	130
W*-169-Ph-004	14	96
W-171-W-002	10	86
W-173-Fe-008	Incomplete	Incomplete

Table 9. (continued)

Ingot Number	Carbon Concentration $x \ 10^{16} \text{ atoms/cm}^3$	Oxygen Concentration x 10 ¹⁶ atoms/cm ³
W-175-W-003	10	158
W-177-N/Cr/Mn-001	8	150
W*-179-Ph-006	***	***
W-181-Cr-006	8	119
W-183-Nb-002	6	35
W-185-Cu/Ti-004	5	39
W-187-Co/-004	20	164
W-189-N5-003	13	138
W-191-Cu/Ta-001	12	110
W-193-Sn-001	9.4	200
W-195-Ti/V/Mo-001	32	110
W-197-Ti/V/Mo/Ta/Cu-001	15	130

- Low resitivity ingot
- ****** High resitivity ingot
- *** Due to free carrier absorption infrared methods cannot be used for carbon and oxygen determination in these samples

2000

ż

ميتسييه فأشقم كماما وكما حكما المطار فالمطاط فالمالة المسطال ومتهد ماراكا

.

4.7 Target and Measured Ingot Impurity Concentrations

3ª

ŝ

The three columns in Table 10 set forth, respectively, the target, calculated and measured values of the impurity concentrations in each ingot grown during the program. The target concentration is the product of the melt concentration (based on the weighed amount of metal and silicon charge weight) and the effective segregation coefficient. The calculated impurity concentration is derived by multiplying the measured melt impurity content (corrected for the amount of crystal grown) by the segregation coefficient. The measured concentrations, column three, are the average value for SSMS measurements and the NAA result (in pare thesis). N/A indicates that no metal impurity was added.

Ingot Identification	Target Concentration 10 atoms/cm	Calculated Concentration 10 atoms/cm	Measured Concentration 10 atoms/c	n 3 2m
W-001-00-000	N/A	N/A	N/A	
W-002-00-000	N/A	N/A	N/A	
w-003-00-000	N/A	N/A	N/A	
W-C04-Cr-C01	1.0	0.82	1.0	(<4)+
W-005-Mn-001	1.0	0.82	1.35	(0.6)
W-006-Ni-001	3.9	0.66	<0.5	
W-007-Cu-001	2.0	2.36	1.80	(1.65)
W-008-Ti-001	0.20	0.16	0,36	(0.15)
w-009-v-001	0.39	0.46	0.31	
W-010-Ni-002	3.9	2.18	4.0	
W-011-Zr-001	0.0007	0.0019	\$0.45	(<0.03)
W-012-Cr-002	0.2	0.18	<0.5	
W-013-Mn-C02	0.2	0.13	<0.5	
W-014-00-000	N/A	N/A	N/A	
W-015-Zn-001	1.0	<0.0006	<0.5	
W-016-Fe-001	1.0	0.75	<3.0	(0.90)

Table 10. Ingot Impurity Concentration

TABLE 10 (Continued)

.

Ingot Identification	Target Concentration 10 ¹⁵ atoms/cm ³	Calculated Concentration 10 ¹⁵ atoms/cm ³	Measu Concentra 10 ¹⁵ atoms	red tion c/cm ³
W-017-Cu-002	19	13.3	32	(25)
W-018-Fe-002	2	1.6	<3	(1.7)
W-019-Cu-003	0.38	0.53	<0.5	
₩-020-00-000	N/A	N/A	N/A	
W-021-Mg-001	0.003	0.0018	<0.5	
W-022-00-000	N/A	N/A	N/A	
W-023-00-000	N/A	N/A	N/A	
W-024-Mg 002	0.032	0.023	<0.5	
₩-025-00-J00	N/A	N/A	N/A	
W-026-Mn-003	0.01	0.0089	<0.5	
W-027-Mn/Cu-001	1/1.9	0.73/1.22	1/1.0	(1.1/2.2)
W-028-A1-001	18		26	
W-029-Cr-003	0.01	0.0083	<0.5	
W-030-Cr/Cu-001	1/1.96	0.82/1.47	1/1.0	(0.5/2.5)
W-031-Cr/rín-001	1/1	0.85/0.82	1/2.5	
W-032-Mg-003	0.32	0.077	0.32	
W-033-T1-002	0.0020	0.0024	<0.3	

and the second second

2

Ť,

Ingot Identification	Target Concentration 10 ¹⁵ atoms/cm ³	Calculated Concentration 10 ¹⁵ atoms/cm ³	Measured Concentration 10^{15} atoms/cm ³
W-034-00-000	N/A	N/A	N/A ,
W-035-V-002	0.004	0.005	<0.2
W-036-Zr-002	0.0014	0.001	<0.45 <(0.03)
W-037-Zr/Ti-001	0.0007/0.22	0.00066/0.20	<0.45/0.30
W-038-A1-002	60	32.5	34
W-039-Ni-003	8	6.6	3.5
W-040-Cr/Ni-001	0.8/3.5	0.73	1.0/3.5
W-041-Ni/Cr/Cu-001	3.0/0.8/1.9	3/0.8/1.7	3.0/1.7/2.3
W-042-Ti-003	0.04	0.02	<0.3
W-043-Fe/Ti-001	0.8/0.033	0.65/0.033	<3/<0.3
W-044-Fe-003	0.02	0.0167	<2.0
W-045-Cr/Fe/Ti-001	0.65/0.5/0.039	0.47/0.37/0.026	(0.26/0.69K0.07
W-046-Fe/V-001	0.65/0.06	0.37/0.056	N/A
W-047-Cu/Ni/2r-001	1.9/1/0.00021	2.1/0.47/0.00025	2.5/<1/<1
W-048-Ti-004	0.00020	0.00038	N/A
W-049-V-003	0.00030	0.00078	N/A
W-050-Ti/V-001	0.00020/0.0003	0.0002/0.0041	<0.5/<0.5
W-051-Cu/Ti-001	1.9/0.2	1.62/0.112	4.0/0.36
W-052-Ni-004	10	5.4	4.0
W-053-Poly	N/A	N/A	N/A
W-054-00-000	N/A	N/A	N/A
₩-055-Cu-004	0.1	0.06	<1 (0.5)
W-056-Cu-005	60	ŶŬ	70 (86)
W*-057-00-000	N/A	N/A	N/A
W*-058-00-000	N/A	N/A	N/A
W*-059-00-000	N/A	N/A	N/A
W-06C-00-000	N/A	N/A	N/A
W-061-Cr/Ti-001	Cr: 1.1 Ti: 0.011	Cr: 1.0 Ti: 0.009	Cr: 1.0 (1.1) Ti:<1.0 (4.2)
W-062-N/Cu-001	2.5	2.0	2.0 (4.7)
W-063-N/Cr-001	0.83	0.88	1.0
W-064-N/Mn-001	1.0	0.64	2.0 (0.6)
W-065-N/Ti-001	0.20	0.17	0.75*** (0.09
W-066-Ti-005	0.033	0.027	<0.2

69

the second of the second of

TABLE 10. (continued)

.

÷

r ...

rush to the solution

.

Ingot Co Identification 1	Target oncentration O ¹⁵ atoms/cm ³	Calculated Concentration 10 ¹⁵ atoms/cm ³	Measured Concentration 10 ¹⁵ atoms/cm ³
W-067-Cr/Mn/Ti-001	Cr: 0.44 Mn: 0.50 Ti: 0.0033	Cr: 0.3 Mn: 0.36 Ti: 0.0022	Cr: 0.3 (0.25) Mn: 0.7 (0.66) Ti:<0.2 (<0.2)
W-068-Cr-004	1.0	1.0	1.0 (0.44)
W-069-Fe-004	0.98	0.92	< 1.5 (1.1)
W-070-A1-003	50 (4.75)**	20 (1.9)**	100 (3.0)**
W-071-00-000	None	N/A	N/А
W-072-Cr-005	0.4	0.21	0.28
W-073-Cr/Mn/Ni/Ti/V	-001		
	Cr: 0.48 Mn: 0.46 Ni: 2.0 Ti: 0.0024 V: 0.004	Cr: 0.34 Mn: 0.31 Ni: 1.3 Ti: 0.0030 V: 0.007	Cr: C.28 (0.17) Mn: O.8 (0.28) Ni:<2.0 (10) Ti:<0.35 (<0.3) V:<0.35
W-074-Cr/Mn/Ni/Ti/V-	-002		
	Cr: 0.08 Mn: 0.08 Ni: 0.5 Ti: 0.00033 V: 0.0006	Cr: 0.054 Mn: 0.64 Ni: 0.28 Ti: 0.001 V: 0.0015	Cr: 0.25 Mn: 0.25 Ni:<2.0 Ti:<0.25 V: <0.25
W-075-Ti/V-002	Ti: 0.056 V: 0.1	Ti: 0.042 V: 0.11	Ti:く0.25 マ: く0.25
K-076-Poly-002	None	א/א	N/A
W-077-Mo-001	0.0042	0.0027	〈 0.3 (0.0042)
W-078-00-000	None	N/A	None
W-080-Ph-001	0.6	0.7	0.8 **
V-081-N/Ni-001	2.3	0.65	<2
W-082-N/V-001	0.4	0.475	0.85
W-083-N/Fe-001	1.0	0.86	(1.5 (1.0)
W-084-N/A1-001	50 (4.7)**	22 (2.1)**	40 (<2.5)**
W-085-N/Zr-001	0.0007	0.0005	< 0.015 (< 0.011)
W-086-C-001	300	N/A	200-300
W-087-Ca-001	1.0	0.13	?
W*-088-Cr-001	0.5	0.62	3.3
W*-089-Cu-001	2.3	2.13	0.8 (2.5)
W*-090-Mn-001	0.7	0.52	2.75 (U.ó9)
W-091-Cr/Mn-002	Cr: 0.5 Mn: 0.3	0.3 0.3	1.0 2.75 (-70.5)

70

• - /

2 -Sec. and

1

Ingot Con Identification 10	Target ncentration ¹⁵ atoms/cm ³	Calculated Concentration 10 ¹⁵ atoms/cm ³	Measured Concentration 10 ¹⁵ atoms/cm ³
W-092-Ph-002	28	N/A	27-30 **
K-093-Mn-004	0.66	0.46	2.75 (0.75)
W-094-Mn-005 (Poly)	0.9	0.63	2.75 (1.3) (0.76)
W-095-Mn-006 (F)	0.5	0.42	2.75 (1.0)
W-096-Mn-007 (S)	0.63	0.55	0.25 (0.6)
W-097-00-000	None .	N/A	N/A
W-098-Mo-002	0.00092	0.00042	∠0. 3
W-099-F2-001	None	N/A	N/A
W-100-Cu/Ti-002	Cu: 1.0 Ti: 0.033	Cu: 1.25 Ti: 0.04	Cu: 0.5 Ti: < 0.3
W-101-FZ-002	None	N/A	N/A
W-102-Ti-006 (Poly)	0.11	0.1	0.25
W*-103-Ti-001	0.167	0.13	0.25
∷-104-Cu/Ti-003	Cu: 2.0 Ti: 0.14	Cu: 2.2 Ti: 0.08	Cu: 4.0 Ti: 0.25
W*-103-V-001	0.4	0.7	0.85
W-106-N/A1-002	6.6	2.3	8.3 (0.7)**
W-107-FZ/A1-001	30	25	128 (12)**
W-108-N/V-002	0.03	0.098	0.2
W-109-C-002	〈 20-140	N/A	<20-140
W-110-Fe-001	0.8	0.67	〈 2.0
W-111-Cu/V-601	2.5/0.3	2.5/0.34	2.6/0.25
W-112-Ta-001	0.004	0.0028	∢ 0.5 (0.00083)
W-113-F2/Cr-001	0.8	0.48	1.0
W-114-00-000		N/A	N/A
W-115-N/Cu-002	10		4.0
W*-116-Ph-001	35	N/A	(100)**
W-117-00-000		N/A	N/A
W-118-Ph-003	70	N/A	(140)**
W-119-N/Fe-002	0.3	<i>\ 1</i>	< 3
W-120-N/Cr-002	0.3	0.23	1.0
W-121-N/Ti-002	0.039	0.63	< 1
W-122-Ti-007	0.084	0.08	< 3
W-123-Ti-008	0.105	0.10	< 3
W-124-Mo-003	0.000018	0.000018	(0.2
W-125-Mo-004	0.00006	0.00024	<0.2

71

:.

Table 10. Ingot Impurity Concentration

Ingot Identification	Target Concentration <u>λ10¹⁵ atoms/cm³</u>	Calculated Concentration X10 ¹⁵ atoms/cm ³	Mass Spec. Analysis <u>X10¹⁵ atoms/cm³</u>
W-126-Multi-001	#	#	ţ!
W-127-FZ/Ti-001	0.039	0.012	<3
W-128-Ta-002	0.0008	0.0022	<0.5
W-129-00-000 (7.6 cm.)	NA	NA	NA
W-130-00-000 (7.6 cm.)	NA	NA	NA
W-131-Mn-008 (7.6 cm.)	0.6	0,55	0.55
W-132-Ta-003	0.000037	0.00017	<0.5
W-133-00-000	NA	NA	NA
W-134-Ti-009	0.05	0.03	<0.25
W-135-Fe-005	1.0	0.78	<1.5
W-136-Fe-006	0.3	0.24	<1.5
W-137-Ti-010	0.21	0.21	<0.25
W-138-Mo-005	0.001	0.0008	<0.5
W-139-Mo-006	0.0042	0.0054	<0.5 (0.0073)
W-140-Ti-011 (7.6 cm.)	0.18	0 18	<0.25
W-141-Mo/Cu-001	0.004/4.42	0.003/3.68	<0.5/4.00
w-142-00-000	NA	NA	NA
₩-143-Ti-002	0.20	0.17	<0.25
★ ₩-144-Mo-001	0.0042	0.0044	<0.5
W-145-W-001	0.00085	0.00072	<0.15 (0.00085)
W-146-Co-001	1.5	1.1	0.55 (3.0)
W-147-N/Ni-002	0.4	0.33	<1.5 (1.3)
W-148-N/Mn-002	0.60	0.76	0.55
W-149-N/Fe-005	J.60	0.58	<1.5 (0.78)
W-150-N/V-003	0.03	0.03	<0.15
W-151-00-000	NA	NA	NA ++
W-152-T1-001	0.2	0.22	<0.25 ++ (0.12)
W-153-N/T1-003	0.01	0.017	<0.25
W-154-N/Cr-003	0.55	0.71	0.35 (0.26)
W-155-N/Mo-001	0.001	0.001	<0.50
W-156-N/Mc-00?	0 004	0.003	<0.50
W-157-N/Ti/V-001	Ti: 0.10	0.08	<0.25
	V· 0.10	0.12	<0.15

2

TABLE 10. (continued)

Ingot Identification	Target Concentration X10 ¹⁵ atoms/cm ³	Calculated Concentration X10 ¹⁵ atom3	Mass Spec. Analysis X10 ¹⁵ atoms/cm ³
W-158-N-Ti/V/Cr-001	Ti: 0.05	0.05	<0.25
	v: 0.05	0.05	<0.15
	Cr: 0.60	0.55	0.33
W-159-N/Cr/Mn/Ti/V-001	Cr: 0.4	0.35	0.20
	Mn: 0.4	0.32	0.25
	Ti: 0.02	0.02	<0.25
	V: 0.02	0.02	<0.15
W-160-T1-001	0.2	0.17	<0.25
** ₩-161-Ti-002	0.02	0.03	<0.2 +
W-162-Ni/Ti-001	Ni: 1.0	1.21	<1.5
	Ti: 0.2	0.16	<0.25
W-163-N1/V-001	Ni: 1.0	1.01	<1.5
	V: 0.4	0.44	0.15
W-164-Ni/Mo-001	Ni: 1.0	1.23	<1.5
	Mo: 0.004	0.004	<0.5
W-165-Co-002	Co: 0.30	0.29	<0.55
W-166-Fe-007	Fe: 0.9	1.06	<1.5
W-167-Nb-001	0.044	0.044	<0.15
W-168-Ph-002	31	NA	(105)**
W-169-Ph-004	40	NA	(141)**
W-170-Ph-095	56	NA	(150)**
W-171-W-002	0.0015	<pre>Incomplete ##</pre>	<0.15
W-172-Cu-006 (7.6 cm)	10	32	24
W-173-Fe-008 (7.6 cm)	0.64	0.51	<1.5
W-174-Ta-004	0.00084	0.00093	<0.50
W-·175-W-003	0.00027	0.00029	<0.15
W-176-00-000	NA	NA	NA
W-177-N/Cr/Mn-001	Cr: 1.0	1.20	1.0
	Mn: 1.3	1.26	2.7
W-178-N/Mn/Ti-001	Mn: 1.0	0.86	2.8
	Ti: 0.1	0.08	:0.25
W-179-Ph-006	21	NA	(73)**
W-180-T1-001	0.2	0.13	<0.25
W-181-Cr-006	1.0	1.04	1.0

73

ź

۴.

TABLE 10. (continued)

л,

Ingot Identification	Target Concentration X10 ¹⁵ atoms/cm ³	Calculated Concentration X10 ¹⁵ atoms/cm ³	Mass Spec. Analysis X10 ¹⁵ atoms/cm ³
W-182-Cr-007	3 .25	0.37	0.65
W-183-ND-002	0.009	0.009	<0.15
₩-184-Pd-001	6.5	6.4	6.5
W-185-Cu/Ti-004	Cu: 1.7	1.2	<0.80
	Ti: 0.2	0.15	<0.25
W-186-Co-003	0.027	0.027	<0.55
W-187-Co-004	0.135	0.14	<0.55
W-188-W-004	0.00014	C.0002	<0.15
W-189-Nb-003	0.002	0.002	<0.15
W-190-Cu/Zr-001	Cu: 2.0	1.38	2.7
	Zr: 0.0014	0.0012	<0.6
W-191-Cu/Ta-001	Cu: 2.0	0.78	2.7
	Ta: 0.00084	0.00068	<0.5
W-192-Ag-001	2.25	1.91	2.25
W-193-Sn-001	5635	4057	5635
W-194-Ti-012	0.002	0.003	<0.25
W-195-Ti/V/Mo-001	Ti: 0.063 V: 0.003 Mo: 0.0006	0.003 0.003 0.00049	<0.25 <0.15 <0.5
W-196-Ti/V/Mo/Ta-001	Ti: 0.003 V: 0.003 Mo: 0.0006 Ta: 0.0003	0.0033 0.0034 0.00055 0.00055	<0.25 <0.15 <0.5 <0.5
W-197-Ti/V/Mo/Ta/Cu-001	Ti: 0.003 V: 0.003 Mo: 0.0006 Ta: 0.0003 Cu: 2.0	0.004 0.0028 0.00053 0.00051 1.3	<0.25 <0.15 <0.5 <0.5 0.8

* Low resistivity p-type ingot ($\leq 1 \ \Omega$ -cm).

++ 30 Ω -cm p-type ingot.

,

• . .

ł

** Value based on resistivity measurement.

Value in parenthesis based on Neutron Activation Analaysis. Value without parentheses + based on SSMS.

2.

Ň

see data sheets for 10 impurities ## No melt sample available

والمقوية مسيوية

*** High Ti value possibly due to vacuum look in M.S.

. . 🕰

.

4.8 Best Estimate: of Impurity Concentrations in Silicon Ingots

1.1.1

າ ເປ In Table 1! we present the best estimate of the impurity contents of each ingot based on the current total data available. Incorporated in the estimate is the degree of reliability in the effective segregation coefficients. It is the best estimated value which is used in all analyses drawn throughout the rest of the report. For ingots with impurity concentrations so low that no direct measurement was possible, either no value is shown in the table or the upper limit is quoted.

Bearing in mind the reliability of the analytical techniques, the total number of measurements for a given impurity and expected experimental errors we have also estimated the approximate percentage errors in the best estimate values; these are:

Ag+40	Mg+50,-100	V <u>+</u> 40
<u>B+15</u>	Mn+25	₩ <u>+</u> 40
C <u>+</u> 50	Mo <u>+</u> 30	2 n+50 , -100
Ca+50,-100	Nb+50,-100	2 r+50,-1 00
Co <u>+</u> 70	Ni <u>+</u> 40	
Cu <u>+</u> 40	P+15	
Cr+35	P4 <u>+</u> 60	
Fe <u>+</u> 35	Sn+60	
	Ta <u>+</u> 40	
	Ti+30	

TABLE 11. Best Estimate of Impurity Concentrations

ţ

• • • • • • • • • •

7

•

ъ. -**4**

.

_	Best Estimate of
Ingot Identification	Impurity Conc. (10 ¹⁵ atoms/cm ³)
Identification	
W-001-00-000	~~
W-002-00-000	
W-003-00-000	
W-004-Cr-001	1.0
W-005-Mn-001	1.3
W-006-N1-001	1.6
W-007-Cu-001	1.7
W-008-T1-001	0.20
W-009-V-00'	0.4
W-010-N1-002	16
W-011-Zr-001	<0.0007
W-012-Cr-002	0.20
W-013-Mn-002	0.25
W-014-00-000	
W-015-Zn-001	<0.001
W-016-Fe-001	0.9
W-017-Cu-002	19
W-018-Fe-002	1.7
W-019-Cu-003	0.4
W-020 -00-000	
W-021-Mg-001	0.003
W-022-00-000	
W-023-00 -000	
W-024-Mg-002	0.032
W-025-00-000	
W-026-Mn-003	0.012
W-027-Mn/Cu-001	1.3/1.7
W-028-A1-001	26
W-029-Cr-003	0.912
W-030-Cr/Cu-001	1.0/1.7

Table 11. Best Estimate of Impurity Concentrations (cont)

1

3

,

. . . .

•

•

: :

•

ļ

Ψ.,

÷ ۲

۲.

Ingot Identification	Best Estimate of Impurity Conc. (10 ¹⁵ atoms/cm ³)
W-031-Cr/Mn-001	1.0/1.3
w-032-Mg-003	0.32
W-033-T1-002	0.002
w-034-00-000	
W-035-V-002	0.004
W-036-2r-002	<0.0014
W-037-Zr/Ti-001	\0.0007/0. ²²
W-038-A1-002	60
W-039-N1-003	32.8
W-040-Cr/Ni-001	0.8/12.8
W-041-Ni/Cr/Cu-001	12.8/0.8 /1.7
W-042-Ti-003	0.04
W-043-Fe/Ti-001	0.56/0.033
W-044-Fe-003	0.017
W-045-Cr/Fe-Ti-001	0.65/0.43/0.039
W-046-Fe/V-001	0.57/0.07
W-047-Cu/N1/Zr-001	1.7/4.7/<0.00021
W-048-T1-004	0.0002
W-049-V-003	0.0004
W-050-T1/V-001	0.0002 /0.0004
W-051-Cu/Ti-001	1.7/0.20
W-052-N1-004	33.6
W-053-Poly	
W-054-00-000	
W-055-Cu-004	0.05

Table 11. Best Estimate of Impurity Concentrations (cont.)

. . . .

- `

5 et

•

.

.

ž

.....

:

ā

ı.

3

.

÷,

محک

Ingot Identification	Best Estimate of Impurity Conc. (10 ¹⁵ atoms/cm ³)
W056-Cu-005	65
w-057-00-900	
W-058-00-000	
w-059-00-000	
W-060-00-000	
W-061-Cr/Ti-001	1.0/0.11
W-062-N/Cu-001	2.5
W-063-N/Cr-001	0.3
W-064-N/Mn-001	1.0
W-065-N/Ti-001	0.20
W-066-Ti-005	0.033
W-067-Cr/Mn/Ti-001	0.4 0.5 0.0033
W-068-Cr-004	1 ,p
W-069-Fe-004	1.0
W-070-A1-003	50
W-071-00-000	
W-072-Cr-005	0.4
W-073-Cr/Mn/Ni/Ti/V-001	0.4 0.4 8.1 0.0024 0.004
W-074-Cr/Mn/Ni/Ti/V-002	0.08 0.08 2.0 0.00033 0.0006

Table 11 . Best Estimate of Impurity Concentrations (cont.)

-

e •

and the second second

.

.

· _ :

Ingot Identification	Best Estimate of Impurity Conc. <u>(10¹⁵ atoms/cm³)</u>
W-075-Ti/V-002	.056 0.1
W-076-Poly-2	
W-077-Mo-001	0.0042
w-078-00-000	
W-079-00-000	
W-080-Ph-001	0.7
W-081-N/Ni-001	6.9
W-082-N/V-001	0.4
W-083-N/Fe-001	1.0
W-084-N/A1-001	50
W-085-N/Zr-001	<0.0007
W-086-C-001	200–400
W-087-Ca-001	?
W*-088-Cr-001	0.5
W*-089-Cu-001	2.0
W*-090-Mn-001	0.7
W-091-Cr/1/n-002	0.5/0.3
W-092-Ph-002	28
V-093-Mn ∪04	0.7
W-094-Mn-005/Poly	0.9
W-095-Mn-006(F)	1.0
W-096-Mn-007(S)	0.63
W-097-00-000	
W-098-Mo-002	0.00092
W-099-Fz-001	

Table 11. Best Estimate of Impurity Concentrations (cont.)

. •

4

f....

Ingot Identification	Best Estimate of Impurity Conc. (10 ¹⁵ atoms/cm ³)
W-100-Cu/Ti-002	1.0/0.033
W-101-FZ-002	
W-102-Ti-006/Poly	0.11
W*-103-Ti-001	0.167
W-104-Cu/Ti-003	2.0/0.14
W*-105-V-001	0.4
W-106-N/A1-002	10
W-107-FZ/AJ-001	30
W-108-N/V-002	0.08
W-109-C-002	<20-140
W*-110-Fe-001	8.0
W-111-Cu/V-001	2.5/0.3
W-112-Ta-001	0.00083
W-113-FZ/Cr-001	0.8
W-114-00-200	
W-115-N/Cu-002	10
W*-116-Ph-001	100
W-117-00-000	
W-118-Ph-003	140
W-119-N/Fe-002	0.3
W-120-N/Cr-002	0.3
W-121-N/T1-002	0.039
W-122-Ti-007 (F)	0.089
W-123-T1-008 (S)	0.105

ŧ

1.1

Table 11. Best Estimate of Impurity Concentrations (cont.)

Ļ

- -

1

2

Ingot Identification	Best Estimate of Impurity Conc. (10 ¹⁵ atoms/cm ³)
W-124-Mo-003	0.000018
W-125-Mo-004	0.0003
W-126-Multi-001	See Data Sheet
W-127-FZ/Ti-001	0.039
W-128-Ta-002	0.000168
W-129-00-000 (7.6 cm)	NA
W-130-00-000 (7.6 cm)	NA
W-131-Mn-008 (7.6 cm)	0.55
W-132-Ta- `3	0.000042
W-133-00-000	NA
W-134-Ti-J09	0.C3
W-135-Fe-005	0.78
W-136-Fe-006	, 14
W-137-Ti-010	0.21
W-138-Mo-005	0.001
W-139-Mo-006	0.0042
W-140-Ti-001 (7.6 · m)	0.18
W-141-Mo/Cu-001	0.004 /4.4
W*-142-00-000	NA
W*-143-T1-002	0.20
W-144-Mo-00 T	0.004
W-145-W-001	0.00085
W-146-Co-001	3.0
W-147-N/Ni-002	1.6
W-148-N/Mn-002	0.60

Table ¹¹ . F	Best	Estimate	of	Impurity	Concentrations	(cont.))
-------------------------	------	----------	----	----------	----------------	---------	---

ł

:

:

₹

٢,

Ingot Identification	Best Estimate of Impurity Concentration (X10 ¹⁵ atoms/cm ³)
W-149-N/Fe-003	0.60
W-150-N/V-003	0.03
w**-151-00-000	NA
W**-152-Ti-001	0.21
W-153-N/Ti-003	0.013
W-154-N/Cr-003	0.5
W-155-N/Mo-001	0.001
W-156-N/Mo-002	C.004
W-157-N/Ti/V-001	0.08/0.12
W-158-N/Ti/V/Cr-001	0.05/0.05/0.55
W-159-N/Cr/Mn/Ti/V-001	0.35/0.36/0.02/0.02
W*-160-Ti-C01	0.17
W**-161-Ti-002	0.03
W-162-Ni/Ti-001	4.0/0.16
W-163-Ni/V-001	4.0/0.44
W-164-Ni/Mo-001	4.0/0.004
W-165-Co-002	0.6
W-166-Fe-007	1.06
W-167-ND-001	<0.01
W*-168-Ph-672	110+
W*-169-Ph-004	136+
W-170-Ph-005	150+
W-171-W-002	0.0015
W-172-Cu-006 (7.6 cm)	24.0
W-173-Fe-008 (7.6 cm)	0.51
W-174-Ta-004	0.00084
W-175-W-003	0.00027

Table 11. Best Estimate of Impurity Concentrations (cont.)

ς,

2

*

Ì,

• ...-

î,

:

\$

÷

. .

Ingot Identification	Best Estimate of Impurity Concentrations (X10 ¹⁵ atoms/cm ³)
W-176-00-000	NA
W-177-N/Cr/Mn-001	1.20/1.26
W-178-N/Mn/Ti-001	0.86/0.08
W*-179-Ph-006	NA
W*-180-Ti-001	0.13
W-181-Cr-006	1.04
W-182-Cr-007	0.45
W-183-Nb-002	<0.002
W-184-Pd-001	6.5
W-185-Cu/Ti-004	Cu: 1.2 Ti: 0.16
W-186-Co-003	0.054
W-187-Co-00 4	0.28
W-188-W-004	0.0002
W-189-Nb-003	<0.0003
W-190-Cu/Zr-001	Cu: 2.0 Zr: <0.0012
W-191-Cu/Ta-001	Cu: 2.0 Ta: 0.00068
W-192-Ag-001	2.20
W-193-Sn-001	4846
W-194-Ti-012	0.003
W-195-Ti/V/Mo-OOl	Ti: 0.003 V: 0.003 Mo: 0.0006
W-196-Ti/V-Mo/Ta-O01	Ti:0.003V :0.003Mo:0.0006Ta:0.0003

Ingot Identification	Best Estimate of Impurity Concentrations (X10 ¹⁵ atoms/cm ³)
W-197-Ti/V/Mo/Ta/Cu-001	Ti: 0.003 V: 0.003 Mo: 0.0006 Ta: 0.0003
	Cu: 2.0

, A - 5 - 53

Table 11. Best Estimate of Impurity Concentrations (cont.)

`

, ·

-

۲.

* Asterisk indicates low resistivity p-type ingot (\leq 1 ohm-cm)

** 30 ohm-cm o-type ingot

•

1451. · · · · · · · · · ·

and the second

+ Value based on resistivity measurement

4.9 DLTS Spectra for Selected Impurities

•

S

In Figures 2! through 26 are depicted typical DLTS impurity spectra for a number of the major metal contaminants introduced into silicon.

.

د الله الم الم

DLTS Spectra for V-Induced E_V + 0.42 eV Trap (Ingot-09) Figur 1

•

3 ° - # - 7

3

.

Curve 719697-B

۹,

. . . .

2

); ;

Ŧ,

Ï

، بور مور

1

,

1

: `

and the

.

,

.4

DLTS Spectra for Mo-Induced E_V + 0.30 eV Trap (Ingot-77) Figure 24

۰.

ε

ť.

.

DLTS Spectra of Al-Induced E_V + .185 eV and E_V + 0.51 eV Traps (Ingot-38) Figure 25

• • • • •

5 X.

•••••

.

•

a same

ľ

•••

Curve 719699-A

Figure 26 DLTS Spectra of Nb-Induced $E_V + 0.12$ eV Trap

4.10 Deep Levels and Trap Densities Measured by DLTS on As-Grown Ingots

ŝ

r,

The deep levels identified in Czochralski ingots and their densities are listed in Table 12. The data were obtained by deep level transient spectroscopy of Ti-Si (p-type) or Al-Si (n-type) Schottky barriers formed on wafers cut from the ingots. The techniques and data analysis are described in Section 3.3.1. Where a dash appears in the table, spectroscopy was performed but the deep level concentration was below the detection limit of the method.

Ingot Identification	Trap Conter eV	$\frac{\text{Trap}}{\text{Conceptration}} \\ \frac{N_{T}}{N_{T}} $	Impurity Concentration (10 ¹⁵ atoms/cm ³)	
004-Cr	E _V +0.22 E _V +0.31	1.24x10 ¹³ 1.15x10 ¹⁴	1.0	
005-Mn	_	-	1.3	
008-Tí	e _v +0.30	6.7x10 ¹³	0.2	
009-V	E _v +0.42	9.0x10 ¹³	0.4	
010-Ni	-	-	4.0	
012-Cr	E _v +0.31	6.05x10 ¹³	0.2	
013-Mn	E _V +0.38	3.6x10 ¹²	0.25×10^{14}	
015-2n-00	-	-		
		10	.032	
029-Cr	Ev+0.31	2.7×10^{12}	.012	
030-Cr/Cu	E _V +0.22 E _V +0.31	5.27x10 ¹² 2.57x10 ¹⁴	1/1.7	
031-Cr/Mn	E _v +0.31	0.95×10^{14}	1/1.3	
033-T1	E _v +0.30	7.2x10 ¹¹	.0020	
035–V	v ^{+0.42}	5.5x10 ¹¹	.004	
036-Zr	-	-	<.0014	
038 <i>-</i> Al	E _v +0.13 E _v +0.51	5.7×10^{11} 2.5 \times 10^{11}	60	
039-N1	-	-	8	
042-T1	E _v +0.30	9.2x10 ¹²	0.04	
048-Ti	-	-	.0002	

TABLE 12 Deep Levels and Trap Center Concentrations in As-Grown Silicon Ingots

.

•

•

Ingot Identification	Trap Center eV	Trap Concentration N _T (em ⁻¹)	Impurity Concentration (10 ¹⁵ atoms/cm ³)
056-Cu			65
061-Cr/Ti	E _v +0.22	9.1×10^{12}	1/0.11
	E _v +0.31 E _v +0.30	4.1×10^{12}	
063-N/Cr	-	-	0.8
064-N/Mn	-	-	1.0
065-N/Ti	E _C 26	1.0×10^{14}	0.20
069-Fe	Ev+.42	1.32×10^{12}	1.0
072-Cr	E _V +0.22 E _V +0.31	1.65x10 ¹² 2.8x10 ¹³	0.4
073-Cr/Mn/Ni	Ev+.22	1.65×10^{12}	0.4/.4/2/ 0024
Ti/V	Ev+.31	3.51×10^{13}	.004
075-T1/V	E _V +.42 E _V +.30	1.24×10^{12} 1.0×10^{13}	.056/0.1
076-Poly	-	-	
077-Мо	E _V +.30	4.16×10^{12}	.0042
081-N/Ni	-	_	1.7
082-N/V	E _C 22 E _C 46	9.8×10^{13} 1.3 \text{3x10}^{14}	0.4
083-N/Fe	-	-	1
084-Al	E _V +.43	7.3x10 ¹¹	50
093-Mn	-	-	0.66
095-Mn	-	-	1.0

TABLE 12 Deep Levels and Trap Center Concentrations in As-Grown Silicon Ingots (Continued)

.

States and a second second

X.

	Ingot Identification	Trap Center eV	Trap Concentration N _T (cm)	Impurity Concentration (10 ¹⁵ atoms/cm ³)	
-	096-Mn	-		0.63	
	100-Cu/Ti	Ev+0.30	1.04×10^{13}	1/.033	
	102-Ti-Poly	E _v +0.30	$4.6 \pm 2 \times 10^{13}$.11	
	103 [*] -Ti	-	-	.167	
	104-Cu/Ti	Ev+0.30	3.6x10 ¹³	2.0/0.14	
	105-v [*]	-	-	0.4	
	106-N/AL	-	-	10	
	108-N/V	E _C 22	3.4×10^{13}	.08	
		E46 C	3.4×10^{13}		
	111-Cu/V	E _V +0.42	2.6×10^{13}	2.5/0.3	`
	112-Ta	_	-	<.004	
	113-Cr FZ	Ev+0.31	5.0x10 ¹³	0.8	
	119-N/Fe	-	-	0.3	
	120 N/Cr	-	-	0.3	
	121-N/Ti	E _C 26	1.77×10^{13}	0.039	
	122-Ti	E _V +0.30	3.6x10 ¹³	.084	
	123 - Ti	F _V +0.30	4.0x10 ¹³	.105	
	124-Mo			.00046	
	127-FZ Ti	E _V +0.30	2.96×10 ¹³	.039	
	128-Ta	-	-	<.0008	
	131-Mn	-	-	.55	
	132-Та	-	-	.000042	

TABLE 12 Deep Levels and Trap Center Concentrations in As-Grown SiliconIngots (Continued)

•

Ingot Identification 135-Fe 137-Ti E _V 138-Mo E _V 139-Mo E _V 141-Mo/Cu E _V 145-W E _V 146-Co	Trap Center eV - .+.30 .+0.30 .+0.30 .+0.30	$ \frac{\text{Trap}}{\text{Concentration}} \\ \frac{N_{T} (\text{cm}^{-})}{-} \\ 8 \times 10^{13} \\ 1.0 \times 10^{12} \\ 4.5 \times 10^{12} \\ 4.45 \times 10^{12} $	Impurity Concentration (10 ¹⁵ atoms/cm ³) .78 .21 .001 .0042 .004/4.0
135-Fe 137-Ti E _V 138-Mo E _V 139-Mo E _V 141-Mo/Cu E _V 145-W E _V 146-Co	- ,+0.30 ,+0.30 ,+0.30 ,+0.30	$ 8 \times 10^{13} 1.0 \times 10^{12} 4.5 \times 10^{12} 4.45 \times 10^{12} $.78 .21 .001 .0042 .004/4_0
137-Ti E _V 138-Mo E _V 139-Mo E _V 141-Mo/Cu E _V 145-W E _V 146-Co E	,+.30 ,+0.30 ,+0.30 ,+0.30 ,+0.12	8×10^{13} 1.0×10^{12} 4.5×10^{12} 4.45×10^{12}	.21 .001 .0042 .004/4.0
138-Mo E _V 139-Mo E _V 141-Mo/Cu E _V 145-W E _V 146-Co	,+0.30 ,+0.30 ,+0.30	1.0x10 ¹² 4.5x10 ¹² 4.45x10 ¹²	.001 .0042 .004/4_0
139-Mo E _V 141-Mo/Cu E _V 145-W E _V 146-Co	,+0.30 ,+0.30	4.5x10 ¹² 4.45x10 ¹²	•0042 •004/4=0
141-Mo/Cu E _V 145-W E _V 146-Co	,+0.30	4.45×10^{12}	.004/4.0
145-W E _V 146-Co	1 0 12		10011110
146-Co	10.14	7.5x10 ¹²	.00085
	-	-	1.5
147-N/Ni	-	-	0.33
148-N/Mn	_	-	0.60
149-N/Fe	_	-	.60
150-N/V E	-0.22 -0.31	1.1x10 ¹³ 1x10 ¹³	.03
152**-Ti E	, ,+0,30	3.19x10 ¹³	0.21
153-N/Ti E	26	6.2x10 ¹²	0.013
154-N/Cr	-	-	0.50
155-N/Mo	-	-	.001
156-N/Mo	-	-	.004
157-N/Ti/V E	222 246 226	$3.7 \times 10^{13} \\ 3.7 \times 10^{13} \\ 4.8 \times 10^{13}$.08/0.12

TABLE 12 Deep Levels and Trap Center Concentrations in As-Grown Silicon Ingots (Continued)

With the state of the state of

Ingot Identification	Trap Center eV	Trap Concentration N _T (cm ⁻¹)	Impurity Concentration (10 ¹⁵ atoms/cm ³)	
160-Ti [*]	E _v +0.30	5x10 ¹³	.17	
177-N/Cr/Mn	-	_	1.2/1.26	
178-N/Mn/Ti	Е _с 26	4.6×10^{13}	.86/.08	
181-Cr	E _V +0.22 E _V +0.31	2.48×10^{12} 9.9x10 ¹³	1.04	
183-Nb	Ev+.18	1.12×10 ¹²	.002	
186–Co	-	-	.027	
187–Co	-	-	.14	
188-	-	-	.0002	
189-Nb	-	-	.0003	
190-Cu/Zn	-	-	2/<.0012	
191-Cu/Ta	-	-	2/.00068	
192-Ag	-	-	2.2	
193–Sn	-	-	4.846	
194-Ti	E _V +0.30	1.8x10 ¹²	3.0	

TABLE 12	Deep Levels and Trap Center Concentrations in As-Grown Silicon
	Ingots (Continued)

٩.

.

4.11 <u>Deep Levels and Trap Densities Measured by DLTS in Impurity-Doped</u> Solar Cells

In Table 14 are compiled the deep levels and trap densities measured on silicon solar cells fabricated from impurity-doped wafers. The front metal grid was removed from the cells and thirty mil diameter mesas were formed on the device. A Au-Ti contact was used for the front electrode, the Ti-Pd-Ag rear cell contact formed the second electrode. The DLTS procedure and data analysis are described in Section 3.3.1 Where dashes appear in the table the level was below the detection limits of the method.

Ingot ID	Trap Level eV	Trap Concentration
004-Cr	E _v +0.41	4.4x10 ¹²
005-Mn	د. 40.39	3.5x10 ¹²
013-Mn	Е ₀ +0.38	2.7x10 ¹³
018-Fe	E _v +0.40	1.6x10 ¹²
036-Zr	·	
038-AL	E _V +0.43 E _V +0.47	1.2×10^{12} 2.4 \times 10^{12}
077-Мо	E _v +0.30	3.8×10^{12}
082-n/v	E _C 22 E _C 46	1.1x10 ¹³ 9.7x10 ¹²
93-Mn	-	-
96-Mn	-	_
108-V	E _C 22 E _C 46	2.5×10^{12} 2.5×10^{12}
112-Ta	-	-
113-Cr	-	-
123-T1	E _V +0.30	
127-T1	E _V +0.30	
132-Ta	_	
141-Mo/Cu	E _V +0.3	3.73×10 ¹²
146-Co	-	-
152-Ti	E _v +0.30	1.5x10 ¹³
171-W	_	-

TABLE 13 Deep Levels and Trap Center Densities Near the Junction Region of Silicon Solar Cells

- - - -

ł,

.

а \

うさ ちまとう

3

والأرا الإلالة المراجع المراجع

• • • •

ł
4.12 <u>Summary of Deep Levels and Capture Cross Sections for Impurities</u> in Silicon

a and a second a se

. . .

Ţ

· • •

. . .

The impurity-induced deep levels, and their respective capture cross sections measured by DLTS in silicon are collected in Table 14. Derivation of the capture cross section from DLTS data is described in Section 3.3.1.

TABLE 14Measured Energy Levels and Capture Cross Sections for
Impurities in Silicon and Solar Cells

Taanaitu	Measured	Measured 2**
Impdify	Ellergy Levers (ev)	capture cross Sec. cm
Mo	$E_{V} + 0.30$	$\sigma_{\rm p} = 4.3 \times 10^{-16}$ at 177 K
Ti	$E_{V} + 0.30$	$\sigma_{\rm p} = 5.29 \times 10^{-18} {\rm at}$
	$E_{C} - 0.26$	*
V	$E_{c} + .42$	$\sigma_{\rm p} = 8.27 \times 10^{-19}$ at 25K
	E _C 225	$\sigma_{e} = 7.2 \times 10^{-17}$ at 119K
	E _C 46	*
#Mn	$E_{V} + 0.38$	$\sigma_{\rm p} = 8.1 \times 10^{-17}$ at
#Fe	$E_{V} + 0.40$	$\sigma_{\rm p} = 1 \times 10^{-16}$ at
Cr	E _V + .22	*
	E _V + .31	*
Та	E _V + .28	
Al	E _V + .43	
	E _V + .47	
Cu		
Nb	E _V + .18	$\sigma_{\rm p} = 1.32 \times 10^{-16}$ at

* Cross section was greater than 10^{-15} cm² and could not be determined.

Data from solar cells.

** Note these measured cross-sections are obtained under different conditions than those which apply to the operating solar cell and therefore cannot be used to calculate the minority carrrier lifetime which controls solar cell performance.

4.13 Photoconductive Decay Lifetime of Czochralski Ingots and Solar Cells

1

7

Below in Table 15 are listed the measured photoconductive decay lifetimes for both the as-grown impurity doped silicon wafers and for the wafers following POCL₃ or BBr₃ diffusions according to the solar cell process specification. Phase I data (through ingot W052) were taken with a GaAs LED light source. Subsequent measurements, Phases II and III employed a Q-switched Nd:YAG laser. ...arting with ingot W078 calculated values of the wafer diffusion length are tabulated along with measured bulk lifetime data.

TABLE 15

. .

· <u>.....</u> . . .

*

1

Fa

and solutions

. .- .

• • • •

.

. . . .

. . .

Bulk Lifetimes (Photoconductive Decay) for Silicon Ingots Before and After Phosphorus Diffusion

(LED EXCITATION)

Ingot Identification	Lifetime τ(μsec)	(As-Grown) $\sigma(Note 1)$	Lifetime <u>r(µsec)</u>	(Diffused) <u>σ(Note 1)</u>
W001-00000	7.1	1.1(5)	6.9	0.5(3)
W002-00000	5.3	0.6(2)	8.6	1.6(2)
W003-00000	11.6	2.3(2)	8.4	0.7(2)
W004-Cr001	0.35	0.2(3)	1.1	0.2(4)
W005-Mn001	1.8(2)		0.3	0.0(5)
W006-Ni001	11.3	2.7(2)	7.7	0.2(2)
W007-Cu001	6.9	0.9(4)	5.6	3.2(3)
W008-Ti001	2.0	0.5(3)	0.6	0.1(4)
1009-1001	0.4	0.1(3)	<2.2(2)	1.8(5)
W010-Ni002	6.8	2.5(3)	3.4	3.3(4)
W011-Zr001	2.6	0.2(2)	2.4	0.7(4)
W012-Cr002	<0.4	0.1(2)	4.9	1.0(5)
W013-Mn002	1.2(2)	1.0(3)	10.5(2)	4.7(5)
W014-00000	7.5	0.4(2)	8.3	0.1(2)
W015-Zn001	7.2	0.6(2)	5.3	0.4(4)
W016-Fe001	0.5	0.0(2)	3.8	1.5(4)
W017-Cu002	8.8	0.1(2)	7.1	0.7(2)
W018-Fe002	8.]	5.5(2)	0.6	0.3(4)
W019-Cu003	4.3	3.3(2)	5.7	0.5(2)
W020-00000	7.0	1.7(2)	7.3	1.4(2)
W021-Mg001	8.2	0.8(2)	7.7	0.1(2)
W022-00000	7.8	1.0(2)	9.1	0.2(2)
W023-00000	1.93		2.6	0.0(2)
W024-MgD02	7.5	0.9(2)	10.2	0.9(2)
W025-00000	7.6	0.0(2)	12.7	1.0(2)
W026-Mn003	5.1	0.2(2)	9.3	0.0(2)
W027-Mn/Cu001	22.3(2)	2.3(2)	0.5	0.2(3)

TABLE 15 (Continued)

24.1

NS ...

₹

r,

- - • *

• •

Bulk Lifetimes (Photoconductive Necay) for Silicon Ingots Before and After Phosphorus Diffusion (LED EXCITATION)

Ingot Identification	Lifetime τ(μsec)	(As-Grown) <u>σ(Note 1)</u>	Lifetime $\tau(usec)$	(Diffused) <u>σ(Note 1)</u>
W028-A1001	2.9	0.2(2)	1.9	0.0(2)
W029-Cr003	1.1	0.6(2)	6.2	0.4(4)
W030-Cr/Cu001	<0.3	0.0(2)	0.4	0.1(2)
W031-Cr/Mn001	Note 5		<0.3	0.0(2)
W032-Mg003	7.2	1.1(2)	7.1	1.1(2)
W033-Ti002	3.1	0.0(2)	2.9	0.1(2)
W034-0000	21.8	4.2(2)	1.7	0.1(2)
W0 35-V 002	1.2	0.0(2)	1.5	0.2(2)
403 6-Z r002	1.2	0.0(2)	1.0	0.0(2)
W037-Zr/Ti001	0.5	0.1(2)	0.4	0.1(2)
W038-A1002	0.7	0.2(2)	<0.1	0.0(2)
W039-N1002	2.0	0.1(2)	6.5	1.5(2)
W040-Cr/Ni001	~0.2	0.0(2)	1.4	0.4(2)
W041-Ni/Cr/Cu001	<0.2	0.0(2)	0.4	0.3(2)
W042-Ti003	0.8	0.1(2)	0.7	0.1(2)
W043-Fe/Ti001	0.9	0.0(2)	0.5	0.0(2)
W044-Fe003	1.3	0.2(2)	6.6	0.1(2)
W045-Cr/Fe/Ti001	0.1	0.0(2)	1.0	0.8(4)
W046-Fe/V001	<0.1	0.0(2)	<0.1	0.0(2)
W047-Cu/Ni/Zr001	3.4	0.1(2)	2.6	0.1(2)
W048-Ti004	4.30	0.2(2)	5.1	0.4(2)
W049-V003	. 3.7	0.2(2)	4.3	0.1(2)
W050-Ti/V001	1.1	0.1(2)	1.1	0.1(2)
W051-Cu/Ti001	0.5	0.0(2)	1.6	0.3(2)
W052-Ni004	.0.1	0.0(2)	Note 3	

Note 1. Sample size shown in parentheses.

Note 2. Lifetime measurements subject to large errors due to extreme shallow trap density.

Note 3. Polycrystalline ingot -- no evaluation performed.

Note 4. Lifetime measurements not practical due to low resistivity.

Note 5. Lifetime measurements not possible due to very low lifetime $(\Delta v \text{ too small})$.

TABLE 15 (Cont.)

.~ •

~ **、**

Ingot Identification	Lifetime r(usec)	(As-Grown) ơ(Note 1)	Lifetime τ(μsec)	(Diffused) c(Note 1)
W053-00-00	*6.6	0.1 (2)		
W054-0000	*6.3	0.4 (2)	~~	
W055-Cu004	*6.2	0.1 (2)	*7.8	0.6 (2)
W056-Cu005	*6.7	0.3 (2)	*5.6	1.7 (4)
W057-0000	1.84	- (1)	*4.6	0.7 (2)
W058-0000	1.76	0.94(2)	1.78	0.01(2)
W059-0000	Note 2	-	Note 2	
W060-N/000	11.5	0.24(3)	15.7	1.79(4)
W061-Cr/Ti001	Note 2	-	0.60	0.09(2)
W062-N/Cu001	13.6	0.58(2)	12.1	2.01(2)
W063-N/Cr001	1.67	0.11(2)	0.77	0.09(4)
N064-N/Mn001	0.26	0.04(2)	7.64	1.63(5)
W065-N/Ti001	0.16	0.01(2)	0.34	0.21(4)
WC66-Ti005	0.49	0.0 (2)	0.73	0.0 (2)
W067-Cr-Mn/Ti	Notes 2 & 3	-	0.75	0.2 (2)
W068-Cr004	0.03	0.00(2)	0.85	0.1 (2)
W069-Fe004	0.04	0.01(2)	1.80	0.3 (2)
W070-A1003	1.75	0.07(2)	0.88	0.0 (2)
W071-00-000	3.75	0.31(2)	6.43	1.2 (2)
W072-Cr-005	0.06	0.01(2)	1.75	0.04(2)
W073-Cr/Mn/Ni/Ti/V-001	Note 3	-	0.09	0.02(2)
W074-Cr/Mn/Ni/Ti/V-002	0.10	0.01(2)	1.68	0.28(2)
W075-Ti/V-002	0.06	0.01(2)	0.10	0.04(2)
W076-Poly-002	0.48	0.00(2)	2.51	0.37(2)
W077-Mo-001	0.36	0.13(2)	0.31	0.00(2)

RECOMBINATION LIFETIME MEASURED BY PHOTOCONDUCTIVE-DECAY METHOD (Q-SWITCHED Nd:YAG Laser Excitation)

4

e - **

. N, è.

Note 1. Sample size shown in parenthesis Note 2. Insufficient electrical signal for measurement

Note 3. Lifetime measurements subject to large errors due to extreme shallow trap density

* Measured by LED excitation source

TABLE	32	
-------	----	--

RECOMBINATION LIFETIME MEASURED BY PHOTOCONDUCTIVE-DECAY METHOD (Q-Switched Nd: YAG Laser Excitation)

		As Ci	rown	Post D	iffusion
Ingot Identification	Diffusivity D_/D_(cm ² /s) n p	Lifetime τ (μs) r	Diff. Length L (um)	Lifetime Tr ^(µS)	Diff. Length L (m)
 W078-00-000	32.4	8.32	164		. ===
W079-N/00-000	11.7	86.5	308		
W080-Ph-001	32.4	4.39	119	2.48	89.6
W081-N/Ni-001	10.5	5.62	76.8	10.36	104
W082-N/V-001	10.5	0.20	16.2	0.25	16.2
W083-N/Fe-001	11.7	1.55	42.7		
W084-A1-001	32.4	0.97	56.1	1.00	56.9
W085-N/Zr-001	11.7	140	405		
W086-C-001	32.0	3.06	99.0	2.30	85.8
W087-Ca-001	31.9	2.81	94.7	2.08	81.5
W088-Cr-001	15.3	0.01	3.9	2.23	58.4
W089-Cu-001	15.3	2.37	60.2	3.06	68.4
W090 [®] -Mn=001	14.8	0.06	9.4	1.73	50.6
W091-Cr/Mn-002	32.4	0.09	17.1	0.20	25.5
W092-Ph-002	32.2	7.83	159	5.49	133
W093-Mn-004	32.9	0.19 ³	25.0	0.70	48.0
W094-Mn-005	32.4	0.38 ³	35.1	2.58	91.4
W095-Mn-006	32.9	0.15	22.2	0.38	35.4
W096-Mn-007	32.9	0.34 ³	33.4	2.32	87.4
W097-00-000	32.7	4.78	125	2.66	. 93.3
W098-Mo-002	32.4	1.40	67.3	0.89	53.7
W099-Fz-001	32.2	4.34	118	3.12	100
W100-Cu/Ti-002	32.4	0.30	. 31.2	0.37	34.6
W101-Fz-002	32.7	4.30	119	9.58	177
W102-Ti-006	32.9	0.21	26.3	0.29 ³	30.9
W103 [*] Ti-001	15.1	0.12	13.5	0.07	10.3
W104-Cu/Ti-003	33.4	0.16	23.1	0.45	38.8

Note 1.

ないとうともの

Note 2. Insufficient electrical signal for measurement.

Note 3 Lifetime measurements subject to large errors due to extreme shallow trap density.

ORIGINAL PAGE IS

TABLE 15 (Cont.)

. . .

		As Gr	town.	Post Diffusion		
Ingot léertification	Diffusivity D _n /D _p (cm ² /s)	Lifetime T (US) T	Diff. Length L (µm)	Lifetime Tr ^(uS)	Diff. Length L (um)	
W* .05-V-001	14.8	0.07	10.2	0.07	· 10.2	
W106-N/A1-002	11.7	16.56	139			
W 107-Fz/A1-001	25.0	2.61	80.8	1.65	64.2	
W103-N/V-002	11.5	0.72	28.8			
W1C -C-002	32.4	3.05	99.4	1.72	74.7	
₩*1.0-Fe-001	13.8	Note 2		Note 2		
W11:-Cu/V-001	32.9	0.15	22.2	0.16	22.9	
W112-Ta-001	32.4	1.06	58.6	0.68	46.9	
W113-Fz/Cr-001	32.7	0.13	20.6	0.65	46.1	
W114-00-000	7.5	6.75	71.2	Note 2		
W115-N/Cu-002	11.7	8.39	99.1	5 .99	83.7	
V116-Ph-001	21.7	1.61	59.1	2.40	72.2	
W117-00-000	32.4	3.65	109	2.76	94.6	
118-Ph-003	26.8	4.16	106	29.3	280	
119-N/Fe-002	11.7	5,21	78.1	3.20	61.2	
W120-N 'CT-002	11.6			3.19	60.9	
W121-N/Ti-002	11.5			2.13	49.5	
W122-T1-007	32.2	0.68	46.8			
W123-Ti-008	32.4	0.59	43.7	0.41	36.4	
W124-Mo-003	32.6	1.94	79.5	2.18	· 84.3	
W125-Mo- 004	32.4	1.32	65.4	1.46	68.8	
W-126-MULTI-1	32.7	0.09	17.2	0.97	56.3	
W-127-FZ/TI-001	33.2	0.92	55.3	1.08	59.9	
W128-TA-00	32.4	2.62	92.1	1.94	79.3	
W-129-0v-000						
W130-00-000		•				
¹⁰ 31 - Mn - CO8						

RECOMBINATION LIFETIME MEASURED BY PHOTOCONDUCTIVE-DECAY METHOD (Q-Switched Nd: YAG Laser Excitation)

Note 1.

Note 2 isufficient electrical signal for measurement.

Note 3. Lifetime measurements subject to large errors due to extreme shallow trap density.

.

. . .

TABLE 15 (Cont.)

. 1

. .

۲. ۲

, ·

		As Gr	rown	Post Diffusion		
Ingot Identification	Diffusivity D_/D_(cm ² /s) n_p	Lifetime T (µs) T	Diff. Length L (um)	Lifetime Tr ^(µS)	Diff. Length L (um)	
W-132-Ta-003	32.2	2.69	93.1	1.65	72.9	
W-133-00-000	31.9	1.61	71.7	2.80	94.5	
W-134-Ti-009	32.7	0.79	50.8	0.58	43.5	
W-135-Fe-005	32.4	0.34	33.2	1.69	74.0	
W-136-Fe-006	31.4	0.07	14.8	0.59	43.0	
W-137-Ti-010	32.4	0.79	50.6			
W-138-Mo-005	32.7	1.38	67.2	0.97	5.3	
W-139-Mo-006	32.2	0.27	29.5			
W-140-Ti-011						
₩-141						
W-142						
W-143						
W-144						
W-145						
W-146						
W-147-N/Ni-002	11.62			5.79	82.0	

RECOMBINATION LIFETIME MEASURED BY PHOTOCONDUCTIVE-DECAY METHOD (Q-Switched Nd: YAG Laser Excitation)

Note 1.

• 、

Note 2. Insufficient electrical signal for measurement.

Note 3. Lifetime measurements subject to large errors due to extreme shallow trap density.

4.14 Solar Cell I-V Data for Impurity-Doped Ingots

. .

. .

For the solar cell I-V data listed in Table 16 the following test conditions apply: (1) quartz iodine solar spectrum simulator (2) illumination level 91.6 mW/cm², (3) cell area 1.03 cm² and (4) <u>no</u> antireflection coating.

4 . . .

Ingots are listed in chronologic order as they were grown. Column headings are self explanatory. For some ingots PCD lifetime data (Table 15) were also tabulated; PCDB and DCDA refer to wafer lifetimes before and after junction diffusion.

The abbreviations in the table are as follows:

- R calibrated reference devices
- C wafers from ingot center
- T wafers from ingot ingot end (tang)
- S wafers from ingot seed end
- B uncontaminated baseline wafer
- E or N end
- * item deleted from averages

5. SELECTED PROPERTIES OF SILICON

We have tabulated below values for a number of the more commonly used properties of liquid and solid silicon. The data, which were compiled by R. G. Seidensticker, complement the chemical, electrical, and solar cell information which makes up Section 4. Listed with the property data are references to the sources from which the information was obtained. In the second part of the table are listed semiconductor data for silicon. MATERIALS DATA

Silicon: Solid

÷

*

Parameter	Temp (°K)	Value	<u>Ref.</u>
Density	298.2	2.32902 gm/cm^3	(21)
	1685	2.2861	(22)
Heat Capacity	1373	.9811 J/gm-K	(23)
Conductivity, Thermal	300	1.56 W/cm-K	(24)
	1683	0.216	(24)
	1683 <t<800</t	$K = \frac{318}{T}$	
Diffusivity, Thermal	800	$.143 \text{ cm}^2/\text{sec}$	(25)
	1200	.116	
	1685	.0939	
Emissivity (Total)	700	.69	(26)
	1250	.62	(26)
	1500	.4575	(27)
Expansivity, $\frac{1}{x} = \frac{dx}{dT}$	700	4.56×10^{-6}	(28)
Melting Temperature	1685		(29)
Heat of Fusion		1804 J/gm	(30)

Silicon: Liquid

.e.

٩.

7

مير مير

Density	1685	2.49 gm/cm ³	(22)
Heat Capacity	1685	1.05 J/gm-K	(31)
Volume Expansivity, <u>1</u> <u>dV</u> V dT	1685	$1.45 \times 10^{-4} \text{ K}^{-1}$	(32)
Conductivity, Thermal	1685 Corrected	0.67 W/cm-K .60	(33)
Diffusivity, Thermal	1685	∿0.23 cm ² /sec	(34)
Emissivity	1685	0.22	(34)
Resistivity, Electrical	1685	81×10^{-6} ohm-cm	(35)
Surface Tension	1685	719 dyne/cm	(36)
Viscosity	1685	2.9:10 ⁻³ Stokes	(35)

.

ب

Calculated Prandtl Number = .012

SEMICONDUCTOR DATA (Ref.17)

Atomic or Molecular Weight	28.09
Atoms or Molecules/cm ³	5.00×10^{22}
Crystal Structure	Diamond, 8 atoms/unit cell
Lattice constant (Å)	5.43
Density, $\rho(g/cm^3)$	2.33
Energy gap (ev)	1.11
Effective density of states conduction band N (cm ⁻³) valence band N (cm ⁻³) Intrinsic Carrier Concentration	$2.8 \times 10^{19} \\ 1.04 \times 10^{19} \\ 1.45 \times 10^{10}$
Lattice (intrinsic) mobilities (cm ² /v sec) electrons holes	1350 480
Dielectric constant	11.7
Breakdown field (v/µ)	∿30

6. Program Status

k;

.

۳.

All tasks in the Phase III effort have been completed successfully; the milestone chart is illustrated in Figure 27.

يو د م

e • ¥ • * •

~ i ·

2. 20.9

. . .

Figure 27

112

ŧ

*

.

7. REFERENCES

- R. H. Hopkins, et.al, 5th Quarterly Report, Silicon Materials Task, DOE/JPL-954331-77/1, January (1977).
- R. H. Hopkins, et. al, 11th Quarterly Report, Silicon Materials Task, DOE/JPL-954331-78/3 July (1978).
- 3. L. P. Hunt, et al, 4th Quarterly Report, Solar Silicor via Improved and Expanded Metallurgical Silicon Technology DOE/JPL 954559-77/2.
- 4. Silicon Data Sheets, October 1969, AD 698-342.

÷,

5

- Silicon Semiconductor Technology, W. R. Runyun, McGraw-Hill, N.Y. (1965) p. 58, 59.
- 6. Mass Spectrometer Type MS-7 Performance Characteristics, Associated Electrical Industries Ltd.
- 7. General Activation Analysis Data Sheet "Multi-Element Survey Analysis of Silicon," General Activation Analysis, Inc., San Diego, CA.
- C. S. Duncan, et. al, Annual Report, Silicon Web Process Development, DOE/JPL-954654-78/2, April (1978)
- 9. E. Sirtl and A. Adler Z. Metallk. 52, 529, (1961).
- 10. D. V. Lang, J. Appl. Phys. 45, 3014 and 3023 (1974).
- G. L. Miller, D. V. Lang and L C. Kimerling, Ann. Rev. Mater. Sci. 377 (1977).
- C. H. Henry, H. Kukimoto, G. L. Miller and F. R. Merritt, Phys. Rev., B7, 2499 (1973).
- 13. J. W. Chen, A. G. Milnes and A. Rohatgi, Solid S+. Elect 22, 801, (1979).
- 14. M. Wolfe, H. Rauschenbach, <u>Solar Cells</u>, edited by C. E. Backus, IEEE Press, New York, 89 (1976).

7. REFERENCES (Cont.)

- 15. R. J. Stirn, Proc. 9th IEEE Photovoltaic Specialists Conf., Silver Springs, 72 (1972).
- 16. W. Shockley, Bell Syst. Tech. J., 28, 435 (1948).
- A. S. Grove, <u>Physics and Technology of Semiconductor Devices</u>, John Wiley and Sons, Inc., New York (1967).
- A. Neugroschel, F. Lindholm and C. T. Sah, IEEE Trans. on Ele-Devices, ED24, 662 (1977).
- R. H. Hopkins et. al, 14th Quarterly Report, Silicon Materials Task, DOE/JPL-954331-79/2 April (1979).
- R. H. Hopkins, et. al, 8th Quarterly Report, Silicon Materials Task, DOE/JPL-954331-77/4, October (1977).
- 21. A. Smakula and V. Sils, Phys. Rev. 99, 1744 (1955).
- 22. R. A. Logan and W. L. Bond, J. Appl. Phys. 30, 322 (1959).
- D. H. Dennison, private communication to H. R. Shank, Phys. Rev. 130, 1743 (1963).
- 24. C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134A, 1058 (1964).
- Y. S. Touloukian and C. Y. Ho, Eds., "Thermophysical Properties of Matter," 101, p. 160, Plenum, New York (1973).
- 26. V. F. Brekhovskikh, in "Progress in Heat Transfer," P. S. Konakov, Ed., pp. 145-150, Consultants Bureau, New York (1966).
- 27. S. C. Jain et al., J. Physics D: Applied Physics 4, 1207 (1971).
- 28. B. N. Duta, Phys. Stat. Solidi 2 984 (1962).
- 29. R. Hultgren et al., Selected Values of the Thermodynamic Properties of the Elements, ASM.
- 30. M. Olette, Comp. Rend. <u>244</u>, 1033 (1957). (Referenced by Touloukion in Thermophysical Properties of High Temperature Solid Materials, V. 1, p. 878.)

7 REFERENCES (Cont.)

.

2

sa a sugara s

31. P. B. Kantor et al., Ukran. Fiz. Zhur. 5, 358 (1960).

١.

- 32. L. D. Lucas and G. Urtain, Comp. Rend. 255, 2414 (1962).
- 33. Yu. M. Shaskov and V. P. Grishin, Fiz. Tver. Tel. 8, 567 (1966) translated in Soviety Phys., Solid State 8, 447 (1966).
- 34. Calculated Value (R.G.S.)
- 35. V. M. Glasov, Russian Met. and Fuels 5, 56 (1962).
- Yu. M. Shaskov and T. P. Kolesnikova, Russian J. Phys. Chem. <u>37</u>, 1397 (1963).

TABLE 16 SOLAR CELL I-V DATA

. N. -

ې احمد د ا

·, ."

er synakti

and a second and the second second

60105 W004CR001(1E15) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсръ
1 B	22.37	.556	20.56	-7.814	1.51	• 32	.745	9.80	4.53	8.60	6.30
2B*	19.85	.554	18.29	-8.024	1.46	.28	.752	8.74	2.86	8.60	6.30
3B	22.70	.557	20.92	-7.982	1.47	• 25	.752	10.06	3.90	8.60	6.30
4 B	22.37	.557	20.84	-9.083	1.25	.62	.764	10.07	3.90	8.60	6.30
10	17.25	• 525	15.92	-8.404	1.32	• 84	.745	7.13	.91	1.05	• 35
2C	17.50	.530	16.06	-7.803	1.46	-28	.745	7.31	1.04	1.05	.35
3C	14.90	.520	12.95	-5.387	2.44	-1.19	.679	5.57	.78	1.05	• 35
4C	18.37	• 5 3 0	16.98	-8.492	1.31	•79	.748	7.70	1.17	1.05	• 35
5C	16.12	.520	14.^8	-6.024	2.05	33	.697	6.17	.91	1.05	• 35
6C	18.90	.535	17.55	-9.046	1.22	1.11	.749	8.01	1.00	1.05	.35
1 E	18.00	.534	16.75	-9.254	1.19	1.14	.754	7.66	1.04	1.05	.35
2 E	18.75	.534	17.13	-7.636	1.51	•66	•730	7.73	1.04	1.05	.35
3E	18.75	• 5 3 4	17.39	-8.963	1.23	1.20	•745	7.89	.91	1.05	•35
AVERAGE	S: 601	05 BA	ASELINI	E W002 00	000						
	22.48	• 5 5 7	20.77	-8.293	1.41	• 40	.754	9.98	4.11	8.60	6.30
STD	.16	.000	.16	.563	.11	.16	.008	.12	.30	*	*
	501	05 WO	04CR00	1(1E15)							
	17.62	.529	16.11	-7.890	1.53	.50	.732	7.24	.98	1.05	.35
STD	1.28	.006	1.46	1.282	• 4 1	•75	.025	.79	-11	*	×
PERCENT	OF BAS	SELINI	E								
	78.4	95.0	77.6	104.9	108	125.5	97.2	72.6	23.8	12.2	5.6
STD Z	6.3	1.1	7.7	23.0	40	315.6	4.3	8.9	4.5	• 0	•0

n and a second second

÷,

60225A W004CR001(1E15) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

Ţ

-

•

**** ... ------

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
1B	22.20	.559	20.69	-8.873	1.29	•14	.776	10.19	3.90	8.42	11.65
2 B	22.20	.559	20.09	-6.664	1.86	44	.735	9.64	3.90	8.42	11.65
3 B	22.20	.559	20.60	-8.524	1.36	- 28	.764	10.03	4.55	8.42	11.65
4 B	22.20	.559	20.39	-7.559	1.58	15	•754	9.90	3.90	8.42	11.65
5 B	22.55	.559	20.98	-8.688	1.33	.15	.772	10.29	4.16	8.42	11.65
2C	20.70	.525	18.11	-5.201	2.49	-1.74	.703	8.08	.91	1.05	•35
3C	18.00	.525	17.02	-11.430	.91	1.45	•778	7.77	•91	1.05	.35
4C	18.50	• 525	17.25	-9.368	1.15	.95	.760	7.81	1.30	1.05	•35
5C•*	18.65	.519	15.07	-3.667	4.46	-5.35	•635	6.50	• 5 2	1.05	• 3 5
15	18.50	•515	17.04	-7.405	1.52	-1.38	•784	7.90	1.17	1.05	•35
2 S	18.15	• 5 3 0	16.96	-9.501	1.14	.80	.768	7.81	1.17	1.05	• 35
35.*	18.15	.530	14.58	-3.792	4.31	-3.75	.610	6.21	• 26	1.05	• 3 5
4 S	18.75	.530	17.19	-7.479	1.54	29	•753	7.92	1.17	1.05	• 35
1 T	18.25	.523	16.69	-7.529	1.51	.19	•740	7.47	•91	.05	• 35
2 T	18.00	.528	16.65	-8.410	1.32	- 41	.757	7.61	.91	1.05	• 35
3T*	18.00	.263	11.48	-2.774	4.11	-1.47	•415	2.08	•01	1.05	•35
AVERAGES	S: 6023	25A B	ASELINI	E WOO2 00	000						
	22.27	• 5 5 9	20.55	-8.062	1.48	00	.760	10.01	4.08	8.42	11.65
STD	•14	.000	• 30	•833	.21	• 26	.015	.23	.25	*	*
	6023	25A WO	004CR00	01(1E15)							
	18.61	• 5 2 5	17.11	-8.290	1.45	•05	.755	7.80	1.06	1.05	• 3 5
STD	•83	.004	•42	1.734	•45	1.05	.024	.17	.15	*	*
PERCENT	OF BAS	SELINI	E								
	83.5	93.9	83.3	97.2	97	****	99.4	77.9	25.9	12.5	3.0
STD Z	4.3	• 8	3.3	34.4	49	****	5.1	3.6	5.6	• 0	•0

. .

· "-,"

•

۰.

60108 W005MN001(1.3F15) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM⁻⁻2 NO AR COATING

•

- •

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.554	20.54	-7.538	1.57	.61	.728	9.60	5.00	8.60	6.30
18	22.60	• 5 5 0	21.18	-9.427	1.18	.17	.786	10.34	-46	8.60	6.30
2 B	22.40	.550	20.82	-8.466	1.35	12	.777	10.12	.46	8.60	6.30
3B	22.60	.550	21.31	-10.408	1.05	.49	.791	10.40	5.20	8.60	6.30
4 B	22.50	.550	20.93	-8.549	1.33	07	.777	10.17	3.90	8.60	6.30
5Б	22.40	.550	20.92	-9.131	1.23	.31	.776	10.11	5.20	8.60	6.30
10	17.75	.523	16.64	-9.721	1.10	.54	.780	7.66	1.04	.22	1.80
2C	17.00	.515	15.75	-8.652	1.25	.62	•756	7.00	•65	.22	1.80
3C	17.50	.520	16.31	-9.075	1.19	.49	.769	7.40	1.04	.22	1.80
4C	17.50	.520	16.31	-9.075	1.19	.49	.769	7.40	.91	.22	1.80
5C	17.50	.520	16.31	-9.075	1.19	.49	.769	7.40	.91	.22	1.80
1 E	16.75	•515	15.61	-9.143	1.17	.51	.770	7.02	.78	.22	1.80
2 E	17.35	•516	16.06	-8.209	1.34	18	.759	7.28	.91	.22	1.80
3E	16.75	.516	15.63	-9.161	1.17	• 35	.775	7.08	.91	• 2 2	1.80
4 E	17.20	.516	16.11	-9.756	1.08	•77	•774	7.26	.91	- 2 2	1.90
AVERAGE	S: 601	08 B.	ASELIN	E W002 00	0 000	1					
	22.50	.550	21.03	-9.196	1.23	.16	.781	10-23	3.04	8.60	6.30
STD	•09	.000	.18	.704	.11	• 2 3	.006	.12	2.16	*	*
	601	08 WO	05MN00	1(1.3E15))						
	17.26	.518	16.08	-9.096	1.18	.45	.770	7.28	.90	• 2 2	1.80
STD	• 34	.003	.33	-450	.07	.25	.006	.20	.11	*	*
PERCENT	OF BAS	SELINI	E								
	76.7	94.2	76.5	101.1	96	290.5	98.6	71.2	29.4	2.6	28.6
STD Z	1.8	• 5	2.3	12.8	15	822.5	1.6	2.8	27.4	•0	.0

.

:

60114 W006N1001(1.6E15) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

-

.

ID	ISC	VOC	IP	LOC(10)	N	R	FF	Eff	OCD	PCDa	PCDb
IR*	22.90	.550	20.67	-6.669	1.83	03	.722	9.62	5.00	8.60	6.90
18	22.75	.549	21.09	-8-432	1.35	.22	.764	10.09	5.20	8.60	6.90
2 B	22.15	.549	20.38	-7.672	1.52	19	.759	9.76	4.55	8.60	6.90
3B	22.75	.549	21.08	-8.362	1.36	.17	.764	10.09	5.85	8.60	6.90
4B	22.30	.549	20.65	-8.274	1.38	.09	.765	9.90	5.20	8.60	6.90
10	21.65	.535	19.84	-7.593	1.51	• 2 4	.742	9.08	3.90	7.70	11.27
2C	21.65	.539	20.14	-8.755	1.27	• 30	.768	9.48	5.20	7.70	11.27
3C	21.65	.539	19.93	-7.738	1.48	11	.758	9.35	3.90	7.70	11.27
4C	21.65	.539	20.14	-8.755	1.27	• 30	.768	9.48	5.20	7.70	11.27
5C	21.65	.539	19.93	-7.738	1.48	11	.758	9.35	4.55	7.70	11.27
6C	21.65	.535	19.84	-7.593	1.51	• 2 4	.742	9.08	3.25	7.70	11.27
iE	22.70	.545	21.12	-8.849	1.26	• 47	•764	10.00	5.20	7.70	11.30
2 E	22.50	.545	20.85	-8.395	1.35	.26	.762	9.88	5.20	7.73	11.30
3E	22.50	.540	20.70	~7.570	1.52	40	.764	9.81	5.20	7.70	11.30
4E	22.50	• 5 + 5	20.85	-8.395	1.35	.26	.762	9.88	5.85	7.70	11.30
5E	22.40	.540	20.73	8.556	1.31	.71	.749	9.58	4.55	7.70	11.30
5 E	22 - 50	.545	20.85	-8.395	1.35	.26	.762	9.88	5.20	7.70	11.30
7E	22.00	.535	19.99	-6.467	1.86	-1.54	.765	9.52	5.20	7.70	11.30
8 E	22.50	.540	20.81	-8.022	1.41	19	• 769	9.88	5.20	7.70	11.30
AVERAGES	5: 601	14 B.	ASELIN	E W002 0	0 0 0 0						
	22.49	.549	20.80	-8.185	1.41	.07	.76?	9.96	5.20	8.60	6.90
STD	.27	.000	• 30	-301	.07	.16	.002	. ! 4	.46	*	*
	601	14 WO	06N100	1(1.6E15)						
	22.11	.540	20.41	-8.059	1.42	.05	.759	9.59	4.83	7.70	11.29
STD	.42	.004	.45	.632	.15	.52	.009	.29	.68	*	*
PERCENT	OF BA	SELIN	E								
	98.3	98.4	98.1	101.5	101	66.7	99.5	96.3	92.9	89.5	163.6
STDZ	3.i	.7	3.6	11.6	16	****	1.5	4.3	22.5	.1	• 3

٤

•

60120 W007CU001(2E15) W002 00 000 *SOL4 3 / 7 /80 AM1: P0=91.60MW/CM² NO AR COATING

3

ł

ł ۲. ۲

1

.

ID	1 5 C	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCD5
1R*	22.60	.557	19.99	-5.516	2.40	-1.41	.715	9.52	7.00	5.20	6.30
2 B	22.30	.550	20.65	-8-228	1.40	.01	.766	9.94	.00	8.60	6.90
3 B	22.30	.545	20.78	-8.894	1.26	• 25	.773	9.93	.00	8.60	6.90
4 B	22.60	.550	21.20	-9.726	1 - 14	.50	.780	10.25	.00	8.60	6.90
1C	22.50	• 5 5 0	21.06	-9.242	1.21	.10	.785	10.28	•00	6.64	6.90
2 C	22.60	.550	21.16	-9.725	1.14	•79	.769	10.11	.00	6.64	6.90
3C	22.60	.550	21.11	-9.074	1.24	•13	.781	10.27	.00	6.64	6.90
4C	22.50	.545	20.94	-8.748	1.28	.23	.771	9.99	.00	6.64	6.90
5C	22.40	• 5 4 5	20.74	-7.797	1.48	9i	.788	10.17	.00	6.64	6.90
6C	22.50	• 5 4 5	20.64	-7.398	1.58	35	.757	9.81	.00	6.64	0.90
1 E	22.50	.545	21.09	-9.591	1.15	.42	.780	10.12	.00	6.64	6.90
2E	22.40	• 5 4 5	20.69	-8.064	1.42	•08	.760	9.81	.00	6.64	6.90
3E	22.50	• 5 5 0	20.98	-8.852	1.28	.04	.780	10.20	.00	6.64	6.90
4 E	22.50	.546	20.65	-7.463	1.57	25	.755	9.81	•00	6.64	6.90
5E	22.50	.547	21.10	-9.791	1.12	•60	.777	10.12	.00	6.64	6.90
6 E	21.75	• 5 4 2	20.17	-8-441	1.34	• 2 2	.764	9.52	.00	6.64	6.90
AVERAGI	ES: 601	20 B.	ASELIN	E W002 0	0 000						
	22.40	.548	20.88	-8.949	1.26	• 2 5	.773	10.04	.00	8.60	6.90
STD	.14	.002	• 2 3	.613	.11	.20	.006	.15	.00	×	*
	601	20 WO	07CU00	1(2E15)							
	22.44	.547	20.86	-8.682	1.32	.09	.772	10.02	.00	6.64	6.90
STD	.22	.003	• 28	.817	.16	.43	.011	.22	.00	*	*
PERCENT	OF BA	SELINI	E								
	100.2	99.7	99.9	103.0	104	35.6	99.9	99.8	****	77.2	100.0
STDZ	1.6	.9	2.5	16.4	22	330.8	2.1	3.7	****	•0	• 0

60204 W007CU001(2E15) W002 00 000 *SOL4 1 /7 /80 AN1: P0=91.60MW/CM² NO AR COATING

₹

۴.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСDЪ
1R*	22.62	.547	20.69	-7.543	1.55	.41	.735	9.61	4.55	8.60	6.90
1B.*	22.87	.552	20.27	-5.434	2.43	-1.89	•727	9.71	3.90	8.60	6.90
2 B	22.30	.545	20.25	-6.717	1.80	68	.745	9.58	3.90	8.60	6.90
3B	22.87	.552	21.28	-8.515	1.34	15	•779	10.40	4.55	8.60	6.90
4 B	23.25	.552	21.68	-8.709	1.30	21	•786	10.67	5.20	8.60	6.90
5 B	22.87	.552	21.05	-7.597	1.55	40	.764	10.21	2.21	8.60	6.90
10	22.75	.552	21.37	-9.789	1.13	.29	•789	10.47	2.60	6.64	6.90
2C	22.75	.547	20.43	-6.068	2.06	-1.19	•737	9.69	4.55	6.64	6.90
3C	22.75	.552	21.43	-10.298	1.07	.54	.787	10.46	3.90	6.64	6.90
4C	22.75	.552	21.43	-10.298	1.07	• 54	•787	10.46	3.25	6.64	6.90
5C	22.75	.547	20.71	-6.875	1.75	59	.749	9.85	4.55	6.64	6.90
1 S *	22.62	• 547	12.81	-1.573	****	****	.501	6.55	1.95	6.64	6.90
2 S	22.75	.547	21.27	-9.425	1.17	.61	.770	10.14	3.25	6.64	6.90
3S *	22.75	.540	21.37	-11.310	.93	2.26	.737	9.58	1.56	6.64	6.90
1R*	22.62	• 5 5 0	20.66	-7.513	1.57	.51	•730	9.61	4.55	6.64	6.90
1T	22.62	.550	20.58	-6.769	1.79	78	•751	9.88	3.90	6.64	6.90
2 T	22.62	• 5 5 0	21.06	-8.576	1.33	17	•781	10.28	4.16	6.64	6.90
3T	22.62	• 5 5 0	20.88	-7.904	1.47	17	.765	10.06	2.99	6.64	6.90
AVERAGES	5: 602	04 BA	ASELIN	E WOO2 00	000						
	22.82	.550	21.07	-7.884	1.50	36	.769	10.21	3.97	8.60	6.90
STD	.34	.003	.52	.794	• 2 0	.21	.016	•40	1.11	*	*
	602	04 ₩00	07CU00	l(2E15)							
	22.71	.550	21.02	-8.445	1.43	10	.768	10.14	3.68	6.64	6.90
STD	.06	.002	• 36	1.523	.34	.61	.018	.28	.65	*	*
PERCENT	OF BA	SELINI	2								
	99.5	99.9	99.8	92.9	95	171.6	100.0	99.3	92.9	77.2	100.0
STD Z	1.8	.9	4.2	32.0	39	287.7	4.5	6.7	47.2	.0	• 1

and the second second

- `

1

· (* *

60205 W008TI001(2E14) W003 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

3**.** ,

-- مر --بر معنیون

.

ę

*

· · · • • • •

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.70	.555	20.85	-7.855	1.49	.47	.741	9.88	4.55	8.60	6.90
1B	22.80	• 558	20.77	-6.747	1.83	99	.757	10.19	3.90	2.45	11.30
2 B	22.80	.558	20.77	-6.747	1.83	99	•757	10.19	3.90	2.45	11.30
3 B	22.80	• 558	20.77	-6.747	1.83	99	•757	10.19	3.90	2.45	11.30
4 B	22.60	.555	20.46	-6.391	1.95	-1.22	.751	9.96	3.90	2.45	11.30
5 B	22.60	• 5 5 8	20.68	~7.062	1.72	85	.763	10.18	4.55	2.45	11.30
10.*	7.80	.428	6.23	-4.129	3.53	-6.61	.601	2.12	.20	• 58	2.00
2C•*	7.80	.430	6.43	-4.576	2.91	-4.30	.625	2.22	.26	• 58	2.00
3C	7.80	.446	7.17	-8.297	1.20	, 59	.748	2.75	.26	.58	2.00
4C.*	7.60	.420	5.81	-3.815	4.12	-6.95	.556	1.88	.16	.58	2.00
5C	7.80	.438	6.85	-6.140	1.81	27	.683	2.47	• 26	.58	2.00
15	7.80	.445	7.11	-7.574	1.36	24	.739	2.71	.07	.58	2.00
25	7.70	.445	6.90	-6.608	1.65	-1.61	.722	2.62	.14	.58	2.00
35.*	7.60	.429	6.04	-4.084	3.64	-7.10	.597	2.06	.20	.58	2.00
45.*	7.70	.445	6.59	-5.012	2.56	-6.17	.686	2.48	.20	.58	2.00
1T.*	7.60	.438	6.22	-4.256	3.42	-9.27	.643	2.26	.26	.58	2.00
3T	7.60	.443	6.89	-7.261	1.44	63	.734	2.61	.21	• 5 8	2.00
4T	7.60	• 4 4 3	6.89	-7.261	1.44	63	•734	2.61	•08	• 5 8	2.00
AVERAGE	S: 602	05 в.	ASELIN	E W003 0	0 000						
	22.72	.557	20.65	-6.739	1.83	-1.01	.757	10.14	4.03	2.45	11.30
STD	.10	.001	.12	.213	.07	.12	.004	.09	.26	*	*
	602	05 WO	087100	1(2E14)							
	7.72	.443	6.97	-7.190	1.49	47	.727	2.63	.17	.58	2.00
STD	.09	.003	.12	.686	.20	.65	.021	.09	.08	*	*
PERCENT	OF BA	SELIN	E								
	34.0	79.5	33.7	93.3	81	154.0	96.0	25.9	4.2	23.7	17.7
STD %	.5	.6	.8	13.9	i 5	77.7	3.3	1.1	2.4	•0	•0

. . *. .*

...

. .

-

1.210-014 ×

.

-

60206 W009V001(4E14) W003 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1 R *	22.75	.553	20.86	-7.725	1.52	.43	.739	9.83	4.55	1.90	6.90
1 B	22.50	• 5 5 5	20.89	-8.240	1.41	41	.782	10.32	5.20	8.42	11.60
2 B	22.50	.555	20.86	-8.167	1.42	31	•776	10.25	3.90	8.42	11.60
3B	22.20	• 5 5 2	20.25	-7.256	1.65	•05	•738	9.57	2.86	8.42	11.60
4 B	22.60	.555	20.74	-7.501	1.58	19	•754	10.00	3.90	8.42	11.60
5 B	22.50	.555	20.65	-7 403	1.61	40	.758	10.02	3.90	8.42	11.60
10	10.20	.467	9.47	-8.743	1.16	11	•773	3.89	.20	2.17	.40
2C	10.20	.467	9.47	-8.743	1.16	11	•773	3.89	.26	2.17	•40
3C	10.20	.467	9.47	-8.743	1.16	11	.773	3.89	.39	2.17	-40
4C	10.20	.467	9.47	-8.743	1.16	11	.773	3.89	•26	2.17	•40
5C	10.20	.467	9.47	-8.743	1.16	11	.773	3.89	•26	2.17	•40
15	10.25	.465	9.47	-8.486	1.20	• 4 4	.757	3.81	.33	2.17	•40
25	10.25	.469	9.55	-9.236	1.08	• 38	.775	3.94	.26	2.17	•40
35	10.25	.469	9.55	-9.236	1.08	• 38	.775	3.94	.26	2.17	• 40
1 T	10.20	.465	9.35	-7.757	1.35	32	.751	3.77	.26	2.17	•40
2 T	10.20	.468	9.52	-9.455	1.05	•73	.772	3.90	.39	2.17	.40
3T	10.20	.468	9.52	-9.455	1.05	.73	.772	3.90	.26	2.17	•40
4 T	10.20	•462	9.46	-8.907	1.12	.89	•758	3.78	•26	2.17	-40
AVERAGES	S: 602	06 BA	ASELINE	W003 0	000						
	22.46	.554	20.68	-7.713	1.53	25	.762	10.03	3.95	8.42	11.60
STD	.14	.001	.23	.408	.10	.17	.016	.26	•74	*	*
	602	06 WO(090001	(4E14)							
	10.21	.467	9.48	-8.854	1.14	• 2 2	.769	3.88	.28	2.17	.40
STD	.02	.002	.05	.449	.08	.40	.008	.06	.06	*	*
PERCENT	OF BA	SELINI	E								
	45.5	84.2	45.8	85.2	74	288.9	100.9	38.6	7.1	25.8	3.4
STD Z	• 4	• 5	. 3	12.2	10	327.9	3.1	1.6	3.0	.0	.0

123

·

a the state of the

a series and the series of the

÷.

. .

,#

ļ

60220 W010NI002(1.6E16) W003 00 000 *SOL4 ! /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VO C	IP	LOG(10)	N	R	FF	Eff	OCL	`CD a	PCDb
1R*	22.75	.553	21.07	-8.840	1.28	1.14	.740	9 - 8 5	4.55	8.42	6.30
18.*	22.25	.545	17.97	-3.457	5.03	-6.10	.651	8.35	2.21	8.42	6.30
2B.*	23.00	.534	19.69	-4.955	2.69	46	.653	8.48	1.04	8.42	6.30
3B.*	22.37	.552	15.63	-2.145	****	****	.625	8.16	3.90	8.42	6.30
4 B	22.12	• 5 5 2	20.17	-6.973	1.73	61	.751	9.70	3.25	8.42	6.30
5B.*	22.12	.552	19.85	-5.876	2.18	-1.89	.748	9.66	3.25	8.42	6.30
10	19.37	• 5 3 0	18.22	-10.445	1.01	1.05	•775	8.41	1.43	3.43	6.80
2 C	19.37	.530	18.09	-9.323	1.16	• 5 3	.772	8.38	1.30	3.43	6.80
3C	19.37	• 527	17.75	-7.505	1.52	12	•750	8.09	1.17	3.43	6.80
4 C	19.10	•527	17.70	-8.692	1.26	•70	.754	8.03	1.17	3.43	6.80
5C	19.37	.523	17.70	-7.686	1.46	.75	.727	7.79	•91	3.43	6.80
15	19.00	•530	17.76	-9.553	1.13	.81	.768	8.18	1.43	3.43	6.80
2 S	19.00	• 5 2 5	17.16	-6.609	1.79	51	.731	7.71	1.04	3.43	6.80
3S	18.70	.530	17.35	-8.550	1.30	.22	.766	8.03	1.43	3.43	6.80
4 S	19.00	• 530	17.76	-9.553	1.13	.81	.768	8.18	1.43	3.43	6.80
1 T	19.00	• 530	17.82	-9.870	1.09	•73	.776	8.26	1.43	3.43	6.80
2 T	19.00	.522	16.95	-6.078	2.00	70	.715	7.49	•78	3.43	6.80
3T	19.00	• 530	17.82	-9.870	1.09	•73	.776	8.26	1.30	3.43	6.80
AVERAGES	602	20 в.	ASELIN	E W003 0	0 000						
	22.12	• 5 52	20.17	-6.973	1.73	61	.751	9.70	3.25	8.42	6.30
STD	.00	.000	.00	.000	.00	.00	.000	.00	.00	*	*
	602	20 00	10N100	2(1.6E16)						
	19.11	.528	17.67	-8.644	1.33	.42	.756	8.07	1.24	3.43	6.80
STD	.21	.003	.35	1.333	.30	• 5 5	.020	. 27	.22	*	*
PERCENT	OF BA	SELIN	E								
-	86.4	95.6	87.6	76.0	77	268.9	100.7	83.2	38.0	40.7	107.9
STD 🕱	.9	• 5	1.7	19.1	17	90.0	2.7	2.7	6.6	.0	•1

and the second second

60221 W011ZR001(<7E11) W003 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM^{*}2 NO AR COATING

and the second of the second second

ID	ISC	VOC	IP	LOG(I0)	N	R	FF	Eff	OCD	PCDa	PCDb
1 B	22.50	.550	20.46	-6.751	1.80	76	•749	9.81	3.90	8.42	11.60
2 B	22.37	.552	20.68	-7.922	1.47	36	•772	10.08	4.55	8.42	11.60
3B	22.37	.550	20.22	-6.516	1.89	63	.736	9.58	2.99	8.42	11.60
4 B	22.50	.550	20.46	-6.751	1.80	76	.749	9.81	1.95	8.42	11.60
5 B	22.50	.545	20.24	-6.332	1.94	57	•727	9.43	2.60	8.42	11.60
10	22.00	.545	20.70	-9.858	1.11	.13	.795	10.08	3.90	1.08	2.60
2 C	22.00	.545	20.18	-7.375	1.59	43	.758	9.61	3.25	1.08	2.60
30	21.75	.542	19.96	-7.507	1.55	21	•754	9.41	2.21	1.08	2.60
4C	21.75	.542	19.84	-7.259	1.62	.05	.738	9.20	1.95	1.08	2.60
5C	22.00	• 5 45	20.46	-8.640	1.30	•08	.773	9.81	3.90	1.08	2.60
15	22.37	.540	20.68	-8.051	1.41	05	.764	9.76	3.29	1.08	2.60
2 S	22.37	.547	20.93	-9.224	1.21	.15	•783	10.14	3.90	1.08	2.60
35	22.25	.540	20.22	-6.565	1.84	-1.24	.758	9.64	3.64	1.08	2.60
4S	22.37	.540	20.56	-7.371	1.58	70	•768	9.81	3.90	1.08	2.60
1T	22.50	.550	21.21	-10.403	1.05	.54	.790	10.33	4.55	1.30	2.60
2 T	21.50	.550	20.14	-9.454	1.18	• 2 9	.783	9.79	3.90	1.30	2.60
3т	22.00	.550	20.48	-8.742	1.30	.16	.773	9.89	3.90	1.30	2.60
4 T	22.00	.550	20.52	-8.970	1.26	• 2 4	.775	9.92	3.90	1.30	2.60
AVERAGE	s: 602	21 B.	ASELIN	E W003 0	0 0 0						
	22.45	49 د.	20.41	-6.855	1.78	62	•747	9.74	3.20	8.42	11.60
STD	.06	.002	.17	• 5 5 7	.16	.15	.015	• 2 2	.93	*	*
	602	21 WO	112R00	1(<7E11)							
	22.07	.545	20.45	-8.417	1.38	08	.770	9.80	3.55	1.15	2.60
STD	.28	.004	.37	1.114	• 2 2	.45	.015	.29	.70	*	*
PERCENT	OF BA	SELIN	E								
	98.3	99.2	100.2	77.2	78	187.7	103.2	100.6	111.1	13.6	22.4
STDZ	1.5	1.1	2.7	27.5	21	93.9	4.2	5.3	60.4	1.2	• 0

.

, t

.

, a *

•

J.

.

, • •

:::

:

•

60225 W012CR002 (2E14) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
1R*	22.50	.554	20.68	-7.872	1.49	.44	•743	9.79	3.90	8.60	6.30
18	22.60	• 5 5 8	20.87	-7.965	1.48	07	•763	10.17	1.95	8.60	6.30
2B.*	19.70	.549	17.04	-4.813	2.95	-2.83	•699	7.99	3.90	8.60	6.30
3B	22.12	.555	20.47	-8.227	1.41	.08	•764	9.92	1.95	8.60	6.30
4B.*	21.82	.551	19.44	-5.967	2.14	67	•713	9.06	2.60	8.60	6.30
5 B	20.10	.551	18.50	-7.523	1.58	78	•771	9.03	3.90	8.60	6.30
10	21.75	.543	19.62	-6.536	1.86	37	•727	9.09	2.60	4.90	.40
2 C	21.50	.550	19.87	-8.012	1.45	17	•767	9.59	3.25	4.90	.40
3C	21.75	• 546	19.65	-6.447	1.91	84	•739	9.28	2.60	4.90	.40
4C	21.75	• 546	19.44	-5.907	2.15	-1.29	•730	9.17	2.21	4.90	.40
5 C	21.50	• 546	19.13	-5.668	2.28	-1.66	•729	9.04	2.21	4.90	.40
1 E	21.50	• 5 3 5	18.65	-5.098	2.60	-1.23	•683	8.31	.13	4.90	.40
2 E	22.00	• 546	19.15	-5.148	2.61	-1.28	•688	8.74	1.95	4.90	.40
3 E	21.63	.550	19.39	-6.128	2.06	89	.727	9.14	2.99	4.90	.40
4E	22.00	• 5 5 0	19.94	-6.815	1.78	20	.732	9.37	3.12	4.90	.40
5 E	21.87	.550	19.19	-5.315	2.51	-1.45	.703	8.94	2.21	4.90	.40
6E	21.00	• 5 3 7	18.33	-5.159	2.58	-1.65	.697	8.32	1.04	4.90	.40
7 E	20.75	• 5 3 5	18.37	-5.769	2.19	72	•704	8.26	1.17	4.90	•40
AVERAGES	5: 602	25 B.	ASELINE	W002 0	000						
	21.61	.555	19.95	-7.905	1.49	26	.766	9.71	2.60	8.60	6.30
STD	1.08	.003	1.04	.291	•07	.37	.004	.49	•92	*	*
	602	25 WO	12CR002	(2E14)							
	21.58	.544	19.23	-6.000	2.16	98	.719	8.94	2.12	4.90	.40
STD	.36	.006	.52	.822	• 36	.51	.023	• 4 2	.89	*	*
PERCENT	OF BA	SELIN	E								
	99.9	98.2	96.4	124.1	145	****	93.8	92.1	81.7	57.0	6.3
STD 🕱	6.8	1.5	7.7	13.6	32	****	3.5	9.2	75.4	• 0	• 0

126

.

۰.

`e ⊻

\$

•

• • • • •

• , •-

60407 W013MN002 (2.5E14) BEFORE SINTER W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

. . . .

.

· · · · · · · · · · · ·

I D	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
18	22.25	. 5 5 5	20.80	-9.202	1.23	. 28	. 778	10.16	5.20	8.57	6.34
2 B	22.50	.546	20.18	-6.152	2.02	- 79	. 7 2 7	9.44	3.90	8.57	6.34
20	22.50	550	20.10	-6 900	1 70	- • / 9	- 1 4 1	0 76	1.50	0.57	6 34
30 (D	22.00	• 5 5 0	20.43	-0.000	1 + / 0	00	•/43	9.70	4+33	0.57	0.34
48	22.00		20./1	-/.20/	1.03	00	+/01	10.01	4.33	8.5/	0.34
10	22.00	• 5 4 0	19.97	-6.765	1.77	51	•741	9.31	3.25	10.53	1.20
2C	22.00	• 5 4 5	20.18	-7.347	1.60	51	•760	9.64	3.90	10.53	1.20
3C	22.00	• 5 4 5	20.18	-7.347	1.60	51	.760	9.64	3.90	10.53	1.20
4C	22.25	.545	20.72	-8.601	1.31	15	.781	10.01	4.55	10.53	1.20
5C	22.25	• 5 4 5	20.66	-8.489	1.33	.08	.770	9.88	3.90	10.53	1.20
15	22.50	.540	20.42	-6.920	1.71	06	.732	9.40	3.90	10.53	1.20
28	22.50	.545	20.94	-8.748	1.28	.23	.771	9.99	4.81	10.53	1.20
35	22.00	. 545	20.50	-8.978	1.24	.40	.769	9.76	4.55	10 53	1.20
46	22.00	540	20.20	-6 020	1 71	- 06	- 7 2 2	9.70	2 00	10.53	1 20
4-0 1 m	22.00	+) 40	20.42	-0.920	1 1 1 0	00	+/32	9.40	3.90	10.53	1.20
11	22.23	• 5 4 5	20.09	-9.095	1.10	• 2 9	•/80	10.00	4.00	10.53	1.20
21	22.23	• 2 4 2	20.70	-8./30	1.29	• 2 4	•//0	9.88	4.55	10.53	1.20
AVEDACE	c. 60/1	07 P/	CEL TNI		000						
AVERAGE	5: 0040	5 5 5 1	ASELINI	5 WUUZ UU	000						
	22.40	.550	20.53	-/.340	1.0/	44	•/53	9.84	4.55	8.5/	6.34
STD	.13	.003	• 2 4	1.139	•29	• 4 2	.019	• 2 7	• 46	*	*
	6040	07 WOI	1 3MN 0 0 2	2 (2.5E14) BEF	ORE SI	INTER				
	22.23	• 5 4 4	20.51	-8.068	1.45	02	.760	9.72	4.16	10.53	1.20
STD	•20	•002	• 2 9	.996	• 22	• 36	.017	• 25	.45	*	*
PERCENT	OF BAS	SELINE	Ξ								
	99.0	98.8	99.9	90.1	871	94.6 1	01.0	98.7	91.4	122.9	18.9
STDZ	1.5	1.0	2.6	32.7	30 1	64.7	4.9	5.3	20.0	• 1	.0
60407A W	0 1 3 MN 0	02 (2	.5E14)	AFTER S	INTER	W002	00 00	0			
60407A V *SOL4	WO13MNO 1 /7 /8)02 (2 30 A	.5E14) M1: PC	AFTER S =91.60MW	INTER /cm^2	W002 NO A	00 00 .r coa	0 TING			
60407A V *SOL4	013MN0 1 /7 /8	02 (2 30 A	.5E14) M1: PC	AFTER S 991.60MW	INTER /CM ²	W002 NO A	00 00 R COA	DO TING	0.00	B (D -	BCDL
60407A V *SOL4 1 ID	W013MN0 1 /7 /8 ISC	002 (2 30 A Voc	:.5E14) M1: PC IP	AFTER S)=91.60MW LOG(I0)	INTER /CM ²	WOO2 NO A R	00 00 .r coa ff	00 ATING Eff	OCD	PCDa	РСДЪ
60407A V *SOL4 1 ID	W013MN0 1 /7 /8 ISC 22.60	002 (2 30 A VOC	2.5E14) MM1: PC IP 21.34	AFTER S = 91.60MW LOG(I0)	INTER /CM ² N	W002 NO A R	00 00 R COA FF	00 ATING Eff	OCD	PCDa 8.57	PCDb
60407A V *SOL4 1 ID 1B	013MN0 1 /7 /8 ISC 22.60	02 (2 0 A VOC .555	2.5E14) M1: PC IP 21.34	AFTER S = 91.60MW LOG(I0) -10.230	INTER /CM ² N 1.08	W002 NO A R 04	00 00 R COA FF - 808	00 ATING Eff 10.72	OCD 5.20	PCDa 8.57	PCDb 6.30
60407A V *SOL4 1 ID 1B 3B	013MN0 1 /7 /8 ISC 22.60 22.90	02 (2 0 A VOC .555 .560	2.5E14) M1: PC IP 21.34 21.69	AFTER S = 91.60MW LOG(I0) -10.230 -11.324	INTER /CM ² N 1.08 .97	W002 NO A R 04 .82	00 00 R COA FF .808 .792	00 TING Eff 10.72 10.74	OCD 5.20 4.55	PCDa 8.57 8.57	PCDb 6.30 6.30
60407A V *SOL4 1 ID 1B 3B 4B	013MNC 1 /7 /8 ISC 22.60 22.90 22.90	02 (2 0 A VOC .555 .560 .560	2.5E14) M1: PC IP 21.34 21.69 21.69	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324	INTER /CM ² N 1.08 .97 .97	W002 NO A R 04 .82 .82	00 00 R COA FF .808 .792 .792	00 TING Eff 10.72 10.74 10.74	OCD 5.20 4.55 4.55	PCDa 8.57 8.57 8.57	PCDb 6.30 6.30 6.30
60407A V *SOL4 1 ID 1B 3B 4B 1C	<pre>w013mn(1 /7 /8 ISC 22.60 22.90 22.90 22.50</pre>	02 (2 0 A VOC 555 560 560 540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577	INTER /CM ² N 1.08 .97 .97 1.30	W002 NO A R 04 .82 .82 08	00 00 R COA FF .808 .792 .792 .778	00 TING Eff 10.72 10.74 10.74 9.99	OCD 5.20 4.55 4.55 3.25	PCDa 8.57 8.57 8.57 10.53	PCDb 6.30 6.30 6.30 1.20
60407A V *SOL4 1 ID 1B 3B 4B 1C 2C	x013MNC 1 /7 /8 1 SC 22.60 22.90 22.90 22.50 22.00	002 (2 30 A VOC .555 .560 .560 .540 .540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491	INTER /CM ² N 1.08 .97 .97 1.30 1.32	W002 NO A R 04 .82 .82 08 22	00 00 R COA FF .808 .792 .792 .778 .781	00 Eff 10.72 10.74 10.74 9.99 9.81	OCD 5.20 4.55 4.55 3.25 3.90	PCDa 8.57 8.57 8.57 1C.53 10.53	PCDb 6.30 6.30 6.30 1.20 1.20
60407A V *SOL4 1 ID 1B 3B 4B 1C 2C 3C	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00</pre>	002 (2 30 A voc .555 .560 .560 .540 .540 .540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.77	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02	W002 NO A R 04 .82 .82 08 22 .37	00 00 R COA FF .808 .792 .792 .778 .781 .797	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01	OCD 5.20 4.55 4.55 3.25 3.90 3.90	PCDa 8.57 8.57 8.57 1C.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20
60407A V *SOL4 1 ID 1B 3B 4B 1C 2C 3C 4C	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00</pre>	002 (2 30 A voc .555 .560 .560 .540 .540 .540 .540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.77 20.47	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32	W002 NO A R 04 .82 .82 08 22 .37 22	00 00 R COA FF .808 .792 .792 .778 .781 .797 .781	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81	OCD 5.20 4.55 3.25 3.90 3.90 4.55	PCDa 8.57 8.57 8.57 1C.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20
60407A V *SOL4 1 ID 1B 3B 4B 1C 2C 3C 4C 5C	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.00</pre>	002 (2 30 A VOC .555 .560 .560 .540 .540 .540 .540 .540 .540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.77 20.47 20.47	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -8.491	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.32	W002 NO A R 04 .82 .82 08 22 .37 22 22	00 00 R COA FF .808 .792 .792 .778 .781 .797 .781 .781	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 2.81	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90	PCDa 8.57 8.57 8.57 1C.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20
60407A V *SOL4 2 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.77 20.47 20.47 20.47 20.51	AFTER S = 91.60MW LOG (I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -8.491 -7.131	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.32 1.65	W002 NO A R 04 .82 .82 08 22 .37 22 22 76	00 00 R COA FF .808 .792 .792 .778 .781 .797 .781 .781 .781 .763	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 3.81 9.76	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 3.90 3.90 3.90	PCDa 8.57 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20
60407A V *SOL4 2 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 20.00</pre>	02 (2 0 A VOC 555 560 560 540 540 540 540 540 540 540 540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.77 20.47 20.47 20.47 20.51 21.06	AFTER S = 91.60MW LOG (I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -8.491 -7.131 -9.527	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.65 1.15	W002 NO A R 04 .82 .82 08 22 .37 22 22 76 26	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .781 .781 .763 .804	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 3.81 9.76 10.28	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 3.90 4.81	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.00 22.00 22.40 22.40 22.40</pre>	002 (2 30 A VOC 555 560 560 540 540 540 540 540 540 540 540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.77 20.47 20.47 20.51 21.06 20.49	AFTER S = 91.60MW LOG (I0) -10.230 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.65 1.15 1.33	W002 NO A R 04 .82 .82 08 22 .37 22 22 76 26 50	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .781 .781 .781 .763 .804 .790	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 9.81 9.76 10.28 9.92	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40</pre>	002 (2 30 A VOC 555 560 560 540 540 540 540 540 540 540 540	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -8.491 -7.131 -9.527 -8.446 -8.446	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.65 1.15 1.33 1.40	W002 NO A R 04 .82 .82 08 22 .37 22 22 76 26 50	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .763 .804 .790 .776	00 TING Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 3.81 9.76 10.28 9.92 9.90	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 3.90 4.81 4.55 3.90	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -2.20	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.32 1.5 1.5 1.33 1.40	W002 NO A R 04 .82 .82 08 22 .37 22 76 26 50 28	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .763 .804 .790 .770	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.28	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.55 3.90 4.81 4.55 3.90	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 2 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06	AFTER S = 91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.65 1.15 1.33 1.40 1.14	W002 NO A R 04 .82 .82 08 22 .37 22 22 76 26 28 .19	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .781 .763 .804 .790 .774 .793	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.81 4.55 3.90 4.55 3.90 4.55	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 2.56	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T	<pre>v013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06	AFTER S =91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.65 1.15 1.33 1.40 1.14	W002 NO A R 04 .82 .82 08 22 .37 22 22 76 26 50 28 .19	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .781 .763 .804 .790 .774 .793	00 Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.55 3.90 4.81 4.55 3.90 4.55	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 2.56	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 S: 6040</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57	AFTER S =91.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.65 1.15 1.33 1.40 1.14 000 1.00	W002 NO A R 04 .82 .82 08 22 .37 22 22 76 26 50 28 .19	00 00 R COA FF .808 .792 .792 .778 .781 .781 .781 .763 .804 .790 .774 .793	00 TING Eff 10.72 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 5.55 4.55 5.55 4.555 5.55 5.5555 5.555 5.5555 5.5555 5.5555 5.5555 5.55555 5.55555 5.555555 5.55555555	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 2.56	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A W *SOL4 3 ID IB 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 S: 6040 22.80</pre>	02 (2 0 A VOC 555 560 560 540 540 540 540 540 540 540 540 558 74 BA 558	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 EW002 00 -10.959	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.32 1.5 1.5 1.33 1.40 1.14 000 1.00	W002 NO A R 04 .82 .82 08 22 .37 22 76 26 50 28 .19	00 00 R COA FF .808 .792 .792 .778 .781 .781 .763 .804 .790 .774 .793 .793 .797 .797	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.81 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.555 4.555	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 2.56 8.57	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES STD	<pre>V013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 S: 6040 22.80 .14</pre>	02 (2 0 A VOC 555 560 560 540 540 540 540 540 540 540 540 540 558 7A BA 558	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57 .17	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959 -516	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.02 1.32 1.32 1.5 1.15 1.33 1.40 1.14 000 1.00 .05	W002 NO A R 04 .82 .82 08 22 .37 22 76 26 50 28 .19 .53 .40	00 00 R COA FF .808 .792 .778 .781 .781 .763 .804 .790 .774 .793 .793 .797 .007	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73 .01	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90	PCDa 8.57 8.57 1C.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES STD	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 S: 6040 22.80 .14 6040</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 ASELINE 21.57 .17	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959 .516 02 (2.5E1	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.40 1.14 000 1.00 .05 4) AF	W002 NO A R 04 .82 .82 08 22 .37 22 76 28 .19 .53 .40 TEP SI	00 00 R COA FF .808 .792 .778 .781 .781 .781 .763 .804 .790 .774 .793 .797 .007 NTER	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73 .01	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 5.55 4.55 5.55 5.55 5.55 5.55 5.55 5.5555 5.555 5.5555 5.5555 5.5555 5.5555 5.555555 5.55555555	PCDa 8.57 8.57 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES STD	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 S: 6040 22.40 S: 6040 22.80 .14 6040</pre>	02 (2 0 A VOC 555 560 560 540 540 540 540 540 540 540 540 540 558 7A BA 558 07A BA 558 07A BA 558	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57 .17 013MN00 20.70	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959 .516 02 (2.5E1 -8.757	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.5 1.15 1.15 1.140 1.14 000 1.00 .05 4) AF 1.29	W002 NO A R 04 .82 .82 08 22 .37 22 76 28 .19 .53 .40 TEP SI 20	00 00 R COA FF .808 .792 .778 .781 .781 .763 .804 .790 .774 .793 .797 .007 NTER .784	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73 .01 9.98	OCD 5.20 4.55 3.25 3.90 3.90 4.55 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90	PCDa 8.57 8.57 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A W *SOL4 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES STD STD	<pre>V013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.00 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40</pre>	002 (2 002 (2 000 000 000 000 000 000 000 0	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57 .17 013MN0C 20.70 .24	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959 .516 02 (2.5E1 -8.757 .900	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.40 1.14 000 1.14 000 1.00 .05 4) AF 1.29 .16	W002 NO A R 04 .82 .82 08 22 .37 22 76 28 .19 .53 .40 TEP SI 20 .30	00 00 R COA FF .808 .792 .778 .781 .781 .781 .763 .804 .790 .774 .793 .797 .007 NTER .784 .011	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73 .01 9.98 .22	OCD 5.20 4.55 3.25 3.90 3.90 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 5.51 4.12 .455 5.51 4.55 5.51 4.55 5.51 5	PCDa 8.57 8.57 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES STD PERCENT	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.20 22.40 22.20 22.40 22.20 22.40 22.20 22.40 22.20 22.40 22.20 22.40 22.20 22.20 22.40 22.20 22.20 20.00 22.40 22.20 20.00 22.20 20.00 22.40 22.20 20.00 22.20 20.00 22.20 20.00 22.40 22.20 20.00 22.40 22.20 20.00 22.40 22.20 20.00 22.40 20.000 20.00 20.000 20.000 20.000 20.00000000</pre>	02 (2 0 2 (2 0 4 0 555 560 5560 5560 5540 5540 5540 5540 55	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57 .17 013MN00 20.70 .24	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959 .516 02 (2.5E1 -8.757 .900	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.40 1.14 000 1.14 000 1.00 .05 4) AF 1.29 .16	W002 NO A R 04 .82 .82 08 22 .37 22 76 26 28 .19 .53 .40 TE? SI 20 .30	00 00 R COA FF .808 .792 .778 .781 .781 .781 .763 .804 .790 .774 .793 .797 .007 NTER .784 .011	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73 .01 9.98 .22	OCD 5.20 4.55 3.25 3.90 3.90 4.55 5.55 4.55 5.55 5.55 5.55 5.55 5.55 5.555 5.55 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.55555 5.5555 5.5555 5.5	PCDa 8.57 8.57 10.53	PCDb 6.30 6.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2
60407A V *SOL4 3 ID 1B 3B 4B 1C 2C 3C 4C 5C 1S 2S 3S 4S 1T AVERAGES STD PERCENT	<pre>W013MNC 1 /7 /8 ISC 22.60 22.90 22.90 22.50 22.00 22.00 22.00 22.00 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.21 .14 604(22.21 .21 0F BAS 97.4</pre>	02 (2 0 2 (2 0 4 0 555 560 5560 5560 5540 5540 5540 5540 55	2.5E14) M1: PC IP 21.34 21.69 21.69 20.94 20.47 20.47 20.47 20.47 20.47 20.47 20.47 20.51 21.06 20.49 20.75 21.06 SELINE 21.57 .17 013MN00 20.70 .24 295.9	AFTER S 991.60MW LOG(I0) -10.230 -11.324 -11.324 -8.577 -8.491 -10.469 -8.491 -7.131 -9.527 -8.446 -8.105 -9.839 E W002 00 -10.959 .516 02 (2.5E1 -8.757 .900 120.1	INTER /CM ² N 1.08 .97 .97 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.40 1.14 000 1.00 .05 4) AF 1.29 .16	W002 NO A R 04 .82 .82 08 22 .37 22 76 26 28 .19 .53 .40 TE? SI 20 .30	00 00 R COA FF .808 .792 .778 .781 .781 .763 .804 .790 .774 .793 .797 .007 NTER .784 .011 98.3	00 TING Eff 10.72 10.74 10.74 10.74 9.99 9.81 10.01 9.81 9.76 10.28 9.92 9.90 10.48 10.73 .01 9.98 .22 92.9	OCD 5.20 4.55 3.25 3.90 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 3.90 3.90 4.55 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 8.65 5.55 5	PCDa 8.57 8.57 10.53	PCDb 6.30 6.30 1.20

OPIGINAL PAGE IS

د » د ^{د .} .

. . . .

L

į

> ۰ •

.

:

.

٠.

ţ

- -----

1 2

÷

.....

.....

60424 W015ZN001 (<1E12) W002 00 000 *SOL4 1 /7 /80 AMI: P0=91.60MW/CM² NO AR COATING

ε.

ι.

NT

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1 B	21.75	.540	20.28	-8.656	1.29	28	•786	9.77	3.90	8.57	6.30
2 B	21.75	.540	20.28	-8.656	1.29	28	•786	9.77	3.90	8.57	6.30
3 B	21.10	.540	19.35	-7.315	1.60	64	•762	9.19	3.25	8.57	6.30
4 B	21.50	.540	19.90	-8.171	1.39	08	.768	9.42	3.25	8.57	6.30
10	21.80	.540	20.04	-7.468	1.55	54	.765	9.52	3.90	5.28	7.20
2 C	22.10	.540	20.58	-8.563	1.31	24	•783	9.88	4.55	5.28	7.20
30*	21.70	.527	17.94	-3.836	4.05	-4.44	•662	8.01	1.95	5.28	7.20
4C	22.10	.540	20.32	-7.684	1.50	08	.755	9.53	3.90	5.28	7.20
15	22.30	.540	20.44	-7.161	1.64	84	.763	9.76	3.90	5.28	7.20
25*	19.50	.537	17.40	-5.794	2.20	78	•732	8.11	3.25	5.28	7.20
1T	22.10	.530	19.93	-6.271	1.92	-1.11	•742	9.20	2.60	5.28	7.20
2T	22.20	.534	20.10	-6.511	1.84	85	.744	9.32	3.25	5.28	7.20
3T	22.20	.540	20.45	-7.577	1.52	57	.770	9.76	3.90	5.28	7.20
A201*	22.20	.540	20.80	-9.326	1.18	.04	.789	10.00	4.81	2.17	*****
A202*	22.20	.540	20.49	-7.714	1.49	57	.773	9.81	4.55	2.17	*****
A203*	22.20	.540	20.49	-7.714	1.49	57	•773	9.81	4.55	2.17	****
A221*	22.20	.530	19.76	-5.515	2.29	-2.14	•740	9.21	3.25	40.00	****
A223*	22.20	.530	20.32	-7.034	1.65	94	•766	9.53	3.25	40.00	****
AVERAG	ES: 604	24 B.	ASELINI	E W002 0	0 0 0 0						
	21.53	.540	19.95	-8.199	1.39	32	.776	9.54	3.58	8.57	6.30
STD	.27	.000	.38	.547	.13	.20	.011	.25	.33	*	*
	604	24 WC	152N001	(<1E12)						
	22.11	.538	20.27	-7,319	í 1.61	60	.761	9.57	3.71	5.28	7.20
STD	.15	.004	.23	.712	.19	.34	.013	.23	.57	*	*
PERCEN	T OF BA	SELIN	E								
	102.7	99.6	101.6	110.7	116	11.9	98.1	100.3	103.9	61.6	114.3
STD Z	2.0	•7	3.J	15.2	26	290.2	3.1	5.1	26.9	.0	.1

.

60610 W016FE001 (8.9E14) W003 00 000 *S0L4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

و در ۱

ŝ

5403 × 4.44

· - - -

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCD3	PCDb
1 B	23.00	.554	21.47	-8.941	1.27	.08	.780	10.51	5.85	8.42	11.65
2 B	23.20	• 5 5 4	21.56	-8.473	1.35	04	•774	10.53	5.46	8.42	11.65
38	23.20	• 5 5 4	21.56	-8.473	1.35	04	.774	10.53	5.20	8.42	11.65
4 B	23.00	.554	21.47	-8.941	1.27	.08	.789	10.51	5.20	8.42	11.65
5B	23.00	.554	21.47	-8.941	1.27	.08	.780	10.51	5.20	8.42	11.65
10	21.00	.535	19.65	-9.281	1.18	.11	.785	9.33	2.86	3.76	.5U
2 C	21.70	.540	20.33	-9.329	1.18	.07	.788		3.64	3.76	.50
3C	21.20	.535	19.73	-8.612	1.29	08	.778	9.33	3.25	3.76	.50
4C	21.20	.535	19.73	-8.612	1.29	08	.778	9.33	2.99	3.76	.50
5C	21.60	.535	19.87	-7.559	1.52	45	.764	9.34	2.86	3.76	.50
15	22.20	.540	20.83	-9.684	1.12	- 34	.785	9.95	3 2 5	75	.50
2.S	21.90	.540	20.43	-8.877	1.25	.03	.780	9.75	· . '	16	.50
35	21.90	.540	20.27	-8.064	1.41	29	.772	9.65	2.9:	3.76	• 5 0
1T	20.50	.532	19.20	-9.411	1.15	.20	.785	9.05	2.47	3.76	<u>،</u> 50
2 T	19.50	.530	18.14	-8.947	1.22	.61	.762	8.33	1.56	3.76	.50
3T	17.60	.519	16.47	-9.527	1.12	• 56	.775	7.49	- 91	3.76	• 50
4 T	18.00	.519	16.75	-8.745	1.24	01	•777	7.68	•91	3.76	• 50
AVERAGES	5: 606	10 B.	ASELIN	E W003 0	0 000	1					
	23.08	.554	21.50	-8.754	1.30	.03	.778	10.52	5.38	8.42	11.65
SID	.10	.000	.04	.229	.04	.06	.002	.01	.25	*	*
	606	10 WO	16FE00	1 (8.9E1	4)						
	20.69	.533	19.28	-8.887	1.25	.09	.777	9.08	2.60	3.76	.30
STD	i.47	.007	1.36	.598	.11	.30	.008	•78	.91	*	*
PERCENT	OF BA	SELIN	E								
	89.7	96.3	89.7	98.5	96	264.2	99.9	86.4	48.3	44.7	4.3
STDZ	5.8	1.3	6.5	9.7	12	****	1.4	7.5	20.1	.0	.0

.

. •

- 7

· ·

7

60316 W017CU002(1.9E16) W003 00 000 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING *SOL4 LOG(IO) N ID ISC VOC IP R FF Eff OCD PCDa PCDb 22.75 .550 20.44 -6.079 2.07 -1.20 .737 1 B 9.76 3.25 8.42 11.60 22.25 .550 19.89 -5.951 2.14 -1.09 .726 9.40 3.25 2B.* 8.42 11.60 22.75 .550 20.93 -7.455 1.58 -.62 .768 10.16 3.25 8.42 11.60 3 B 22.25 .542 20.07 -6.475 1.88 -.52 .731 9.32 22.75 .550 20.93 -7.455 1.58 -.62 .768 10.16 1.95 4 R 8.42 11.60 5B 4.55 8.42 11.60 21.75 .532 19.33 -5.655 2.23 -1.51 .725 10 8.88 1.95 7.13 8.82 2.60 1.95 22.20 .537 19.83 -5.855 2.13 -1.30 .730 9.20 2C 7.13 8.82 21.74 .530 19.22 -5.514 2.30 -1.40 .714 8.70 30 7.13 8.82 2.21 4 C 22.00 .532 19.93 -6.666 1.77 -.52 .738 9.13 7.13 8.82 21.75 .532 19.44 -5.907 2.09 -1.25 .729 5 C 8.93 2.21 7.13 8.82 -5.842 2.13 -1.37 .730 15 21.60 .532 19.29 8.87 2.21 7.13 8.80 -5.910 2.11 21.60 .535 19.22 -.73 .712 8.70 2 S 1.95 7.13 8.80 -7.419 1.57 21.60 .540 19.77 -.02 .745 9.20 2.86 **3**S 7.13 8.80 21.25 .540 19.05 -6.104 2.04 -.98 .728 8.84 I T 2.21 7.13 8.80 21.25 .540 19.27 -6.614 1.83 -.87 .746 9.05 2.47 2т 8.80 7.13 3Т 21.25 .540 19.70 -8.417 1.34 .16 .765 9.29 2.47 7.13 8.80 AVERAGES: 60316 BASELINE W003 CO 000 22.63 .548 20.59 -6.866 1.78 -.74 .751 9.85 3.25 8.42 11.60 STD .22 .003 .36 .605 .21 .27 .017 • 35 .92 × + 60316 W017CU002(1.9E16) -.89 .733 21.64 .535 19.46 -6.355 1.96 8.98 2.28 7.13 8.81 .29 .004 .838 .28 .54 .014 STD • 28 .19 .28 × PERCENT OF BASELINE 91.2 95.6 97.7 94.5 107.4 110 79.2 97.6 70.2 84.7 75.9 STDZ 3.1 21.4 31 144.2 4.2 5.3 30.9 2.2 1.3 • 0 .1 60317 W018FE002(1.7E15) W003 00 000 AM1: PO=91.60MW/CM² NO AR COATING *501.4 1 /7 /80 ISC VOC IP LOG(IO) N OCD PCDa PCDb ID R FF Eff 22.00 .556 20.32 -7.948 1.48 -.20 .766 9.91 4.55 8.42 11.65 1 B 22.00 .556 20.32 -7.948 1.48 -.20 .766 9.91 4.55 8.42 11.65 2 R 3 R 22.00 .556 20.32 -7.948 1.48 -.20 .766 9.91 4.55 8.42 11.65 -6.043 2.09 -1.22 .735 4 B 22.00 .550 19.73 9.40 2.99 8.42 11.65 14.30 .490 11.85 -4.114 3.60 -5.46 .659 • 26 4.88 .61 8.13 10.* -6.218 1.91 -1.47 .728 -4.370 3.24 -4.82 .675 .26 8.13 14.30 .500 12.81 2 C 5.51 .61 14.30 .490 12.05 3C.* 5.00 .26 .61 8.13 -4.370 3.24 -4.82 .675 -6.218 1.91 -1.47 .728 14.30 .490 12.05 4C.* 5.00 .26 .61 8.13 14.30 .500 12.81 SC 5.51 .39 .61 8.13 -5.411 2.30 -2.22 .703 15 14.25 .490 12.48 5.19 .26 .61 8.10 14.00 .490 12.21 -5.266 2.40 -2.61 .701 2 S 5.08 .26 .61 8.10 AVERAGES: 60317 BASELINE W003 00 000 22.00 .555 20.18 -7.472 1.63 -.45 .758 9.78 4.16 8.42 11.65 STD .00 .003 .25 •825 •27 .44 .014 .22 .68 * * 60317 W018FE002(1.7E15) 14.21 .495 12.58 -5.778 2.13 -1.94 .715 5.32 .29 .61 8.12 .12 .005 .443 .22 د2. .49 .013 .19 C T D .06 * * PERCENT OF BASELINE 64.6 89.3 62.3 122.7 131 ***** 94.3 54.4 7.0 69.7 7.2 STDZ • 6 1.3 2.0 15.1 37 634.6 3.5 3.2 2.7 • 0 .1

130

~ .

٠.

. . .

60323 W019CU003(4E14) W003 00 000 *SOL4 1 /7 /80 AMI: PO=91.60MW/CM² NO AR COATING PCDa PCDb OCD ISC VOC IP LOG(10) N FF Eff ID R 22.50 .550 20.63 -7.895 1.47 .80 .731 9.55 5.00 8.42 11.65 18* 22.00 .550 20.59 .89 .766 3B -9.707 1.14 9.80 4.55 8.42 11.65 .78 .738 22.00 .540 20.25 -8.164 1.39 9.27 3.51 1.95 4.30 10 2 C 22.00 .540 20.69 -10.009 1.08 .46 .786 9.88 4.55 1.95 4.30 1.95 4.30 3C 21.75 .540 20.26 -8.847 1.26 .19 .774 9.61 3.51 1.95 4.30 -.60 .782 10.00 4.16 15 22.40 .540 20.76 -7.990 1.42 -.59 .788 9.89 5.20 1.95 4.30 22.00 .540 20.45 -8.241 1.37 25 -.59 .788 9.89 3.90 4.30 22.00 .540 20.45 -8.241 1.37 1.95 35 22.00 .540 20.44 -8.598 1.30 .22 .767 9.64 3.90 1.95 4.30 45 22.80 .556 21.07 -8.355 1.38 .60 .749 10.04 3.90 1.95 4.30 1 T -8.936 1.27 2T 22.30 .556 20.79 .24 .774 10.15 4.16 1.95 4.30 21.50 .556 19.74 -8.387 1.38 1.62 .717 9.00 3.64 1.95 4.30 3**T** AVERAGES: 60323 BASELINE W003 00 00C 9.80 9.42 11.65 22.00 .550 20.59 -9.707 1.14 4.55 .89 .700 .00 .000 .00 .00 .000 .00 .00 * .00 .000 STD 60323 W019CU003(4E14) 22.08 .545 20.49 -8.577 1.32 .23 .766 9.74 4.04 1.95 4.30 .34 .007 .35 .555 .10 .67 .023 .33 .49 * ٠ STD PERCENT OF BASELINE 99.4 88.9 100.3 99.1 99.5 111.6 116 20.4 100.0 23.2 30.9 8 75.1 3.0 10.8 1.7 5.7 3.4 .0 STDI 1.5 1.3 .0 60427 W021MG001 (3E12) W002 00 000 AM1: F0-91.60MW/CM^2 NO AR COATING *SOL: 1 /7 /80 PCDb PCCa OCD FF Eff LOG(10) N R voc ID 1 8 C IP .10 .787 10.11 8.57 6.30 22.30 .545 20.89 -9.329 1.19 4.55 1 B .57 .793 10.29 5.20 8.57 6.30 22.30 .550 21.06 -10.712 1.01 2B .45 .793 10.15 22.00 .550 20.75 -10.407 1.05 4.94 8.57 6.30 38 0.30 22.30 .550 20.83 -9.035 1.24 .12 .780 10.12 5.20 8.57 4 B 8.20 4.16 7.74 22.50 .553 21.03 -9.097 1.24 .08 .783 10.30 1C 7.74 4.55 8.20 -.10 .786 10.10 22.50 .540 21.01 -8.907 1.24 2C 7.74 8.20 -.06 .788 10.46 5.20 22.50 .558 21.04 -9.083 1.25 3C 8.20 2.60 7.74 -.36 .752 9.10 21.50 .532 19.67 -7.266 1.59 40* 8.20 .01 .784 9.71 4.16 7.74 21.80 .537 20.37 -9.044 1.22 5 C .14 .774 7.74 8.20 9.85 4.55 -8.740 1.27 22.30 .540 20.76 15 -.04 .769 9.66 4.29 7.74 8.20 22.00 .540 20.39 -8.266 1.36 25 7.74 8.20 -9.386 1.17 .08 .788 9.91 5.20 22.00 .540 20. 2 35 8.20 7.74 9.99 5.20 -9.437 1.10 .31 .781 22.40 .540 20.98 1T 4.55 7.74 8.20 9.99 22.50 .540 21.01 -9.104 1.21 .23 .778 2 T 9.99 -9.437 1.16 4.55 7.74 8.20 .31 .781 22.40 .540 20.98 3T 9.99 4.94 7.74 8.20 .31 .781 22.40 .540 20.98 -9.437 1.10 4T AVERAGES: 60427 BASELINE W002 00 000 .31 .788 10.17 6.30 22.23 .541 20.88 -9.871 1.12 4.97 8.57 .20 .005 .27 * * .705 .09 .07 .12 .13 .002 STD 60427 W021MG001 (3E12) 7.74 8.20 22.30 .543 20.83 -9.085 1.22 4.67 .12 .781 10.00 .15 .000 .22 . 39 .342 .06 .24 .006 .25 STD PERCENT OF BASELINE 99.8 108.0 109 37.0 99.1 90.3 130.2 98.3 93.9 100.3 98.9 13.2 .0 15 102.1 1.4 2.9 - 1 10.3 1.7 1.5 1.7 STDI

131

ייייע איזער איז איזער איזע

· · · ·

2 ··· •

• • •

i .

60421 W024MG002 (3E13) W002 U0 000 *SOL4 1 /7 /80 AM1: P0-91.60MW/CM² NO AR COATING

. . . .

ar 12-

I

; ; ;

.

•

7

₽**£**.

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1 B	23.00	.545	21.44	-8.417	1.34	66	.796	10.55	5.20	8.57	6.30
2 B	22.00	.545	21.10	-8.722	1.29	43	.794	10.34	5.20	8.57	6.30
3 B	22.60	.545	21.07	-8.676	1.30	18	.784	10.21	4.55	8.57	6.30
4B	22.50	.545	20.88	-8.194	1.39	38	.780	10.11	4.55	8.57	6.30
10	22.60	.545	21.14	-9.122	1.22	.03	.785	10.23	4.94	10.24	7.50
2C	22.60	.545	21.14	-9.122	1.23	.03	.785	10.23	5.20	10.24	7.50
30	22.49	• 545	20.73	-7.937	1.45	545	.775	10.01	4.94	20.24	7.50
4C	22.50	.545	21.11	-9.513	1.16	.13	.789	10.24	4.55	10.24	7.50
5 C	22.60	.545	21.14	-9.122	1.22	.03	.785	10.23	4.16	10.24	7.50
15	22.30	.535	20.61	-7.845	1.44	46	.773	9.76	4.16	10.24	7.50
25	22.50	.535	20.71	-7.353	1.53	92	.776	9.88	4.16	10.24	7.50
35	22.60	.532	20.62	-6.929	1.68	71	.755	9.60	3.38	10.24	7.50
11	22.30	.540	20.80	-8.725	1.28	320	.785	10.00	4.94	10.24	7.50
21	22.60	.540	21.22	-9.406	1.10	20	.799	10.32	5.20	10.24	7.50
3т	22.30	.540	20.80	-8.725	1.28	320	.785	10.00	4.55	10.24	7.50
AVERAGE	s: 604	21 B	ASELINE	: woo2 0	0 000)					
	22.58	.545	21.12	-8.502	1.33	341	.788	10.30	4.88	8.57	6.30
STD	.19	.000	.20	.212	.04	.17	.007	.16	. 33	*	*
	604	21 80	24MG 0 0 2	(3E13)							
	22.48	.541	20.91	-8.527	1.33	26	.781	10.04	4.56	10.24	7.50
STD	.13	.005	•23	.833	.17	.32	.011	.22	.53	*	*
PERCENT	OF BA	SELINI	8 3								
	99.1	99.2	99	99.7	100	136.0	99.1	97.5	93.6	119.5	119.0
STD X	1.4	. 8	2.0	12.5	16	136.2	2.2	3.7	17.9	•1	.0

- . ?

- . -

•

.

۲

60422 W026MN003 (1.2E13) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

· · ·

. . .

ĩ

۲.

•

~

r. ...

ID	ISC	VOC	IP	LOG(10)	N	R	FF	≅f f	OCD	PCDa	PCDb
1 B	22.50	.555	20.61	-7.243	1.66	56	.759	10.02	3.90	8.57	6.30
2 B	22.60	.555	21.06	-8.816	1.29	.15	.775	10.28	4.29	8.57	6.30
3B	23.00	.555	21.16	-7.609	1.55	24	.759	10.25	4.29	8.57	6.30
4 B	22.20	.548	20.52	-7.997	1.44	15	.766	9.86	3.25	8.57	6.30
10	22.50	.545	21.09	-9.556	1.15	.34	.782	10.15	4.81	9.32	5.10
2C	22.50	.545	20.95	-9-132	1.22	.82	.757	9.82	3.90	9.32	5.10
3C	22.50	.545	20.86	-8.273	1.37	08	.771	10.00	4.16	9.32	5.10
4C	22.50	• 5 4 5	20.46	-7.009	1.70	10	•736	9.54	3.90	9.32	5.10
5C	22.50	.545	21.02	-9.090	1.22	• 2 0	.779	10.10	4.55	9.32	5.10
15	22.50	.545	20.58	-7.148	1.66	55	.756	9.80	3.90	9.32	5.10
25	22.50	.545	20.58	-7.148	1.66	55	.756	9.80	3.25	9.32	5.10
35	22.50	• 5 4 5	19.98	-5.658	2.27	-1.32	.721	9.34	3.25	9.32	5.10
1 T	22.50	• 545	20.83	-8.222	1.38	.10	.763	9.90	4.55	9.32	5.10
2 T	22.50	.545	20.75	-7.868	1.46	05	.760	9.85	3.90	9.32	5.10
3т	22.50	• 545	20.75	-7.868	1.46	05	.760	9.85	4.55	9.32	5.10
4T*	22.50	• 5 3 8	19.70	-5.198	2.53	-1.55	.702	8.99	2.21	9.32	5.10
AVERAGES	5: 604:	22 Ви	ASELINE	. woo2 oo	000						
	22.58	.553	20.84	-7.916	1.49	20	.765	10.10	3.93	8.57	6.30
STD	. 29	.003	.27	.584	.13	•25	.006	.17	• 4 2	*	*
	604:	22 WO	26MN003	3 (1.2E1)	3)						
	22.50	• 5 4 5	20.71	-7.906	1.51	11	.758	9.83	4.07	9.32	5.10
STD	.00	.000	.29	1.082	. 30	.53	.017	• 2 2	• 50	*	*
PERCENT	OF BAS	SELIN	E								
	99.7	98.5	99.4	100.1	101	142.0	99.1	97.3	103.4	108.8	81.0
STD Z	1.3	• 6	2.7	22.0	31	687.7	3.0	3.9	25.2	- 1	• 0

60423 W027CU-MN001 (1.7E15,1.3E15) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

, N.H. H. 1997

• • • •

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1 B	22.40	.550	20.84	-8.493	1.34	24	.782	10.18	4.16	8.57	6.34
2B	23.00	.550	20.68	-6.145	2.04	-1.06	.736	9.85	3.90	8.57	6.34
3B	23.00	.550	21.24	-7.794	1.49	40	.770	10.30	4.55	8.57	6.34
4B	23.00	.550	20.74	-6.153	2.04	-1.39	.748	10.00	3.90	8.57	6.34
5 B	23.00	.550	21.24	~7.794	1.49	40	.770	10.30	4.55	8.57	6.34
10	17.00	.510	15.66	-7.660	1.45	74	.769	7.06	. 91	.45	22.30
20	17.00	.510	15.66	-7.660	1.45	74	. 769	7.06	. 78	. 45	22.30
30	17.00	. 510	15.66	-7.660	1.45	74	760	7 06	78	24	22.30
36	16.70	510	15 50	-7.000	1 30	- 60	- 707	7.00	•/0 70	•4]	22.30
50	17 40	510	15 04	-7 199	1 67	1 20	• / 00	7.02	• / 0	•43	22.30
50	16.50	510	15.26	-8 029	1.36	-1.37	- / / 4	6 97	• 91	•45	22.30
19	17.60	510	16.12	-7.610	1.51	- 30	753	7 15	01		22. 30
26	17.40	510	16 12	-7.410	1 22	-+	• 7 3 3	7 - 1 - 2 - 1	• 71	•4.5	22.50
23	16 00	• 710	10.13	-0.200	1:32		.//9	/•31	• 91	•45	22.30
11	10.00	• 210	14./3	-/.009	1.40	0/	•/30	0.52	•00	- 4)	22.30
21	10.00	- 510	13.03	-/.3/8	1.52	• 31	•/32	0.51	• 5 2	•45	22.30
JT	10.30	•210	15.20	-9.09/	1.1/	• 32	•774	6.81	• 78	•45	22.30
4T	17.00	.510	15.91	-9.299	1.13	01	• 788	7.22	•78	- 45	22.30
AVERAGE	5: 004/	23 88	ISELINE	. WUU2 UU							
	22.88	.550	20.95	-7.276	1.68	70	•761	10.13	4.21	8.57	6.34
STD	•24	.000	•24	•955	• 30	• 4 5	.017	.18	• 2 9	*	*
	6042	23 WO2	27CU-MN	1001 (1.7	'E15,	1.3E15))				
	16.87	.510	15.57	-7.984	1.38	40	•768	6.98	•78	•45	22.30
STD	• 4 6	.000	•42	•632	•13	•47	.014	.26	.12	*	*
PERCENT	OF BAS	SELINE	5								
	73.7	92.7	74.3	90.3	82	143.3	8.00	68.9	18.5	5.3	351.7
STDZ	2.8	.1	2.9	24.2	24	146.2	4 • 1	3.8	4.3	•0	.3
604004	UA 29 AT	001 (1 6516	`		U 002	00 00	0			
60409A	WUZOAL	001 () ~ \	2.0610) 3-3: 400		- NO		ATTNC			
*5014	1 // /	ou .	AMI: P	0=91.0UM	N/CM	2 NU	AK CUI	AIING			
TD	190	voc	тр		N	P	FF	Fff	000	PCDa	PCDb
I D	190	400	Ir	LUG(10)	N	n	FE	DII	505	IODA	1000
19.*	22.50	540	19.86	-5.337	2.45	-1.86	. 720	9.25	4.55	8.57	6.30
1 D • ···	22.50	540	20 08	-7.691	1.49	45	. 769	9.99	4.55	8.57	6.30
20	22013	5/0	20.90	-7.091	1 4 0	- 71	770	10 12	4.16	8.57	6.30
40	22.13	• 540	21+02	-/./1/	1 7/	-•/1	•//3	0 74	3 00	9 57	6 30
48	22.73	.540	20.72	-0.030	1 - / 4	-•/1	•/21	3.70	1 20	1 04	2 00
10	17.00	• 3 2 3	12.80	-8.309	1.32	30	•/03	7.39	1.30	1 0 4	2.50
2C	17.00	.520	15.52	-/.141	1.62	/3	•/33	1.04	•91	1.94	2.90
3C	18.00	.530	16.70	-8.503	1.31	•04	.//0	/.//	1.04	1.94	2.90
4C	18.40	• 5 3 5	17.10	-8.740	1.28	• 30	./68	/.99	1.30	1.94	2.90
15	18.25	• 5 3 9	17.06	-9.255	1.18	•27	•779	7.97	1.30	1.94	2.90
25	18.25	• 5 2 5	16.72	-7.356	1.56	62	•759	7.69	1.30	1.94	2.90
35	18.25	.525	16.72	-7.356	1.56	62	.759	7.69	1.30	1.94	2.90
4S	18.30	.525	16.91	-8.033	1.39	26	.768	7.80	1.30	1.94	2.90
AVERAGE	S: 604	09A B	ASELIN	E W002 0	0 000)					
	22.75	.540	20.91	-7.413	1.57	62	.767	9.96	4.20	8.57	6.30
STD	.00	.000	.14	-412	.12	-12	.011	.15	.27	*	*
	604	09A W	028AL0	01 (2.6E	16) A	FTER S	INTER				
	17.93	.527	16.57	-8.097	1.40	27	.767	7.67	1.22	1.94	2.90
STD	.55	.004	.55	.709	.15	•40	.010	• 30	.14	*	*
PERCENT	OFBA	SELIN	E								
	78.8	97.6	79.2	90.8	89	156.1	100.1	77.0	29.0	22.6	46.0
STDŽ	2.4	. 8	3.2	16.2	17	84.5	2.8	4.2	5.5	.0	.0
					. ,						- •

•

алан ^{та} ,

•

69611 W029CR003 (1.2E13) W025 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

æ

¢

÷,

í

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDD
1.8	22.20	.541	20.75	-9.023	1.23	06	787	9.99	5.20	12.74	7.60
2 B	22.20	.541	20.75	-9.023	1.23	06	.787	9.99	5.20	12.74	7.60
3 B	22.20	.541	20.75	-9.023	1.23	06	. ? 8 7	9.99	5.20	12.74	7.60
4 B	22.50	.541	20.91	-8.372	1.34	23	.778	10.02	5.20	12.74	7.60
5B	22.50	.541	21.25	-10.549	1.02	.40	.796	10.25	5.20	12.74	7.60
10	23.00	.544	21.27	-7.915	1.45	38	.773	10.23	4.94	6.21	1.10
2C	23.00	.544	21.27	-7.915	1.45	38	.773	10.23	4.94	6.21	1.10
3C	23.20	-544	21.85	-10.116	1.07	.34	.792	10.57	5.46	6.21	1.10
4C	23.00	.544	21.27	-7.915	1.45	38	.773	10.23	5.20	6.21	1.10
15	22.70	.542	21.10	-8.295	1.36	42	.784	10.20	5.20	6.21	1.10
25	23.00	-542	21.45	-8.722	1.28	21	.786	10.36	5.20	6.21	1.10
35	23.00	.542	21.45	-8.722	1.28	21	.786	10.36	5.46	6.21	1.10
1 T	22.60	.540	21.30	-10.221	1.05	.35	.793	10.24	5.46	6.21	1.10
2 T	23.00	.540	21.49	-8.894	1.24	21	.790	10.37	5.20	6.21	1.10
3 T	23.00	.540	21.49	-8.894	1.24	21	.790	10.37	5.20	6.21	1.10
4 T	22.60	.540	21.11	-9.104	1.21	.18	.780	10.06	3.90	6.21	1.10
AVERAGE	S: 606	11 B.	ASELINI	E W025 0	0 000	1					
	22.32	.541	20.88	-9.198	1.21	00	.787	10.05	5.20	12.74	7.60
STD	.15	.000	.19	.721	.11	.21	.096	.10	.00	*	*
	606	11 WO.	29CR00	3 (1.2E1)	3)						
	22.92	.542	21.37	-8.792	1.28	14	.784	10.29	5.11	6.21	1.10
STD	.18	.002	.20	.767	.13	.28	.007	.13	.42	*	*
PERCENT	OF BA	SELIN	E						- • •		
	102.7	100.2	102.3	104.4	106	****	99.6	102.4	98.2	48.7	14.5
STDX	1.5	• 3	1.9	16.5	21	****	1.7	2.3	8.1	•0	.0

135
*

. . .

••

,

60510 W030CR-CU001 (1E15-1.7E15) W002 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

• •

. .-

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	CD0	PCDa	рсрр
18	22.00	.547	20.79	-10.668	1.01	.45	.797	10.14	4.94	8.57	6.30
2 B	22.00	.547	20.47	-8.524	1.33	17	.780	9.92	4.94	8.57	6.30
38	21.80	. 547	20.41	-9.286	1.20	.05	. 788	9.93	4.94	8.57	6.30
4B	22.00	.547	20.47	-8.524	1.33	17	. 780	9.92	4.94	8.57	6.30
10	16.00	. 497	14.86	-8.731	1.20	.25	. 768	6.46	.65	. 4 2	. 32
20	15.60	. 493	14.30	-8.154	1.30	.24	. 754	6.14	. 5 2	. 4 2	. 32
30	16.50	. 500	15.37	-8.968	1.16		. 772	6.74	.78	. 4 2	. 32
4C	17 20	506	16 24	-10 848	0.2	80	. 787	7.24	01	. 4.2	. 32
40 50	16 50	500	15 27	-8 968	• 7 1	09	• 707	6 74	+ 71	• 4 2	• 32
16	17 60	510	16 21	-0.566	1 00		*//2	7 20	-05	• 4 2	• 52
13	17.40	+ 710	16.06	-9.000	1.03	• • • • • • • • • • • • • • • • • • • •	*/00	7.07	+ 71	+42	• 30
25	17.10	• 510	10.00	-9.990	1.04		•/05	1.24	1.04	•42	• 30
35	17.40	• 510	16.09	-8.182	1.33	05	• 764	7.17	•91	• 4 2	• 30
2T	16.50	.500	15.33	-8.673	1.21	•16	.769	6.71	.65	• 4 2	• 30
3 T	16.80	.500	15.65	-9.007	1.15	•28	.773	6.87	•78	.10	• 30
AVERAGES	5: 605	10 B.	ASELIN	E W002 00	000)					
	21.95	.547	20.53	-9.251	1.22	.64	.786	9.98	4.94	8.57	6.30
STD	.09	.000	.15	.875	.13	.26	.007	.09	.00	*	*
	605	10 WO:	30CR-CI	U001 (1E)	5-1.	7E15)					
	16.70	.503	15.57	-9.109	1.16	.31	.773	6.87	.78	.39	• 31
STD	•57	.006	.60	.786	.11	•24	.010	•37	.15	*	*
PERCENT	OF BAS	SELINI	ε								
	76.1	91.9	75.8	101.5	95	806.5	98.4	68.8	15.8	4.5	4.9
STD Z	2.9	1.0	3.5	18.6	20	****	2.2	4.4	3.1	1.1	• 2

SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING ID ISC VOC IP LOG(IO) N R FF Eff OCD PCDa PCDb 22.30 .550 20.71 -8.232 1.40 -.44 .782 10.14 4.55 18 8.57 6.30 .52 6.66 2B 22.30 .520 16.33 -2.905 6.80 -6.03 .543 8.57 6.30 -2.963 6.24 -3.13 .496 .26 3B* 22.60 .500 16.06 5.93 8.57 6.30 4 B 22.30 .550 21.13 -11.053 .98 .38 .805 10.44 5.20 8.57 6.30 •39 .32 10 11.50 .465 10.67 -8.866 1.12 .56 .763 4.31 .00 .13 .32 2C* 12.20.426 8.92 -3.295 5.09 -6.02 .525 2.89 .00 -.77 .772 .13 3C 12.80 .473 11.81 -7.972 1.30 4.94 .32 .00 .23 .778 -9.231 1.07 .13 4C 11.50 .465 10.73 4.40 .32 .00 .13 -.86 .768 .00 SC 12.90 .473 11.87 -7.761 1.35 4.96 .32 .13 15 12.60 .479 11.77 -9.46 1.06 .35 .776 4.95 .32 .00 -3.339 5.22 -8.01 .551 .13 25* 11.70 .445 8.73 3.04 .32 .00 .13 35 11.50 .470 10.70 -8.970 1.12 .18 .773 4.42 .32 .00 .13 .32 1 T 12.00 .470 11.15 -9.010 1.11 .77 .762 4.54 .00 12.09 .470 11.15 -9.010 1.11 .77 .762 .13 2T 4.54 .32 .00 -4.137 3.47 -4.11 .627 3T* 13.20 .470 10.79 .00 4.12 .13 .32 -8.339 1.43 23.60 .573 21.92 -.23 .778 11.13 5.85 MIA2* .32 .00 M1A4* 23.60 .573 22.18 -9.844 1.16 .30 .789 11.29 5.20 .00 .32 C1A1* 21.40 .395 15.44 -4.794 2.11 5.92 .426 3.81 .00 .14 .32 C1A2* 22.20 .360 16.53 -5.482 1.57 5.60 .438 3.70 .14 .32 .00 AVERAGES: 60511 BASELINE W002 00 000 -.03 .793 10.29 22.30 .550 20.92 -9.642 1.19 4.88 8.57 6.30 STD .00 .000 .21 1.411 .21 .41 .011 .15 .33 ٠ * 60511 W031CR-MN001 (1E15-1.3E15) 12.10 .471 11.23 -8.786 1.15 .18 .769 4.63 .00 .16 .32 .10 .61 .006 STD .56 .004 .49 .561 .25 .09 * ÷ PERCENT OF BASELINE • 0 54.3 85.6 53.7 108.9 97 786.4 96.9 45.0 3.3 3.7 20.0 27 ***** STD Z 2.5 • 8 2.9 2.2 3.2 2.1 • 0 .0

60511 W031CR-MN001 (1E15-1.3E15) W002 00 000 ★SOL4 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

1 . YA.

1

.

60607 W032MG003 (3.2E14) W003 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
1 B	22.50	.552	21.08	-9.265	1.21	04	.791	10.39	4.94	8.42	11.60
2 B	22.50	.552	21.08	-9.265	1.21	04	.791	10.39	4.94	8.42	11.60
3B	22.50	.552	21.08	-9.265	1.21	04	.791	10.39	5.20	8.42	11.60
4B	22.50	.552	21.08	-9.265	1.21	04	.791	10.39	5.20	8.42	11.60
5B	22.00	.548	20.51	-8.682	1.30	25	.786	10.02	3.51	8.42	11.60
10	22.60	• 549	21.17	-9.299	1.20	.07	.787	10.33	5.20	7.14	7.17
2C	22.60	.549	21.17	-9.299	1.20	.07	.787	10.33	3.90	7.14	7.17
3C	22.60	.549	21.17	-9.299	1.20	.07	.787	10.33	4.94	7.14	7.17
4C	22.60	.549	21.17	-9.299	1.20	.07	.787	10.33	5.20	7.14	7.17
5C	22.60	.549	20.88	-7.834	1.48	47	.773	10.15	4.68	7.14	7.17
15	22.50	.545	21.14	~9.519	1.16	14	.799	10.36	5.20	7.14	7.20
25	22.50	.545	20.80	-7.695	1.51	80	.781	10.13	5.20	7.14	7.20
3S	22.50	.545	20.80	-7.695	1.51	80	.781	10.13	4.94	7.14	7.20
1 T	22.50	.550	20.99	-8.864	1.27	02	.782	10.24	5.20	7.14	7.20
2 T	22.50	.550	20.99	-8.864	1.27	02	.782	10.24	4.55	7.14	7.20
3T	22.70	.550	21.09	-8.400	1.36	15	.776	10.25	4.55	7.14	7.20
4 T	22.50	.550	20.99	-8.864	1.27	02	.782	10.24	3.90	7.14	7.20
AVERAGE	ES: 606	07 B.	ASEL INE	W003 0	000)					
	22.40	. 551	20.96	-9.148	1.23	08	.790	10.31	4.76	8.42	11.60
STD	.20	.002	.23	.233	.04	.09	.002	.15	.63	*	*
	606	07 WO	32MG003	3 (3.2E1	4)						
	22.56	.548	21.03	-8.744	1.30	18	.784	10.25	4.79	7.14	7.19
STD	.06	.002	•14	.647	.12	.31	.006	• 0 8	• 4 7	*	*
PERCENT	COF BA	SELINI	E								
· ·	100.7	99.5	100.3	104.4	106	-19.3	99.3	99.4	100.6	84.8	62.0
STD Z	1.2	.6	1.7	9.7	14	****	1.0	2.2	24.5	•0	• 2

⊥38

) 3.

--- Antonio de a

.

, •¹ •

1.1

.

۲

60608 W033TI002 (2E12) W003 00 000 *SOL4 1 /7 /80 AM1: P0~91.60MW/CM^2 NO AR COATING

,

, • ,

:: *

ŧ,

· · · · · · · · ·

ID	ISC	VOC	IP	LOG(IO)	N	R	FF	Eff	OCD	PCDa	PCDb
1 R	22.50	555	21 20	-10.648	1.03	17	. 807	10 65	5.20	8.42	11.60
10	22.00		21.27	-10.048	1 27	•1/	•007 701	10.05	1.55	Q / 7	11.60
2 D 3 D	22+23	•)))	20.77	-0.904	1 • 2 /	•07	•/01	10.20	4.55	0.42	11.60
20	22.00	•)))	21.02	-0.010	1.29	33	• / 9 4	10.40	4.55	0 • 4 2	11.60
4 B 5 D	22.00	•)))	20.00	-9.094	1.13	• 2 4	•/09	10.10	4.94	0.42	11.00
28	22.25	• > > > >	20.77	-8.904	1.2/	•07	•/81	10.20	4.29	8.42	11.00
10	19.80	• 5 3 5	18.50	-9.703	1.12	•06	• / 9 >	8.90	2.21	2.88	3.10
2C	20.20	• 5 4 4	18.41	-7.003	1.71	61	•750	8.71	1.69	2.88	3.10
3C	19.60	• 5 3 5	18.47	-10.313	1.04	• 39	• 794	8.80	2.21	2.88	3.10
4C	19.40	• 5 3 5	18.09	-9.040	1.22	.33	.773	8.49	1.95	2.88	3.10
5C	19.60	• 5 3 5	18.47	-10.313	1.04	. 39	•794	8.80	2.34	2.88	3.10
15	19.00	.534	17.94	-10.740	•99	• 7 3	.790	8.48	2.21	2.88	3.10
25	19.20	.534	18.01	-9.766	1.1:	• 4 8	.782	8.48	1.95	2.88	3.10
35	19.20	.534	18.01	-9.766	1.11	.48	.782	8.48	2.21	2.88	3.10
1T	19.30	.537	17.96	-8.543	1.31	29	.782	8.57	1.95	2.88	3.10
2T	18.90	.537	17.65	-9-128	1.21	.15	.780	8.38	1.69	2.88	3.10
3T	19.60	.537	18.33	-9.153	1.20	03	. 787	8.76	1.95	2.88	3.10
4T	19.60	.537	18.33	-9.153	1.20	03	.787	8.76	2.08	2.88	3.10
AVERAGES	5: 606	08 B.	ASELINE	. woos ou	0 0 0 0						
	22.30	. 5 5 5	20.90	-9.417	1.20	.04	. 790	10.34	4.71	8.42	11.60
STD	10	. 000	20190	688	. 10	20	000	10154	32	*	*
510	606	0000 08 WO	• 4 J 2 2 T T T O O S	1000	•10	• 2 0	.009	• 1 9	• 52		
	10 / 5	5 9 C	10 10		1 10	17	107	0 6 2	2 04	2 00	2 10
	19.43	• 2 3 0	10.19	-9.303	1.13	•17	•/03	0.03	2+04	2.00	2.10
STD	• 3 5	•003	• 2 /	•941	•18	• 30	•012	•17	+20	*	*
PERCENT	UF BAS	SELINI	Ľ								
	87.2	96.6	87.0	100.3	99	383.2	99.1	83.5	43.3	34.2	26.7
STD 🗶	2.3	• 5	2.3	18.0	24	* * * * *	2.7	3.2	7.5	• 0	• 0

. . . .

N ... - -

- -.

ł

60609 W035V002 (4E12) W003 00 000 *SOL4 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

ħ

ŕ,

.

and and a second second

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
) B	23.25	. 5 5 4	21.95	-10.270	1.07	.06	.805	10.96	5.46	8.42	11.60
2 B	22.50	.554	21.10	-9.485	1.18	.15	.788	10.39	5.20	8.42	11.60
38	22.50	. 554	21.10	-9.485	1.18	.15	.788	10.39	5.20	8.42	11.60
48	22.50	.554	21.10	-9.485	1.18	.15	.788	10.39	5.20	8.42	11.60
10	18.30	.525	17.19	-9.843	1.08	.28	.790	8.02	1.30	1.45	1.16
20*	18.20	. 489	13.77	-3.304	5.18	-4.34	.555	5.22	.20	1.45	1.16
30	18.00	. 523	16.90	-9.877	1.07	. 4 4	.786	7.82	1.04	1.45	1.16
40	18.00	. 523	16.90	-9.877	1.07	. 4 4	. 786	7.82	1.30	1.45	1.16
15	18.20	.516	16.92	-8-630	1.25	.01	.774	7.69	1.30	1.45	1.20
25	18.60	. 521	17.36	-9-013	1.19	.10	.779	7.99	1.04	1.45	1.20
35	18.60	.521	17.36	-9.013	1.19	.10	.779	7.99	1.30	1.45	1.20
) T	18.00	.525	16.91	-9.891	1.08	.33	.789	7.89	1.30	1.45	1.20
21	18.00	. 525	15.91	-9.891	1.08	.33	.789	7.89	1.30	1.45	1.20
3T	18.00	.525	16.91	-9.891	1.08	.33	.789	7.89	1.30	1.45	1.20
4 T	18.00	.525	16.91	-9.891	1.08	.33	.789	7.89	1.30	1.45	1.20
AVERAGES	S: E76	09 B.	ASELIN	E W003 00	000						
	22.69	.554	21.31	-9.681	1.15	.13	.792	10.53	5.27	8.42	11.60
STD	.32	.000	• 37	.340	.05	•04	.007	•25	.11	*	*
	606	09 WO	350002	(4E12)							
	18.17	.523	17.03	-9.582	1.12	.27	.785	7.89	1.25	1.45	1.19
STD	• 2 4	.003	•18	.466	.06	.14	.005	.09	.10	*	*
PERCENT	OF BAS	SELIN	E								
	80.1	94.4	79.9	101.0	97	208.7	99.1	74.9	23.7	17.2	10.2
STDZ	2.2	• 5	2.3	8.5	10	207.2	1.6	2.7	2.5	.0	• 2

, · · · -

١

•

60714 W0362R002 (<1.4E12) W025 00 000 *SOL5 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

, `` ĭ

,

ζ.

. . .

ŕ,

٢

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	000	PCDa	РСДЪ
1 R *	22.60	.554	20.35	-6.467	1.92	29	.723	9.57	.00	•00	.00
1 B	22.20	• 5 4 9	20.42	-7.490	1.57	53	.765	9.86	5.20	12.74	7.60
2 B	22.40	• 5 4 9	20.57	-7.385	1.60	54	•763	9.92	5.20	12.74	7.60
3 B	22.50	• 5 4 7	20.61	-7.185	1.65	68	.761	9.91	4.16	12.74	7.60
4 B	22.50	• 548	20.47	-6.766	1.79	81	.751	9.80	5.20	12.74	7.60
5 B	22.80	.549	21.04	-7.794	1.49	30	•767	10.15	5.20	12.74	7.60
10	19.90	• 531	18.09	-6.922	1.70	44	•741	8.29	1.30	.97	1.20
2 C	20.10	• 5 2 9	18.20	-6.740	1.75	41	•734	8.26	1.30	•97	1.20
30	20.20	• 5 2 7	18.24	-6.595	1.80	46	.731	8.23	1.04	•97	1.20
4C	20.30	.523	17.79	-5.503	2.29	66	•687	7.72	1.04	•97	1.20
5C	20.00	• 5 2 8	18.05	-6.545	1.82	57	.732	8.17	1.04	• 97	1.20
15	19.90	.531	17.94	-6.519	1.84	48	.728	8.13	1.04	.97	1.20
2 S	20.10	• 5 3 2	18.32	-7.136	1.63	26	.743	8.40	1.17	s 9 7 ،	1.20
35	20.30	• 5 2 6	17.95	517	2.24	-1.22	.710	8.02	1.04	.97	1.20
1 T	19.70	• 5 2 8	17.78	-6.505	1.84	70	.734	8.07	1.04	•97	1.20
2 T	20.20	• 5 2 9	18.29	-6.664	1.78	60	.738	8.33	1.04	•97	1.20
3T	20.00	.527	17.98	-6.305	1.91	84	•730	8.14	1.04	•97	1.20
AVERAGES	5: 607	14 BA	ASELINE	W025 00	000						
	22.48	• 5 4 8	20.62	-7.324	1.62	57	•761	9.93	4.99	12.74	7.60
STD	.19	.001	• 2 2	.341	.10	.17	.005	•12	• 4 2	*	*
	607	14 WO:	362R002	2 (<1.4E)	12)						
	20.06	• 5 2 8	18.06	~6.459	1.87	60	•728	8.16	1.10	•97	1.20
STD	•18	.002	.18	•474	• 2 0	• 2 5	.015	.18	•10	*	*
PERCENT	OF BA	SELINI	E								
	89.3	96.3	87.6	111.8	116	94.1	95.6	82.2	22.0	7.6	15.8
STD Z	1.6	• 6	1.8	10.9	20	86.7	2.7	2.8	4.0	.0	• 0

٠

1'

60721 W037ZR-TI001 (7E11-2.2E14) W020 CO 000 *SOL5 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

1 - F

_

- 4

ŝ

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	O CD	PCDa	PCDb
1R*	22.50	.556	20.28	-6.519	1.91	30	.725	9.59	.00	.00	.00
1 B	22.70	.556	20.99	-7.902	1.48	38	•772	10,30	5.20	7 30	7.00
2 B	22.70	.556	20.91	-7.507	1.58	70	.772	10.31	5.20	7.30	7.00
3B	22.60	.554	20.91	-7.925	1.47	45	.775	10.26	5.20	7.30	7.00
4 B	23.10	.554	21.26	-7.529	1.57	52	•767	10.38	4.55	7.30	7.00
5 B	23.00	• 5 5 5	21.34	-8.201	1.41	32	•778	10.50	5.20	7.30	7.00
10	13.90	.465	12.33	-6.197	1.79	06	.695	4.75	.13	• 4 2	.50
2C	13.80	•464	12.25	-6.260	1.76	.07	.695	4.70	.13	• 4 2	.50
3C	14.00	.463	12.40	-6.169	1.79	01	.693	4.75	.13	• 4 2	.50
15	13.30	.463	11.91	-6.667	1.61	.40	.703	4.58	•13	. 42	.50
2 S	13.90	.464	12.33	-6.188	1.79	06	.695	4.74	.13	.42	.50
3S	13.90	.463	12.27	-5.972	1.88	33	.691	4.70	.13	• 4 2	.50
1 T	13.80	•462	12.24	-6.199	1.78	10	•696	4.69	.13	• 4 2	.50
2 T	12.90	.456	10.99	-4.840	2.58	-2.65	•667	4.15	.13	.42	.50
3T	13.70	.458	11.96	-5.662	2.01	44	.677	4.49	.13	.42	.50
4T	13.50	.461	11.98	-6.256	1.76	.10	•693	4.56	.13	• 4 2	• 5 0
AVERAGE	S: 6672	21 BA	ASELINI	E WO2O O(000						
	22.8.	.555	21.08	-7.813	1.50	47	.773	10.35	5.07	7.30	7.00
STD	•19	.001	.18	.263	.06	.13	.004	.08	.26	*	*
	6073	21 WO:	372R-T	[001 (7E)	1-1.	6E14)					
	13.67	•462	12.07	-6.041	1.88	31	.690	4.61	.13	• 4 2	.50
STD	• 3 3	.003	• 39	.465	• 2 5	.81	.010	.18	.00	*	*
PERCENT	OF BAS	SELINE	3								
	59.9	83.2	57.2	122.7	125	134.8	89.3	44.6	2.6	5.8	7.1
STD 🕱	1.9	• 6	2.4	8.8	23	236.5	1.7	2.1	•1	• 0	• 0

and the second second

٠,

60803 W038AL002 (6E16) W020 00 000 *S0L5 1 /7 /80 AM!: P0=91.60MW/CM² NO AR COATING

. .

.

- 1

R.

7

r

÷

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.555	20.31	-6.595	1.87	23	.726	9.59	.00	.00	.00
1 B	22.60	.554	20.42	-6.383	1.95	-1.02	.744	9.85	4.29	7.30	7.00
2 B	22.60	.555	20.95	-8.148	1.43	29	.775	10.28	4.55	7.30	7.00
3Б	22.60	.553	20.54	-6.693	1.83	86	.750	9.92	4.55	7.30	7.00
4 B	22.90	• 5 5 5	21.10	-7.692	1.53	29	.763	10.26	4.55	7.30	7.00
5 B	22.70	.555	20.82	-7.318	1.63	53	.760	10.13	4.29	7.30	7.00
10	17.90	.520	16.20	-4.857	1.70	16	•728	7.17	• 5 2	.15	•76
2 C	18.10	.518	16.07	-5 985	2.04	52	.703	6.97	.39	.15	•70
3C	18.40	.519	16.37	-5.976	2.04	83	.712	7.19	- 26	.15	.70
4C	18.10	.521	16.28	-6.511	1.82	37	./22	7.20	.13	.15	.70
15	17.80	.520	15.92	-6.202	1.95	/1	.718	7.03	.13	.15	•70
25	18.00	• 5 2 2	16.37	-7.120	1.62	11	.736	7.31	.13	.15	•70
35	18.00	• 520	16.05	-6.726	1.74	22	•726	7.18	• 3 9	.15	•70
lT	18.00	• 524	16.35	-7.016	1.66	20	.735	7.33	.26	.15	•7e
2 T	17.80	.519	15.97	-6.393	1.87	43	.718	7.02	•26	.15	• 70
3T	17.80	• 520	16.07	-6.694	1.76	33	.727	7.12	• 26	.15	70 ،
4 T	18.30	• 519	16.38	-6.298	1.90	46	.716	7.19	• 39	.15	.70
AVERAGE	s: 608	03В.	ASFLINI	E WO20 0	0 000						
	22.68	.554	20.77	-7.247	1.68	60	.759	10.09	4.45	7.30	7.00
STD	.12	.001	.25	.643	.19	.30	.011	.18	.13	*	*
	608	03 WO	38AL002	2 (6E16)							
	18.02	.520	16.20	-6.525	1.83	39	.722	7.16	.28	.1.	• 70
STD	.19	.002	.16	.374	•14	.22	.009	.11	.12	*	*
PERCENT	OF BA	SELIN	E								
	79.4	93.8	78.0	110.0	109	134.1	95.2	70.9	6.4	2.1	10.0
STD Z	1.3	.4	1.7	13.6	22	86.9	2.6	2.3	3.0	• 0	• 0

•

and the memory of

1

ستعيد بالرغر غابتنا

1.1

.....

60805 W039NI003 (TWINNED) (3.3E16) W020 00 000 *SOL5 1 /7 /80 AM1: P0=91.60MW/CM⁻² NO AR COATING

. .

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
1R*	22.50	.553	20.27	-6.492	1.91	30	.724	9.53	.00	.00	.00
1 B	22.60	.558	21.03	-8.584	1.34	07	.778	10.37	5.46	7.30	7.00
2B*	22.20	.555	20.54	-7.968	1.47	40	.774	10.08	5.20	7.30	7.00
3B	22.70	.553	20.94	-7.722	1.52	45	.770	10.22	5.20	7.30	7.00
4 B	22.60	.553	21.00	-8.384	1.37	26	.780	10.30	5.20	7.30	7.00
10	21.90	.549	20.12	-7.401	1.60	~.60	•764	9.72	4.81	6.50	2.00
2 C	21.80	.549	20.12	-7.765	1.50	43	.769	9.74	4.81	6.50	2.00
3C•*	20.80	.529	16.72	-3.777	4.21	-2.93	.607	7.07	.91	6.50	2.00
15	22.10	• 548	20.35	-7.694	1.52	28	.763	9.77	4.03	6.50	2.00
2S•*	22.00	.543	18.61	-4.203	3.56	-3.72	.684	8.64	3.12	6.50	2.00
3S	22.00	• 546	19.79	-6.168	2.02	-1.13	.737	9.37	3.51	6.50	2.00
1T•*	20.00	• 480	12.17	-6.990	1.52	15.68	.320	3.25	.13	6.50	2.00
3T•*	:0.70	.517	13.89	-3.368	5.10	3.55	.416	4.70	.13	6.50	2.00
4T.*	20.60	• 507	13.30	-4.155	3.43	9.48	• 367	4.06	.13	6.50	2.00
AVERAGE	s: 608	05 B	ASELIN	E WO20 0	0 0 0 0						
	22.63	.555	20.99	-8.230	1.41	26	.776	10.30	5.29	7.30	7.00
STD	.05	.002	.04	.368	.08	.15	.004	.06	.12	*	*
	608	05 WO	39N 100	3 (TWIN)	NED)	(3.3E)	16)		-		
	21.95	.548	20.09	-7.257	1.66	61	.758	9.65	4.29	6.50	2.00
STD	.11	.001	.20	.643	.21	.32	.012	.16	.55	*	*
PERCENT	OF BA	SELIN	E								
	97.0	98.8	95.7	111.8	118	-36.7	97.8	93.7	81.1	84.0	28.6
STDZ	•7	• 6	1.1	12.1	22	338.6	2.2	2.2	12.6	. 0	.0

144

\$

יי ה י

· _ ·

60811 W040CR-NI001 (8E14-1.3E16) W020 00 000 *SOL5 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

1.17. The second se

٠,

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.556	20.31	-6.639	1.86	14	.72%	9.58	.00	.00	.00
1 B	22.60	.553	20.75	-7.356	1.62	59	.764	10.09	4.16	7.30	7.00
2 B	22.70	.555	20.99	-7.951	1.47	29	.770	10.26	4.94	7.30	7.00
3B	22.50	.559	20.93	-8.476	1.37	20	.780	10.37	4.94	7.30	7.00
4 B	22.50	• 5 5 6	20.91	-8.374	1.38	30	.781	10.33	4.94	7.30	7.00
5 B	23.10	.553	21.00	-6.694	1.83	85	.751	10.15	3.90	7.30	7.00
10	20.40	.531	18.61	-7.064	1.65	51	.749	8.58	1.30	1.35	•20
2C	20.80	.532	18.89	-6.709	1.77	84	.748	8.75	1.43	1.35	.20
3C	20.80	.528	18.82	-6.500	1.83	97	.744	8.65	1.17	1.35	•20
4C	20.40	.527	18.45	-6.479	1.84	98	.743	8.45	1.30	1.35	.20
5C	20.20	.519	18.01	-5.843	2.09	-1.32	.725	8.04	.65	1.35	• 20
15	20.30	.523	17.97	-5.574	2.25	-1.55	.718	8.06	1.04	1.35	• 2 0
25	21.50	.537	19.64	-7.077	1.66	64	.755	9.22	1.95	1.25	.20
35	21.50	.534	19.61	-7.020	1.67	51	•749	9.10	1.69	1.35	• 20
1 T	18.50	.501	16.48	5.994	1.96	85	.715	7.01	.39	1.35	•20
2T	17.80	.493	15.85	-6.074	1.90	58	.709	6.58	.26	1.35	.20
3т	17.40	.488	15.49	-6.108	1.87	44	.706	6.34	•26	1.35	•20
4T	16.70	.485	14.97	-6.460	1.73	23	.714	6.12	.26	1.35	• 20
AVERAGES	5: 608	Li Ba	ASELIN	E W020 00	0 0 00						
	22.68	.555	20.92	-7.770	1.53	45	.769	10.24	4.58	7.30	7.00
STD	.22	.002	.09	.667	•17	.24	.011	.11	.45	*	*
	608	11 WO4	40CR-N	1001 (8E)	14-1.	3E16)					
	19.69	• 517	17.73	-6.408	1.85	79	.731	7.91	•98	1.35	.20
STD	1.58	.018	1.55	.478	•17	• 36	.018	1.06	.57	*	*
PERCENT	OF BAS	SELINI	E								
	86.8	93.0	84.8	117.5	121	23.7	95.1	77.2	21.3	18.5	2.9
S TD X	7.9	3.7	7.8	13.8	26	221.4	3.7	11.2	15.8	.0	• 0

60809 W041CR-CU-NI001 (8E14-1.7E15-1.3E16) WC20 00 000 *SOL5 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

1

mutation .

:

۰۰. چ

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
10+	22 50	553	20 30	-6 577	1 97	- 23	725	05/	0.0	00	. 0.0
28	22.00	552	20.30	-9.666	1 21	- 10	- 7 2 /	10 50	5 20	.00	.00
20	23.10		21.33	-0.000	2 10	1 20	- 704	10.59	2.20	••••	-00
3D • *	22.00	•	20+29	- J • 04 J	2.10	-1.30	• / 32	3.0.33	2.21	•00	.00
4 B	22.70	• > > 2	21.07	-8.204	1.41	3/	• / / 9	10.33	4-01	•00	.00
58	22.90	- 572	21+21	-8.040	1.44	39	•//0	19.38	4.94	.00	.00
10	19.30	.503	16.73	-5.066	2.51	-1.55	• 685	7.03	•65	.43	•2C
2C	20.80	- 527	18.74	-6.297	1.91	-1.01	.737	8.55	1.30	.43	.20
3C	19.00	.507	16.84	-5.725	2.12	-1.20	.713	7.26	• 5 2	•43	.20
4C.*	20.20	.505	14.93	-2.911	5.79	-7.81	.562	6.07	.26	•43	.20
15	19.30	.509	16.84	-5.135	2.49	-1.96	.701	7.28	• 5 2	.43	.20
25	20.50	.523	18.32	-5.948	2.05	-1.23	.728	8.26	.91	.43	.20
35	20.30	.518	17.61	-4.887	2.71	-2.41	.700	7.79	.78	.43	.20
1T	18.20	.495	15.73	-5.081	2.47	-1.35	.677	6.45	. 39	.43	.20
2 T	17.70	. 502	15.66	-5,779	2.08	93	.704	6.62	. 39	.43	.20
3т	17.70	. 498	15.53	-5.464	2.24	-1.33	. 698	6.51	.52	.43	.20
4T	16.90	. 496	14.94	-5.859	2.03	66	.699	6.20	• 5 2	.43	.20
AVERAGES	5: 608	09 B.	ASELIN	E W020 00	000 0						
	22.90	.552	21.27	-8.305	1.39	31	.780	10.43	4.98	.00	.00
STD	.16	.000	.19	.263	•05	•09	.003	.11	-16	*	*
	608	09 WC4	41CR-C	U-NI001	(8E14	-1.7E1	5-1.3	E16)			
	18.97	.508	16.69	-5.524	2.26	-1.36	.704	7.19	.65	.43	.20
STD	1.26	.011	1.19	.443	.25	.48	.017	.75	.27	*	*
PERCENT	OF RA	SEL IN	E								
I DRODNI	82.8	91.0	78.5	133.5	163	****	90.3	60.0	13.0	*****	*****
6 TD 7	6 1	21.2	6.1	7 4	203	333 5	20.2	07.0	17.0	*****	*****
3104	0+1	£•0	0 • 4	/ • 0	25	755.7	∡ • 0	0 • 1	7.7		

.

à

÷,

60820 W042T1003 (4E13) W020 00 000 *SOL5 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

ł

÷.,

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R *	22.50	• 5 5 5	20.37	-6.775	1.81	11	.728	9.62	•00	•00	•00
1 B	22.90	.555	21.06	-7.486	1.59	46	.753	10.26	4.16	7.30	7.00
2 B	22.30	.559	20.58	-7.812	1.52	33	.768	10.12	4.16	7.30	7.00
3B.*	22.60	.555	20.23	-5.899	2.18	-1.38	.734	9.74	4.16	7.30	7.00
4B	22.80	.556	20.99	-7.577	1.56	44	•765	10.26	4.55	7.30	7.00
5 B	22.80	.555	21.13	-8.187	1.42	17	.772	10.33	4.55	7.30	7.00
10	16.20	.493	14.15	-5.458	2.25	-1.12	.688	5.81	1.20	.71	.80
2C	16.10	.495	14.25	-5.993	1.97	35	.696	5.87	1.20	.71	- 80
3C	16.30	-496	14.73	-6.987	1.59	.33	.718	6.14	1.20	.71	.80
4C	16.30	.495	14.53	-6.248	1.85	28	.706	6.02	1.20	.71	• 80
5C.*	16.30	.486	12.85	-3.484	4.76	-6.53	.613	5.13	1.20	.71	.80
15	16.60	-494	14.53	-5.532	2.20	92	.638	5.97	• 26	.71	.80
25	16.70	.493	14.73	-5.810	2.04	63	.696	6.06	-13	.71	.80
35	16.60	.495	14.69	-5.923	2.00	57	.699	6.08	.13	.71	.80
1 T	16.40	.492	14.43	-5.740	2.08	63	.691	5.90	•13	.71	.80
2 T	16.20	.493	14.24	-5.657	2.13	90	.693	5.86	.13	•71	.80
3т	16.40	.493	14.48	-5.839	2.03	60	.696	5.95	.13	.71	.80
4T	16.50	• 4 9 2	14.42	-5.515	2.20	81	• 684	5.87	.13	.71	.80
AVERAGES	5: 6082	20 BA	ASELINE	: ¥020 00	000						
	22.70	• 5 5 0	20.94	-7.766	1.52	35	•767	10.24	4.36	7.30	7.00
STD	•23	•002	• 21	.271	•07	-12	.003	•08	•19	×	*
	6083	20 WO4	42TIO03	(4E13)							
	16.39	.494	14.47	-5.882	2.03	59	•696	5.96	• 5 3	•71	.80
STD	.18	.001	•19	.414	.18	• 37	.009	•10	.51	*	*
PERCENT	OF BAS	SELINI	E								
	72.2	88.8	69.1	124.3	134	32.2	90.7	58.2	12.2	9.7	11.4
STD Z	1.6	• 5	1.6	8.2	18	198.1	1.6	1.4	12.7	• 0	• 0

147

- Bar in

-

7-4- 1-1-22--1

. .

. .

60823 W043FE-TI001 (5.6E14-3.3E13) W020 00 000 *S0L5 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

.-

•

,

А.

ŗ

ىرى مىغەسىر ي

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
IR*	22.50	.555	20.28	-6.544	1.89	21	.723	9.55	.00	.00	•00
1 B	23.00	.556	21.20	-7.568	1.54	42	.767	10.38	4.16	7.30	7.00
2 B	22.80	.555	21.05	-7.800	1.51	40	.770	10.31	4.94	7.30	7.00
3B	22.70	.555	20.57	-6.474	1.92	-1.06	.749	9.98	3.90	7.30	7.00
4 B	22.80	.554	20.58	-6.247	2.01	-1.27	.747	9.98	4.81	7.30	7.00
5 B	23.50	.555	21.73	-7.981	1.46	24	.770	10.62	4.55	7.30	7.00
10	16.10	.493	14.40	-6.353	1.81	35	.712	5.98	.13	.50	•90
2C	15.90	.490	14.29	-6.678	1.68	.12	.712	5.87	.13	.50	.90
3C	16.20	.487	14.34	-5.983	1.94	42	.698	5.82	.13	.50	• 90
4C	16.30	.488	14.36	-5.797	2.03	51	.691	5.81	.13	.50	•90
5C	16.00	.481	13.86	-5.199	2.36	-1.48	.681	5.54	.13	.50	.90
15	16.30	.490	14.10	-5.137	2.44	-1.58	.680	5.74	.13	.50	.90
25	16.20	.489	14.16	-5.464	2.22	-1.16	.689	5.78	.13	.50	.90
3S	16.20	.486	13.74	-4.665	2.82	-2.27	.661	5.50	.13	.50	• 90
1T	16.00	.484	14.23	-6.238	1.82	21	.704	5.76	.13	.50	•90
2 T	16.10	.484	14.30	-6.125	1.87	28	.700	5.77	.13	.50	•90
3T	16.20	.488	14.42	-6.200	1.85	27	.704	5.88	.13	.50	.90
4T	16.20	.488	14.37	-6.037	1.92	46	.701	5.86	.13	• 50	.90
AVERAGES	s: 608	23 B/	ASELIN	E W020 00	000						
	22.96	.555	21.03	-7.234	1.69	68	.761	10.25	4.47	7.30	7.00
STD	.29	.001	.43	.724	.23	.41	.010	.25	. 39	*	*
	608	23 WO	43FE-T	1001 (5.0	5E14-	3.3E13)				
	16.14	.487	14.22	-5.823	2.06	74	.694	5.78	.13	.50	.90
STD	.12	.003	.21	.564	.32	.68	.014	.13	.00	*	*
PERCENT	OF BAS	SELINI	E								
	70.3	87.8	67.6	119.5	122	90.8	91.3	56.4	2.9	6.8	12.9
STD Z	1.4	• 7	2.4	16.6	38	227.2	3.2	2.6	.3	.0	•0

.

. .

• ;

·· •'

60827 W044FE003 (1.7E13) W020 00 000 *Sol3 1 /7 /80 AM1: P0=91.60HW/CM² NO AR COATING

18 · · · · 31

ID	' SC	VOC	IP	LOG(10)	N	R	FF	Eff	ÔCD	PCDa	PCDb
12*	22.50	. 555	20.78	-8.308	1.39	. 61	.747	9.87	.00	.00	.00
. R	22.80	. 5 5 3	20.89	-7.319	1.63	35	.755	10.06	3.25	7.30	7.00
2 B	23.30	.556	21.87	-9.523	1.18	.05	.792	10.86	6.94	7.30	7.00
38	23.10	. 556	21.52	-8.676	1.32	06	. 780	10.59	4.29	7.30	7.00
55 6 B	23 10	555	21.45	-8.354	1.38	14	.775	10.51	4.55	7.30	7.00
	23.50	557	21.47	-7.821	1.50	12	.76)	10.54	4.55	7.30	7.00
	23.30	551	10 07	-3 766	1.30	-5 00	604	0 10	2 00	6 50	1 26
10	22.70	+ 2 2 1	10.94	-3./44	4.30		+074	7.10	2.77	6 50	1 20
20.*	23.10	+ 3 3 3	20.04	-4.03/	3.00	-3.33	•/10	9.71	3.30	0.39	1.20
30	23.30	• 228	21.67	-8.461	1.3/	15	•//8	10.70	5.20	0.39	1.20
4C*	22.80	• 5 3 9	17.93	-3.297	5.41	-5.48	•613	7.97	1.30	6.59	1.26
15	23.10	• 5 5 9	21.73	-9.849	1.14	• 20	•793	10.83	4.94	6.59	1.26
25	23.00	.554	21.48	-8.957	1.26	•03	.782	10.54	3.90	6.59	1.26
35	24.20	• 5 5 1	22.30	-8.134	1.41	•61	.743	10.47	3.25	6.59	1.26
1 T	22.50	.557	21.14	-9.799	1.14	.27	.790	10.46	4.29	6.59	1.26
2T.*	22.70	.551	19.47	-4.298	3.47	-4.32	.715	9.46	2.99	6.59	1.26
3T	22.90	.556	21.38	-8.979	1.27	.05	.782	10.53	4.42	6.59	1.26
AVERAGE	S: 608	27 В.	ASELINI	E W020 0	0 0 0 0						
	23.16	. 5 5 5	21.48	-8.338	1.40	12	. 773	10.51	4.29	7.30	7.00
STD	230.23	001	- 3	.752	15	.13	.013	. 26	.56	*	*
310	609	27 UN	****	•/J2 •/1 7F1	a \	• • • •		• • •	• 50		
	22 17	2/ 80	44FBUU.) \ \ \			10 60	1	(1 26
	23.17	• > > > 0	21.02	-9.030	1.20	•1/	•//8	10.29	4.33	0.39	1+20
STD	• 5 2	.003	• 36	• 6 3 2	•10	•24	.017	•13	•64	Ħ	-
PERCENT	OF BA	SELIN	E								
	100.0	100.1	100.6	91.7	90	334.0	100.7	100.7	101.0	90.3	18.0
STDX	3.3	.7	3.2	18.0	18	534.7	3.9	3.7	30.3	.1	•0

149

and the second second

· · · · · · · · · · · ·

•

.

.

*SOL3 1 /7 /80 AM1: P0=91.60MW/CM ² NO AR COATING	
ID ISC VOC IP LOG(IO) N R FF EFF OCD PCDa F	CDP
	00
	•00
$18 \qquad 22.50 .544 19.23 -4.564 3.12 -2.30 .679 8.79 1.56 7.30 6$.99
$28 \qquad 22.70 .554 21.04 -8.117 1.43 35 .777 10.33 5.20 7.30 6$	•99
$3B \qquad 22.70 .555 21.04 -8.163 1.42 28 .775 10.33 4.55 7.30 6$.99
$4B \qquad 22.80 \ .555 \ 21.01 \ -7.605 \ 1.55 \55 \ .770 \ 10.30 \ 4.29 \ 7.30 \ 6$.99
5B 22.70 .553 20.99 -7.815 1.5056 .776 10.30 4.29 7.30 6	•99
1C 15.50 .484 14.21 -7.652 1.3807 .749 5.94 .13 .99	.15
2C 16.20 .486 14.91 8.004 1.31 .23 .751 6.25 .13 .99	.15
3C 16.20 .490 14.83 -7.400 1.4648 ./54 6.33 .13 .99	.15
4C 15.70 .478 14.07 -6.162 1.83 -1.42? 5.80 .13 .99	.15
5C 15.80 .481 14.39 -7.090 1.5263 .74. 5.01 .13 .99	.15
IS 15.60 .480 14.11 -6.641 1.66 -1.01 .741 5.86 .13 .99	.15
28 16.10 .487 14.71 -7.267 1.4955 .751 6.23 .13 .99	.15
35 16.20 .489 14.83 -7.388 1.4648 .753 6.31 .13 .99	.15
1T 16.30.487 14.95 -7.675 1.3802.749 6.29 .13 .99	.15
2T 16.30 .487 14.95 -7.675 1.3802 .749 6.29 .13 .99	.15
3T 16.20, 486 14.90 -7.818 1.35 -14 .756 6.30 .13 .99	.15
4T 16.20 .487 14.83 -7.470 1.4324 .749 6.25 .13 .99	.15
AVERAGES: 61019 BASELINE W020 00 000	
22.73.554 21.02 -7.925 1.4844 .774 10.32 4.58 7.30 6	.99
STD .05.001 .02 .228 .05 .13.003 .01 .37 *	*
61019 + 0.45 CR = FE = T1001 (6.5E14 = 4.3E14 = 3.9E13)	
	.68
10+14 +470 14+77 =/+137 1+00 =+237 +/43 0+30 +24 1+40	
$STP = 1.75 \cdot 016 \cdot 1.26 \cdot .883 \cdot .46 \cdot .66 \cdot .020 \cdot .72 \cdot .38 *$	*
STD 1.75.016 1.26 .883 .46 .66 .020 .72 .38 *	*
STD 1.75.016 1.26 .883 .46 .66 .020 .72 .38 * PERCENT OF BASELINE 72.7 88.4 71.3 109.9 108 73.9 96.0 61.6 5.2 20.2	* 9.7

00 000 0012) 1020

۲

*

Ł م میں ہو

•

. . . . »

......

150

.

-, v

ing a second second

60902 W046FE-V001 (5.7E14-7E13) W020 00 000 *SOL3 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

Ť.

۰.

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1R*	22.50	.555	20.54	-7.237	1.66	04	.741	9.79	.00	.00	.00
1 B	22.60	• 558	21.13	-9.001	1.27	15	.790	10.53	4.42	7.30	7.00
2 B	22.80	.560	21.47	-10.118	1.10	.31	.793	10.71	5.20	7.30	7.00
3B	22.70	• 5 5 8	21.27	-9.440	1.20	• 2 2	.785	10.52	4.16	7.30	7.00
4 B	22.80	.559	21.47	-10.103	1.10	.31	.793	10.69	4.94	7.30	7.00
5B	22.80	.556	21.19	-8.446	1.36	10	•776	10.40	4.16	7.30	7.00
1C*	9.90	.480	8.15	-4.280	3.52	-6.38	.640	3.22	.10	.15	.15
2 C	18.00	.499	16.83	-9.299	1.10	• 2 4	.780	7.41	.65	.15	.15
3C	17.50	.496	15.85	-6.537	1.73	-1.33	.750	6.88	.65	.15	.15
4C	17.40	.496	15.89	-7.037	1.57	-1.02	•759	6.93	.65	.15	.15
5C	17.40	.493	15.93	-7.379	1.47	48	•755	6.85	.65	.15	.15
15	17.70	.498	16.40	-8.284	1.27	19	.771	7.19	• 3 9	.15	.15
2 S	17.50	.498	16.21	-8.202	1.29	31	.773	7.12	.39	.15	.15
35	17.60	.495	16.21	-7.710	1.39	55	.767	7.07	.52	.15	.15
1 T	17.80	.500	16.52	-8.516	1.23	.06	.769	7.24	• 5 2	.15	.15
21	17.10	.497	15.62	-6.984	1.59	-1.31	.765	6.88	.52	.15	.15
3T	17.20	.496	15.66	-6.808	1.64	-1.32	.759	6.85	.52	.15	.15
4 T	17.10	•496	15.83	-8.240	1.28	•14	•769	6.89	•52	.15	•15
AVERAGE	s: 609	02 Ви	ASELIN	E W020 0	0 0 00						
	22.74	.558	21.31	-9.422	1.21	.12	•787	10.57	4.58	7.30	7.00
STD	.08	.001	.14	.645	.10	• 20	.007	.12	.42	*	*
	609	02 WO4	46FE-V	001 (5.7)	E14-7	E13)					
	17.48	.497	16.09	-7.727	1.42	58	.765	7.03	• 5 4	.15	.15
STD	• 27	.002	•36	.815	.19	• 5 5	.008	.18	.09	*	*
PERCENT	OF BA	SELIN	E								
	76.9	89.0	75.5	118.0	117	* * * * *	97.2	66.5	11.9	2.1	2.1
STD 🕇	1.5	• 5	2.2	14.9	27	* * * * *	1.9	2.5	3.3	• 0	• 0

151

·..., . •

. Auge of the

2 m .

-

. بېرمې د. ر

. م

r

Ţ

61026 W047CU-NI-ZR001 (1.7E15-4.7E15-2.1E11) W020 00 000 *SOL3 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

· · .

<u>~</u>

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
18*	22.50	.557	20.45	-6.974	1.75	10	.735	9.73	.00	.00	.00
18.*	22.90	.556	20.55	-5.949	2.16	-1.50	.741	9.98	3.25	7.30	7.00
2 R	23.00	.558	21.37	-8.418	1.37	16	.777	10.55	4.55	7.30	7.00
4 B	22.80	.559	21.14	-8.107	1.44	40	.778	10.49	4.55	7.30	7.00
5 B	22.90	.560	21.41	-9.032	1.27	04	.786	10.66	4.55	7.30	7.00
10	21.60	.545	19.51	-6.141	2.03	-1.88	.759	9.45	1.95	2.61	3.37
2 C	21.50	.545	19.99	~8.656	1.30	.19	.770	9.54	1.95	2.61	3.37
30	21.50	.543	19.83	-7.863	1.46	17	.763	9.42	1.95	2.61	3.37
4 C	21.70	.543	20.08	-8.119	1.41	15	.769	9.58	1.95	2.61	3.37
15	21.30	.543	19.41	-6.883	1.74	83	.754	9.23	1.95	2.61	3.37
25	21.50	.544	19.99	-8.533	1.32	03	.775	9.58	1.95	2.61	3.37
35	21.60	.543	20.01	-8.236	1.38	02	.767	9.52	1.95	2.61	3.37
ÎT	21.20	.543	19.65	-8.283	1.37	07	.770	9.37	1.95	2.61	3.37
2 T	21.40	.543	19.91	-8.687	1.29	.12	.773	9.50	1.95	2.61	3.37
3т	21.40	.543	19.96	-8.987	1.24	•26	.775	9.52	1.95	2.61	3.37
4T	21.60	• 5 4 3	20.11	-8.852	1.26	• 28	•771	9.56	1.95	2.61	3.37
AVER JES	S: 610.	26 B	ASELIN	E W020 00	000						
ATER. JE.	22.90	.559	21.31	-8.519	1.36	20	.781	10.57	4.55	7.30	7.00
STD	.08	.001	.12	.384	.07	.15	.004	.07	.00	*	*
010	610	26 WU	47CU-N	I-ZR001	(1.7E	15-4.71	E15-2	.1E11)			
	21.48	. 543	19.86	-8.113	1.44	21	.768	9.48	1.95	2.61	3.37
STD	.14	.001	. 2 2	.832	.23	.60	.006	.10	.00	*	*
PERCENT	OF BA	SELIN	E						-		
	93.8	97.2	93.2	104.8	106	94.6	98.4	89.7	42.9	35.8	48.1
STD %	1.0	.3	1.6	14.5	23	605.0	1.3	1.6	• 0	.0	• 0

152

A PRIME

Alexandre and the second

Α.

<u>د</u>- `

60914 W048TI004 (2E11) WC02 00 000 *SOL3 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

¥

;

1

۴,

کی

,

÷

R 1

•

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСDЪ
1R*	22.50	.555	20.59	-7.402	1.61	• 0 3	.744	9.82	•00	.00	.00
1B•*	23.70	.558	21.22	-5.870	2.20	-1.38	•736	10.29	3.25	8.57	6.34
2 B	23.10	.556	20.79	-6.096	2.08	-1.33	•743	10.09	3.25	8.57	6.34
3B•*	22.90	.554	20.60	-6.035	2.11	-1.49	•745	10.00	3.25	8.57	6.34
4 B	22.80	.558	21.08	-7.923	1.48	33	•771	10.37	4.29	8.57	6.34
5 B	23.00	.558	21.50	-9.020	1.26	06	.787	10.68	5.20	8.57	6.34
10	22.70	• 5 5 2	20.82	-7.217	1.65	78	.766	10.15	3.64	5.09	4.30
2 C	22.70	.552	20.98	-7.835	1.49	49	•774	10.26	4.29	5.09	4.30
3C*	22.90	•541	18.41	-3.302	5.41	-7.19	.660	8.65	1.95	5.09	4.30
4 C	22.90	.550	20.74	-6.374	1.94	-1.31	•754	10.05	3.90	5.09	4.30
1 S	22.50	.551	20-56	-6.882	1.76	-1.09	•765	10.03	3.90	5.09	4.30
2 S	22.70	• 5 5 0	20.65	-6.736	1.80	83	•751	9,92	3.38	5.09	4.30
3S	22.80	.551	21.07	-7.855	1.48	38	•771	10.24	3.90	5.09	4.30
1 T	22.70	• 5 5 1	21.04	-8.137	1.42	32	•776	10.27	4.16	5.09	4.30
2 T	22.70	• 5 5 2	21.20	-8.973	1.26	•01	•783	10.38	4.16	5.09	4.30
3T	22.80	.551	21.07	-7.855	1.48	38	•771	10.24	4.29	5.09	4.30
4T	22.40	• 5 4 9	20.75	-8.117	1.42	-•23	•772	10.04	4.03	5.09	4.30
AVERAGES	s: 6093	14 B.	ASELINE	W002 00	000 0						
	22.97	.557	21.12	-7.680	1.61	57	.767	10.38	4.25	8.57	6.34
STD	.12	.001	.29	1.206	• 35	• 5 5	.018	• 2 4	.80	*	*
	609	14 WO4	48TI004	(2E11)							
	22.69	.551	20.89	-7.598	1.57	58	.768	10.16	3.97	5.09	4.30
STD	.14	.001	.20	•744	• 2 0	• 39	.009	•14	• 27	*	*
PERCENT	OF BAS	SELINI	E								
	98.8	98.8	98.9	101.1	98	98.3	100.2	97.9	93.4	59.4	67.8
STD 🕱	1.1	• 3	2.3	26.7	36	230.6	3.6	3.6	25.2	• 0	• 0

153

Report accord attended the figst and

. . .

61022 W049V003 (4E11) W020 00 000 *SOL3 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

. t

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.555	20.54	-7.331	1.63	.20	.736	9.72	.00	.00	•00
1B.*	22.30	.553	18.40	-3.477	5.04	-7.99	.703	9.17	2.60	7.30	7.00
2B*	22.50	.548	18.01	-3.378	5.27	-0.18	.641	8.35	1.82	7.30	7.00
3B*	22.30	.549	18.28	-3.515	4.91	-6.83	.680	8.80	2.08	7.30	7.00
4 B	22.40	.556	20.61	-7.434	1.61	70	.769	10.13	3.51	7.30	7.00
10.*	22.20	.543	17.92	-3.286	5.52	-8.24	.675	8.61	1.82	4.33	3.68
2C*	22.00	• 5 3 7	17.28	-3.403	5.12	-4.48	.599	7.49	1.17	4.32	3.68
3C	22.20	• 5 4 9	19.88	-5.765	2.23	-1.96	.745	9.61	2.86	4.32	3.68
4C	22.40	.549	19.99	-5.619	2.31	-2.07	.742	9.65	3.25	4.32	3.68
5C	22.40	• 549	20.80	-8.382	1.36	15	•776	10.09	3.25	4.32	3.68
15	22.40	• 5 5 1	20.81	-8.406	1.36	15	•776	10.13	3.25	4.32	3.68
25*	22.10	• 5 3 7	17.65	-3.369	5.21	-6.16	•638	8.00	1.30	4.32	3.68
35.*	22.30	.549	19.58	-4.951	2.78	-3.16	•734	9.50	2.99	4.32	3.68
1 T	22.40	.549	20.45	-6.951	1.73	79	.757	9.85	3.12	4.32	3.68
2 T	22.40	.550	20.58	-7.418	1.59	56	.764	9.96	3.12	4.32	3.68
Зт.*	22.30	.541	17.98	-3.345	5.31	-7.26	.663	8.46	1.56	4.32	3.68
4T.*	22.20	• 5 4 6	18.70	-3.844	4.16	-6.17	•712	9.13	2.34	4.32	3.ó8
AVERAGE	S: 610	22 B.	ASELIN	E W020 0	0 0 0 0						
	22.40	.556	20.61	-7.434	1.61	70	.769	10.13	3.51	7.30	7.00
STD	.00	.000	.00	.000	.00	•00	.000	.00	.00	*	*
	610	22 WO-	49V003	(4E11)							
	22.37	.550	20.42	-7.090	1.76	95	.760	9.88	3.14	4.32	3.68
STD	•07	.001	.37	1.114	.38	•79	.013	.20	.14	*	*
PERCENT	OF BA:	SELIN	E								
	99.9	98.8	99.1	104.6	110	64.8	98.8	97.5	89.5	59.2	52.6
STD 🕱	.3	• 1	1.8	15.0	24	112.3	1.7	2.0	4.0	.0	•0

154

a tradition and the second of the second to the second second to the second second second second second second

61020 W050TI-V001 (2E11-4E11) W020 00 000 *SOL3 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

,

, }

i i

<u>,</u>

- -

-25

¥ .

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
1R*	22.50	• 5 5 7	20.64	-7.745	1.53	• 4 6	.739	9.79	.00	.00	.00
1 B	23.20	.562	21.64	-8.844	1.30	.01	.781	10.76	5.20	7.30	6.99
2 B	23.30	.563	21.83	-9.382	1.21	.19	.785	10.89	5.46	7.30	6.99
3 B	23.60	.560	21.78	-7.790	1.52	34	.768	10.74	4.94	7.30	6.99
4 B	23.30	.560	21.75	-8.943	1.28	•09	.780	10.76	4.94	7.30	6.99
5 B	23.60	.561	22.03	-8.918	1.29	•06	.781	10.93	5.20	7.30	6.99
10	20.60	.527	18.78	-6.927	1.68	77	.753	8.65	.78	1.07	1.06
2 C	20.30	.526	18.69	-7.662	1.47	38	.763	8.62	•78	1.97	1.06
30*	20.00	.501	15.59	-3.692	4.19	-1.54	.561	5.94	.26	1.07	1.06
4C	20.40	.525	18.88	-8.167	1.35	12	.768	8.70	•78	1.07	1.06
5C	20.40	.525	18.70	-7.309	1.56	56	.759	8.60	•78	1.07	1.06
15	20.00	.524	18.36	-7.379	1.54	63	.763	8.45	• 7 8	1.07	1.06
2 S	20.20	.525	18.67	-7.977	1.40	34	.771	8.64	•78	1.07	1.06
3S	20.50	.526	18.96	-8.052	1.38	20	.768	8.76	.91	1.07	1.06
1 T	20.40	.526	18.74	-7.5°6	1.51	41	.761	8.63	.91	1.07	1.06
2 T	20.50	.525	18.95	-8.040	1.38	20	•768	8.74	• 78	1.07	1.06
3T	23.20	.524	18.63	-7.804	1.43	32	.765	8.57	.78	1.07	1.06
4 T	20.20	.523	18.54	-7.425	1.52	52	.761	8.50	•78	1.07	1.06
AVERAGES	5: 610	20 B.	ASELIN	E W020 0	0 0 0 0						
	23.40	.561	21.81	-8.775	1.32	.00	.779	10.82	5.15	7.30	6.99
STD	.17	.001	.13	.527	.10	.18	.006	.08	.19	*	*
	610	20 WO	50TI-V	001 (2E1	1-4E1	1)			• • • •		
	20.34	.525	18.72	-7.661	1.48	- 41	.764	8.62	.80	1.07	1.06
STD	.17	.001	.17	.368	.09	19	.005	.09	.05	*	*
PERCENT	OF BA	SELINI	E								
	86.9	93.6	85.8	112.7	112	****	98.1	79.7	15.6	14.7	15.2
STD %	1.3	• 4	1.3	9.7	16	****	1.3	1.4	1.6	.0	.0

155

*...

r 1 13

¥

60908 W0 *SOL3)51CU/2 L /7 /4	F1001 80	(1.78 AM1: 8	E15-2E14 P0=91.60) W002 MW/CM^2	00 000 NO A	R COAT	ING			
ID	ISC	VOC	IP	LOG(10) N	R	FF	Eff	O CD	PCDa	РСДР
1R*	22.50	.553	20.30	0 -6.46	9 1.92	57	.732	9.63	.00	•00	.00
1 B	22.90	.560	21.3	5 -8.84	2 1.30	.09	.778 1	0.55	4.29	8.57	6.34
2 B	22.60	.557	20.53	3 -6.64	8 1.86	91	•750	9.99	3.90	8.57	6.34
3 B	21.00	• 5 5 2	19.58	8 -8.79	7 1.30	08	.782	9.58	1.95	8.57	6.34
4 B	22.80	.558	20.97	7 -7.48	9 1.59	49	.764 1	0.28	4.16	8.57	6.34
10	13.90	•467	12.7	5 -7.74	8 1.32	•04	•748	5.13	.10	1.57	.50
2 C	13.70	.464	12.4	7 -7.26	0 1.44	16	•738	4.96	.10	1.57	• 50
30	13.80	• 465	12.63	3 -/.5/	3 1.30	1/	•/48	5.07	•10	1.57	. 50
40	14.00	• 40 3	12 • / 0	0 -0.90	5 1 4 2		• 7 3 0	5.05	.10	1.57	- J C -
15	13.80	.460	12.3	$7 - 7 \cdot 50$ 3 - 6 \ 16	4 1.79	-1.40	.725	4.87	.10	1.57	.50
25	14.00	.466	12.84	4 -7.77	8 1.31	.06	.748	5.16	.10	1.57	.50
11	13.70	.464	12.50	-7.30	9 1.42	47	.747	5.02	.10	1.57	.50
2T	13.70	.464	12.3	2 -6.35	2 1.73	-1.65	.739	4.97	.10	1.57	.50
3T	13.70	.464	12.45	5 -6.99	1 1.51	84	.745	5.01	.10	1.57	.50
4T*	13.30	.523	10.98	8 -4.13	4 3.87	-5.89	.651	4.79	1.95	1.57	•:0
AVERAGE	S: 609	08 в	ASELI	NE W002	00 000	•					
	22.33	• 5 5 7	20.6	1 -7.94	4 1.51	34	•768 1	0.10	3.58	8.5/	6.34 ±
STD	• / /	.003	• D C		2 • 2 3 7 E 1 5 - 2	• 39	•012	• 30	• 70	~	~
	13.82	. 464	12.5	$7 - 7 \cdot 14$	•/EIJ-2 5 1.48	53	. 742	5.03	. 10	1.57	. 50
STD	.12	-002	.1	7 .51	5 .15	.56	.007	.08	.00	*	*
PERCENT	OF BA	SELIN	E	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5						
	61.9	83.4	61.0	0 110.0	98	44.9	96.5	49.8	2.8	18.3	7.9
STD 🐍	2.7	. 8	2.8	8 17.7	27 5	20.8	2.4	2.6	• 7	•0	• 0
61213	W055CU	004 (5E13)	W020 00	000						
*SOL3	1 /7	/80	AM1:	P0≖91.6	омw/см	2 NO	AR COA	TING			
ID	ISC	voc	IP	LOG(I	0) N	R	FF	Eff	OCD	PCDa	PCDb
1 R *	22.5	0.55	3 20.	24 -6.4	10 1.94	36	.723	9.51	.00	.00	.00
1 B	22.9	0.55	5 20.	92 -7.0	65 1.71	L55	.754	10.13	4.29	7.30	7.00
3 B	22.9	0.55	7 21.	17 -7.9	03 1.49	934	.771	10.40	5.20	7.30	7.00
5 B	22.7	0.55	6 20.	57 -6.5	19 1.90)97	•748	9.98	3.90	7.30	7.00
10	22.7	0.55	2 20.	62 - 6.6	34 1.85	593	.751	9.95	3.90	.00	.00
2 C	23.2	0.55	3 20.	96 -6.3	52 1.96	5 -1.00	.743	10.08	4.55	.00	.00
3C	23.2	0.55	3 21.	14 -6.8	28 1.78	5 - .81	•/55	10.24	2.04	.00	.00
4C	23.2	0.55	3 20.	96 - 6.3	52 1.90	5 -1.00 6 70	•/43	10.00	2.00	.00	.00
50	22.7	0.55	1 20.	80 -7.1	70 1 50		.705	10.09	4.42	.00	.00
25	22.0	0 .55	2 20.	25 _7 5	/9 1.50	5 - 194	.764	10.39	4.94	.00	.00
35 1 T	23.0	0.55	5 21.	12 - 7.3	61 1.62	2 57	.763	10.31	4.81	.00	.00
2T	22.9	0.55	3 20.	94 -7.0	70 1.70	067	.758	10.15	4.55	.00	.00
3T	23.2	0.55	4 21.	30 -7.3	31 1.62	260	.764	10.38	5.20	.00	.00
4 T	23.4	0.55	1 21.	17 -6.4	57 1.9	185	.743	10.13	3.90	•00	.00
AVERAG	ES: 61	213	BASEL	INE WO20	00 00	0					
_	22.8	3.55	6 20.	89 -7.1	62 1.7	062	•757	10.17	4.46	/.30	/.00
STD	• 0	9.00		24 ,5	69 •1	.26	•010	•17	• 5 4	*	*
	61	213 W	105500	004 (SEI	5)	c 7/	756	10 10	6 6 1	00	0.0
	23.0) J 21.	20 - 20	36 1./	۰/4 – ر ۱۵		10+10	4 • 4 1	*	*
STD DEDCEV	•2 T OF P	UU)1 • (NF	20 .4	1. 01	• • • • • • • • •	••••	•13	•••		
FERCIN	100.0	00 00	4 100	7 102.	8 103	81-6	99-8	100.1	98.8	• 0	• 0
STD %	1.4		4 2	.2 14	3 20	92.6	2.5	3.0	28.5	• 0	• 0

156

and the second second

70201	W056CU00	5 (6.5E1	6) BEFORE	SINTER	W020	00 000
*SOL3	1 /7 /8	0 AM1:	P0=91.601	MW/CM ²	NO A	R COATING

Ż

r,

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
18*	22.50	. 5 5 7	20.50	-7.241	1.66	. 23	. 732	9.70	- 0.0	.00	. 0.0
18	22.70	. 5 5 3	20.80	-7.373	1.61	22	. 752	9.98	3.90	7 30	7.00
28	22.00	. 553	20.03	-7.248	1 65	- 17	746	0 00	3 00	7 20	7 00
2.D 3.R. *	22.90	.550	20.28	-5 258	2 55	-1.56	-707	0.53	3 25	7 30	7.00
10	23.19	5/3	20.20	-5 938	2.12	- 03	721	9.00	2.12	/ 95	6 66
20	22.40	5/6	10 00	-5 923	2 1 2	- 90	720	0 21	2.5	4.05	6.00
20	22.40	540	20 36	-5.925	2 0 2	- 91	• 120	7.51	2.2	4.05	6 6 6 6
50 4.C	22.70	• J 4 0 5 / 3	20.00	-0.129	2.00	- 90	• / Z / 71 /	3.00	2.23	4.0.)	6 66
40 5 <i>0</i>	22.00	5/43	20.00	-5.003	1 90	05	• / 1 4	- • 2 Z	2.00	4.05	6 66
15	22.00	• 5 4 0	20.37	-0.302	1.00		• / 20	9.40	3.31	4.03	6.00
15	22.00	• 244	20.23	-0.349	1.93	40	• 7 2 2	9.38	3.14	4.03	9.00
23	22.00	• 5 4 7	20.33	-0.744	1.07	57	• / 34	9.00	3.31	4.00	6.00
55 1 T	22.40	• 5 4 5	20.25	-0-019	1.0/	00	•/3/	9.52	3.43	4.05	6 6 6
11	22.40	• J40 5 10	20.34	-0.624	1.70		./39	9.00	3. 5	4.85	0.00
21.7	23.30	• 5 3 6	19.20	-3.920	2.91	-3.27	.049	8.01	1.95	4.05	0.00
31	22.20	• 241	19.90	-0.343	1.93	~.03	• 7 2 9	9.20	3 27	4.07	0.00
41	22.30	• 5 4 /	19./0	-5.907	2.15	22	• 6 9 /	8.53	.38	4.85	0.00
AVEDACE	s. 7020	עם ור	CET TH	E 1020 00							
AVERAGE	22 1020	JL DA 552	20 04	_ w020 00	1 4 2	20	7 4 0	0 00	2 00	7 20	7 00
6 T D	22.00		20.00	-/.510	1.03	20	•/49	9.99	2.90	/•30	/ • 0 0
310	- 10		•07	•002 • (4 5r14	•02 (\ 867	• J Z 20 D D C 2	•••••	•)1	•00	Ŷ	~
	22 1021	51 WU:		5 (0.5EI)) DEI	OKE 5.	1N_3K	0 27	2 26	1 95	
5 T D	22.43	. 343	20.15	-0.251	1.99	02	• / 2 4	9.3/	3.20	4.85	0.00
510 D-90584	•1.) OF PAG	•002 	•20	• 310	•13	• 2 3	.011	• 1 /	• 1 /	^	^
PLACENI	OF DAT		- 06 6	137 5	1 2 2 .		0.6 7	0.2 0	02 (
ሮ ጥ ማ	90.4	20.7	90.0	114.5	122 1	170 0	90.7	93.0	03.0	00.4	32+1
30000		• • •	1	2.1	10 1	1/2.0	1.9	1.0	4 • 4	•0	• 1
					TNOTION		~ ~ ~	A A			
70201A W	1036600	05 (6	•5E16)	AFTER S	INTER	W020	00 0	00			
*SOL3 1	/7 /8	05 (6 0 A	.5E16) Ml: PO	AFTER S =91.60MW	INTER /CM ²	W020 NJ A	0000. RCOA	00 TING			
*SOL3 1	//////////////////////////////////////	05 (6 0 A VOC	.5E16) Ml: PO IP	AFTER S =91.60MW LOG(IO)	INTER /CM ²	WO2O NJ A R	0000 .R COA FF	00 TING Eff	ŪĈĐ	PCDá	FCDb
70201A w *SOL3 1 ID	/7 /8 ISC	05 (6 0 A VOC	.5E16) Ml: PO IP	AFTER S =91.60MW LOG(IO)	INTER /CM ²	WO2O NJ A R	000 0 .R COA FF	00 TING Eff	טָרָשַ	PCDa	PCDb
70201A w *SOL3 1 ID 1R*	/7 /8 ISC 22.50	05 (6 0 A VOC	.5E16) M1: PO IP 20.32	AFTER S = 91.60MW LOG(IO) -6.657	INTER /CM ² N 1.86	W020 NO A R 14	0000 R COA FF .725	00 TING Eff 9.63	•00	PCDa .00	PCDb
70201A W *SOL3 1 ID 1R* 25	/7 /8 ISC 22.50 22.40	0 A VOC • 558 • 558	.5E16) M1: P0 IP 20.32 20.24	AFTER S = 91.60MW LOG(I0) -6.657 -3.350	INTER /CM ² N 1.86 1.98	W020 NO A R 14	0000 R COA FF .725 .746	00 TING Eff 9.63 9.86	0CD •00 4•29	PCDa .00 7.30	РСДЪ .00 7.00
70201A w *SOL3 1 ID IR* 25 38.*	/7 /8 ISC 22.50 22.50 22.50	05 (6 0 A VOC .558 .558 .556	.5E16) M1: P0 IP 20.32 20.24 20.06	AFTER S = 91.60MW LOG(I0) -6.657 -3.350 -5.707	INTER /CM ² N 1.86 1.98 2.29	W020 NO A R 14 -1.62	0000 RCOA FF .725 .746 .732	00 TING Eff 9.63 9.86 9.68	0 <u>CD</u> .00 4.29 3.25	PCDa .00 7.30 7.30	FCDb .00 7.00 7.00
70201A w *SOL3 1 ID IR* 25 3B.* 1C	<pre>/7 /8 ISC 22.50 22.40 .2.50 22.20</pre>	05 (6 0 A VOC .558 .558 .556 .549	.5E16) M1: PO IP 20.32 20.24 20.06 20.24	AFTER S = 91.60MW LOG(I0) -6.657 -0.350 -5.707 -6.897	INTER /CM ² N 1.86 1.98 2.29 1.75	W020 NO A R 	0000 RCOA FF .725 .746 .732 .754	00 TING Eff 9.63 9.86 9.68 9.71	0CD •00 4•29 3•25 3•51	PCDa .00 7.30 7.30 4.85	FCDb .00 7.00 7.00 6.36
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C	<pre>/7 /8 ISC 22.50 22.40 22.50 22.20 22.50 22.50</pre>	VOC • 558 • 558 • 558 • 558 • 549 • 553	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.24 20.52	AFTER S = 91.60MW LOG(I0) -6.657 -0.350 -5.707 -6.897 -6.990	INTER /CM ² N 1.86 1.98 2.29 1.75 1.75	W020 NO A R 14 -1.62 75 56	0000 RCOA FF .725 .746 .732 .754 .751	00 TING Eff 9.63 9.86 9.68 9.71 9.88	0 C D • 0 0 4 • 2 9 3 • 2 5 3 • 5 1 3 • 5 1	PCDa .00 7.30 7.30 4.85 4.85	FCDb .00 7.00 7.00 6.36 6.66
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.*	<pre>/7 /8 ISC 22.50 22.40 22.50 22.20 22.50 22.70</pre>	VOC • 558 • 55	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10	AFTER S = 91.60MW LOG(I0) -6.657 -0.350 -5.707 -6.897 -6.990 -3.290	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49	W020 NO A R 14 -1.62 75 56 -6.75	0000 RCOA FF .725 .746 .732 .754 .751 .643	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39	0 C D • 0 0 4 • 2 9 3 • 2 5 3 • 5 1 3 • 5 1 1 • 9 5	PCDa .00 7.30 7.30 4.85 4.85 4.85	PCDb .00 7.00 7.00 6.36 6.66 6.66
70201A w *SOL3 1 ID IR* 23 3B.* 1C 2C 3C.*	<pre>/7 /8 ISC 22.50 22.40 22.50 22.20 22.50 22.50 22.70 22.60</pre>	VOC • 558 • 55	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50	AFTER S = 91.60MW LOG(I0) -6.657 -3.350 -5.707 -6.897 -6.990 -3.290 -6.685	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.82	W020 NO A R 14 -1.62 75 56 -6.75 64	0000 RCOA FF .725 .746 .732 .754 .751 .643 .743	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77	0 C D • 0 0 4 • 2 9 3 • 2 5 3 • 5 1 3 • 5 1 1 • 9 5 3 • 5 1	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85	PCDb .00 7.00 7.00 6.36 6.66 6.66 6.66
70201A w *SOL3 1 ID IR* 23 3B.* 1C 2C 3C.* 4C 5C	<pre>/7 /8 ISC 22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60</pre>	VOC • 558 • 55	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.82 1.59	W020 NO A R 	0000 RCOA FF .725 .746 .732 .754 .751 .643 .743 .760	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00	0 C D • 00 4 • 29 3 • 25 3 • 51 3 • 51 1 • 95 3 • 51 3 • 90	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85	FCDb .00 7.00 7.00 6.36 6.66 6.66 6.66 6.66
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S	<pre>/7 /8 ISC 22.50 22.40 22.50 22.20 22.50 22.60 22.60 22.60 22.40</pre>	05 (6 0 A VOC 558 558 556 553 554 553 554 550 551 551	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.82 1.59 2.34	W020 NO A R 	0000 RCOA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36	0 C D • 00 4 • 29 3 • 25 3 • 51 3 • 51 1 • 95 3 • 51 3 • 90 2 • 99	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85	FCDb .00 7.00 7.00 6.06 6.66 6.66 6.66 6.66
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S	1 SC 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50	VOC • 558 • 558 • 558 • 558 • 558 • 558 • 559 • 553 • 544 • 550 • 551 • 547 • 548	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.82 1.59 2.34 1.78	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .760 .722 .750	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78	0 C D • 00 4 • 29 3 • 25 3 • 51 3 • 51 3 • 51 3 • 90 2 • 99 3 • 51	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	PCDb .00 7.00 7.00 6.06 6.66 6.66 6.66 6.66
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S	22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.60 22.60 22.60 22.40 22.50 22.30	VOC • 558 • 558 • 558 • 558 • 558 • 558 • 559 • 553 • 544 • 550 • 551 • 547 • 548 • 548 • 547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.47	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.897 -6.685 -7.433 -5.551 -6.804 -6.801	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.82 1.59 2.34 1.78 1.77	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .760 .722 .750 .751 .750 .751	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69	0 C D .00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	PCDb .00 7.00 7.00 6.06 6.66 6.66 6.66 6.66
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T	22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.40 22.50 22.30 22.30	05 (6 0 A VOC 558 558 558 5558 5558 5553 5544 5550 5551 547 5547 548 5547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.52 1.52 1.53 1.73 1.54 1.78 1.77	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57	0000 RCOA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .751 .751	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83	0 C D • 00 4 • 29 3 • 25 3 • 51 3 • 51 3 • 90 2 • 99 3 • 51 3 • 90 3 • 90 3 • 90	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	PCDb .00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.*	22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.60 22.40 22.30 22.30 22.40	VOC • 558 • 558 • 558 • 558 • 558 • 558 • 559 • 553 • 544 • 550 • 551 • 547 • 548 • 547 • 548 • 547 • 548 • 557 • 548 • 557 • 548 • 557 • 558 • 557 • 558 • 55	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.52 1.59 2.34 1.78 1.77 1.64 5.99	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 36	0000 RCOA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .751 .760 .751	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94	0 C D .00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 3.90 1.69	PCD4 .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	PCDb .00 7.00 6.36 6.66 6
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T	1 SC 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.60 22.60 22.60 22.60 22.60 22.60 22.30 22.40 22.20	VOC .558 .558 .558 .558 .558 .558 .559 .549 .553 .544 .550 .551 .547 .548 .547 .548 .547 .548 .547 .548	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.78 1.77 1.64 5.99 2.21	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 36 -1.52	0000 RCOA FF .725 .746 .732 .754 .751 .643 .743 .760 .722 .750 .751 .760 .751 .760 .751 .760 .751	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34	0 C D • 00 4 • 29 3 • 25 3 • 51 3 • 51 3 • 51 3 • 90 2 • 99 3 • 51 3 • 90 3 • 90 3 • 90 1 • 69 3 • 25	PCDa .00 7.30 7.30 4.85 4	PCDb .00 7.00 6.06 6.66 6
70201A w *SOL3 1 ID IR* 2D 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T	1 SC 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.60 22.30 22.40 22.20 22.60	VOC 558 558 558 558 558 559 553 544 559 547 548 547 549 537 544 547 547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.68	AFTER S = 91.60MW LOG(I0) -6.657 -3.350 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.45 1.59 2.34 1.78 1.77 1.64 5.99 2.21 3.36	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 736 -1.52 -2.34	0 00 0 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .624 .731 .663	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34 8.66	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60	PCDa .00 7.30 7.30 4.85 4	PCDb .00 7.00 7.00 6.06 6.66 6.66 6.66 6.66
70201A w *SOL3 1 ID IR* 2D 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVERACES	1 SC 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.60 22.30 22.30 22.20 22.60 22.20 22.60 22.20 22.60 22.20 22.60	0 5 (6 0 A VOC 558 558 5558 5558 5558 5559 5551 5547 5547 5547 5547 5547 5547 5547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.65 SELTNE	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.78 1.77 1.64 5.99 2.21 3.36	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 7.36 -1.52 -2.34	0 00 0 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .743 .750 .722 .750 .751 .750 .624 .731 .663	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34 8.66	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60	PCDa .00 7.30 7.30 4.85 4	FCDb .00 7.00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A w *SOL3 1 ID IR* 2D 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVERAGES	1 SC 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.60 22.30 22.30 22.40 22.60 22.60 22.40 22.40 22.40 22.40 22.40 22.40 22.40	05 (6 0 A VOC 558 558 5558 5558 5558 5558 5551 5547 5547 5547 5547 5547 5547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.81 19.65 SELINE 20.24	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365 W020 00 -6.350	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.59 2.34 1.77 1.64 5.99 2.21 3.36 000	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 7.36 -1.52 -2.34	0 00 0 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .624 .731 .663	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34 8.66	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	FCDb .00 7.00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A w *SOL3 1 ID IR* 2D 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVERAGES STD	1 SC 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.60 22.30 22.30 22.40 22.60 22.40	05 (6 0 A VOC 558 558 5558 5558 5558 5558 5558 5558	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.81 19.65 SELINE 20.24 20.24	AFTER S = 91.60MW LOG(I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365 W020 00 -6.350 -000	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.59 2.34 1.77 1.64 5.99 2.21 3.36 000 1.98	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 7.36 -1.52 -2.34 -1.14	0 00 0 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .624 .731 .663 .746	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34 8.66 9.86	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60 4.29	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	FCDb .00 7.00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVE RAGES STD	ISC 22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.30 22.30 22.30 22.40 22.20 22.60 22.40 22.50 22.40 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.40 22.60 22.40 20.40 22.40 20.4	VOC • 558 • 547 • 547 • 548 • 547 • 548 • 558 • 568 • 000 • 14 • 558 • 0000 • 14 • 14	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.65 SELINE 20.24 .00 56CH00	AFTER S = 91.60MW LOG (I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365 W020 00 -6.350 .000 5 (6.551	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.59 2.34 1.77 1.64 5.99 2.21 3.36 000 1.98 .00	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 -7.36 -1.52 -2.34 -1.14 .00 TFP ST	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .624 .731 .663 .746 .000 NTEP	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34 8.66 9.86 .00	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60 4.29 .00	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	FCDb .00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVE RAGES STD	<pre> I SC 22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.30 22.30 22.40 22.20 22.60 22.40 22.20 22.40 22.40 22.40 22.40 22.40</pre>	05 (6 0 A VOC 558 558 5558 5558 5558 5558 5559 5551 5547 5547 5547 5547 5547 5547 5547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.65 SELINE 20.24 .00 56CU00 20.20	AFTER S = 91.60MW LOG (I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365 W020 00 -6.350 .000 5 (6.5E1 -6.454	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.59 2.34 1.77 1.64 5.99 2.21 3.36 000 1.98 .00 6) AF	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 -7.36 -1.52 -2.34 -1.14 .00 TER SI	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .624 .731 .663 .746 .000 NTER	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.34 8.66 9.86 .00	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60 4.29 .00	PCDa .00 7.30 7.30 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	FCDb .00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A w *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVE RAGES STD	ISC 22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.40 22.30 22.30 22.40 22.20 22.60 22.40 22.40 22.20 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.40 22.60 22.40 22.40 22.60 22.40 22.60 22.42 15	05 (6 0 A VOC 558 558 5558 5558 5558 5558 5559 5551 5547 5547 5547 5547 5547 5547 5547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.65 SELINE 20.24 .00 56CU00 20.20	AFTER S = 91.60MW LOG (I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365 W020 00 -6.350 .000 5 (6.5E1 -6.454 -827	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.59 2.34 1.78 1.77 1.64 5.99 2.21 3.36 000 1.98 .00 6) AF 2.00	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 -7.36 -1.52 -2.34 -1.14 .00 TER SI 98	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .743 .750 .722 .750 .751 .760 .624 .731 .663 .746 .000 NTER .738	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.83 7.94 9.34 8.66 9.86 .00 9.60	0 C D • 00 4 · 29 3 · 25 3 · 51 3 · 51 1 · 95 3 · 51 3 · 90 3 · 90 1 · 69 3 · 25 2 · 60 4 · 29 • 00 3 · 46	PCDa .00 7.30 7.30 4.85 4	FCDb .00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A W *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVE RAGES STD PERCENT	ISC 22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.40 22.30 22.30 22.40 22.20 22.40 22.20 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.50 22.60 22.60 22.60 22.60 22.40 22.50 22.60 22.40 22.50 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.40 22.60 22.40 22.40 22.50 22.40 22.40 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 20.50 22.40 20.50 22.40 20.50 22.40 20.50 20	05 (6 0 A VOC 558 558 558 558 558 558 558 553 554 555 547 547 547 547 547 547 547 547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.65 SELINE 20.24 .00 56CU00 20.20 .46	AFTER S = 91.60MW LOG (I0) -6.657 -5.707 -6.897 -6.990 -3.290 -6.685 -7.433 -5.551 -6.804 -6.801 -7.257 -3.134 -5.759 -4.365 W020 00 -6.350 .000 5 (6.5E1 -6.454 .897	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.78 1.77 1.64 5.99 2.21 3.36 000 1.98 .00 6) AF 2.00 .51	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 -7.36 -1.52 -2.34 -1.14 .00 TER SI 98 .59	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .743 .750 .722 .750 .751 .760 .624 .731 .663 .746 .000 NTER ./3° .028	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.83 7.94 9.34 8.66 9.86 .00 9.60 .37	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60 4.29 .00 3.46 0	PCDa .00 7.30 4.85 4	FCDb .00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6
70201A W *SOL3 1 ID IR* 25 3B.* 1C 2C 3C.* 4C 5C 1S 2S 3S 1T 2T.* 3T 4T AVERAGES STD PERCENT 1	ISC 22.50 22.40 22.50 22.20 22.50 22.50 22.60 22.60 22.60 22.40 22.30 22.30 22.40 22.20 22.60 22.40 22.20 22.60 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.40 22.50 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.60 22.40 22.40 22.60 22.40 22.50 22.40 22.40 22.60 22.40 22.60 22.40 20.00 22.40 20.00 20.40 20.00 20.40 20.00 20.40 20.00 20.40 20.00 20.40 20.00 20.40 20.00 20.40 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.000 20.000 20.000 20.00000000	US (6 0 A VOC 558 558 5558 5558 5558 5558 5559 5551 5547 5547 5547 5547 5547 5547 5547	.5E16) M1: P0 IP 20.32 20.24 20.06 20.24 20.52 18.10 20.50 20.75 19.86 20.47 20.29 20.44 17.51 19.81 19.65 SELINE 20.24 .00 56CU00 20.20 .46	AFTER S = $91.60MW$ LOG (I0) - 6.657 - 5.707 - 6.897 - 6.990 - 3.290 - 6.685 - 7.433 - 5.551 - 6.804 - 6.801 - 7.257 - 3.134 - 5.759 - 4.365 W020 00 - 6.350 .000 5 ($6.5E1$ - 6.454 .897 - 98.4	INTER /CM ² N 1.86 1.98 2.29 1.75 1.73 5.49 1.59 2.34 1.78 1.77 1.64 5.99 2.21 3.36 000 1.98 .00 6) AF 2.00 .51	W020 NO A R 14 -1.62 75 56 -6.75 64 40 -1.56 71 77 57 -7.36 -1.52 -2.34 -1.14 .00 TER SI 98 .59	0000 R COA FF .725 .746 .732 .754 .751 .643 .743 .743 .760 .722 .750 .751 .760 .751 .663 .746 .000 NTER .730 .730 .746 .731 .663 .746 .746 .751 .750 .751 .760 .751 .760 .751 .760 .751 .760 .751 .760 .751 .760 .751 .760 .751 .760 .752 .750 .751 .760 .752 .750 .751 .760 .722 .750 .751 .760 .722 .750 .752 .750 .752 .750 .752 .750 .752 .750 .752 .750 .752 .750 .750 .752 .750 .752 .750 .750 .750 .750 .750 .722 .750 .750 .722 .750 .750 .722 .750 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .750 .722 .725 .726 .727 .726 .726 .726 .726 .727 .726 .726 .726 .727 .726 .727 .726 .727 .726 .727 .727 .726 .727 .727 .726 .727 .727 .727 .727 .727 .726 .727 .727 .727 .727 .727 .757 .727 .757 .757 .757 .757 .757 .757 .757 .757 .7777 .7777 .777 .777 .777 .777 .777 .777 .777	00 TING Eff 9.63 9.86 9.68 9.71 9.88 8.39 9.77 10.00 9.36 9.78 9.69 9.83 7.94 9.83 7.94 9.34 8.66 9.86 .00 9.60 .37	.00 4.29 3.25 3.51 3.51 1.95 3.51 3.90 2.99 3.51 3.90 3.90 1.69 3.25 2.60 4.29 .00 3.46 .00 3.46 .0	PCDa .00 7.30 4.85 4	FCDb .00 7.00 6.36 6.66 6.66 6.66 6.66 6.66 6.66 6

;

: 1

7

.

ちょうしょう しょうしょう いっかんしょうかい ひょうかんかん あまち かんかまかる あましん ひょうかい しょうかい しょうかい

70211A W061CR-TI001 (1E15-1.1E13) AFTER SINTER W020 00 000 *S0L3 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

. .

*

ID	ISC	VOC	IP	LOG(10)	N	R	P F	Eff	OCD	PCDa	РСДР
10*	22 50	550	20 41	-6 908	1 78	- 05	731	9 7 2	00	0.0	0.0
1 1 2	22.00	560	20.41	-7 153	1 70	- 45	752	10 12	1 20	7 30	7.00
1 D 2 P	22.10	- 560	20.75	-7 529	1 50	- 04	750	10.12	4.20	7 30	7.00
2 D 2 P	23.00	• JOU 56 2	21.10	-7.328	1 55		• / 50	10.22	4.27	7 20	7.00
	23.10	• 302	21.20	-/./10	1 36	-+21	•/01	10.40	1.55	7.30	7.00
4 D 5 D	22.90	• 202	21.20	-0.530	1.30	•09	•//1	10.49	4.00	7.30	7.00
28	22.90	• > > > >	20.95	-/.256	1.00	27	•/50	10.15	3.90	/.30	/.00
IC	17.30	• 501	13.4/	-6.241	1.87	5/	./15	6.55	•13	•00	•00
2 C	17.10	• 500	15.54	-7.195	1.54	•18	•730	6.60	•13	•00	•00
3C	17.20	•497	15.36	-6.323	1.82	16	.707	6.39	•13	.00	•00
4C•*	17.20	•45 °	14.29	-4.116	3.50	-4.02	•655	5.87	.13	•00	•00
50.*	17.40	•49-	14.25	-3.953	3.74	-4.01	.637	5.77	•13	.00	•00
1 S	14.80	.498	13.30	-6.697	1.71	.10	•713	5.56	.13	•00	•00
2 S	17.50	.503	15.63	-6.159	1.91	70	.716	6.66	•13	•00	.00
3S	17.50	.502	15.75	-6.574	1.74	32	•722	6.71	.13	.00	.00
1 T	15.90	.491	14.29	-6.654	1.69	01	.715	5.90	.13	.00	.00
2 T	16.90	.496	15.33	-7.007	1.58	10	.731	6.48	-13	.00	.00
3T	16.80	.495	15.18	-6.805	1.64	13	.725	6.37	.13	•00	•00
4 T	16.70	.495	14.97	-6.450	1.77	25	.714	6.24	.13	•00	•00
AVEBACE	S • 702	114 B.	ASSITN	F 1020 0(000						
AVENAUL	, , αγ	561	21 07	-7 635	1 57	- 18	757	10 20	4 45	7 20	7 00
C T D	12	• 501	21.07	-/•CJJ	10	- • 1 0	• / 5 /	10+23	4.47	*	/•00 *
510	•13	•001	•20 •2100 /	•409 TTOO1 (11	•1Z	+10	+ UUO	•10 •10	•4.2	^	•
	16 77		16 A0		1 7 7 7	• IE(3)	AFILI	K SINIE	.K. 1.2	00	0.0
	10.1/	-498	12+08	-0.011	1.13	-•20	•/19	0.30	•13	.00	•00
STD	• / 9	• 004	•/1	• 316	•11	• 26	•007	• 3 5	•00	×	×
PERCENT	OF BAS	SELINI							. .		
	/3.2	88.88	71.6	113.4	110	88.I	95.0	61.7	2.9	• 0	• 0
3 TD Z	3.9	• 8	4.1	9.9	16	425.7	2.0	4.	• 3	• 0	• 0

70211 W061 CR-TI 001 (1E15-1.1E13) BEFORE SINTER W020 00 000 *SOL3 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

1 -

المدرية والمر

1

Ŧ

7

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDE
1R*	22.50	• 5 5 7	20.40	-6.889	1.78	05	.730	9.68	.00	.00	.00
1 B	22.80	.557	20.82	-7.268	1.65	01	.741	9.95	4.55	7.30	7.00
2 B	23.10	• 5 5 8	21.06	-7.192	1.68	.02	.738	10.06	4.42	7.30	7.00
3B	23.10	.552	20.82	-6.595	1.86	04	.720	9.71	3.90	7.30	7.00
4 B	23.20	.554	20.77	-6.125	2.06	58	.719	9.78	4.16	7.30	7.00
SB.*	23.70	.551	20.43	-4.866	2.84	-1.40	.678	9.36	3.25	7.30	7.00
10	17.10	•498	15.33	-6.579	1.73	.23	.707	6.36	.13	•00	.00
20	17.10	.495	15.22	-6.315	1.82	• 2 7	.695	6.22	•13	•00	•00
30	17.30	•495	15.34	-6.119	1.90	•08	.692	6.27	•13	.00	•00
4C	17.30	.495	15.42	-6.380	1.79	• 34	•696	6.30	•13	.00	•00
5C	17.30	.497	15.43	-6.474	1.76	• 5 9	.693	6.30	•13	.00	•00
15	16.10	.497	13.55	-4.607	2.95	-1.94	•647	5.47	.13	.00	•00
25	18.20	• 501	15.78	-5.148	2.46	-1.39	.682	6.58	.13	•00	.00
3S	17.60	.500	15.14	-4.903	2.65	-2.00	•679	6.32	.13	•00	•00
1 T	15.70	.491	13.87	-6.161	1.88	• 56	.680	5.54	•13	.00	•00
2T	17.30	•496	15.42	-6.210	1.86	27	.706	6.40	•13	.00	•00
3T	17.30	•496	15.39	-6.263	1.84	.13	.697	6.32	•13	.00	.00
4 T	17.10	• 4 9 3	15.26	-6.295	1.82	17	.706	6.30	•13	.00	.00
AVERAGE	S: 702	11 B.	ASELIN	E W026 0	0 0 0						
	23.05	.555	20.87	-6.795	1.81	15	.730	9.88	4.26	7.30	7.00
STD	•15	.002	.11	.466	.16	.25	.010	.14	•25	*	*
	702	11 WO	61 CR-	ri 001 ()	LE15-	1.1E13) BEF	ORE SIN	TER		
	17.12	.496	15.10	-5.955	2.04	30	.690	6.20	.13	.00	.00
STD	.62	.003	.64	.638	• 39	.90	.016	• 32	.00	*	×
PERCENT	OF BAS	SELIN	E								
	74.3	89.4	72.3	112.4	112	6.8	94.5	62.8	3.1	• 0	•0
STD Z	3.2	• 9	3.5	16.1	34	****	3.5	4.2	• 2	.0	• 0

1 4 Martin Contraction Contraction Street Street

7C2112 W061CR-TIOO1 (1E15-2E13) 1ST RETEST 3-29-77 W020 00 000 *SOL3 1 /7 /80 AM1: P0=91.60HW/CN^2 NO AR COATING

2

÷

۶° ۸

¢

<u>م</u>

4.5

ID	ISC	VOC	IP	LOG(10)	n	R	FF	Eff	OCD	PCDa	рсрр
1R*	22.50	.556	20.28	-6.553	1.89	21	.723	9.57	.00	.00	.00
1 B	22.60	.558	20.66	-7.173	1.69	39	.751	10.01	4.29	7.30	7.00
2 B	22.90	.558	20.71	-6.623	1.87	38	.732	9.90	3.64	7.30	7.00
3 B	22.90	.558	21.04	-7.490	1.59	34	.759	10.26	4.55	7.30	7.00
4B	22.80	.556	20.84	-7.183	1.68	32	.749	10.04	3.90	7.30	7.00
5 B	22.60	.559	20.60	-7.009	1.74	42	•747	9.98	3.90	7.30	7.00
1C	17.10	.499	15.45	-6.871	1.63	.03	.723	6.52	.13	.00	-00
2C	17.20	.497	15.54	-6.873	1.63	.09	.721	6.52	•13	.00	•00
3C	17.00	.491	15.07	-6.015	1.93	33	•698	6.16	.13	•00	.00
4C	16.90	•490	14.35	-4.631	2.86	-2.42	.665	5.83	.13	.00	.00
5C	17.20	.490	14.38	-4.328	3.19	-2.91	.651	5.81	.13	.00	•00
15	14.60	.496	13.04	-6.323	1.85	44	.710	5.44	•13	.00	.00
25	17.40	.501	15.67	-6.585	1.73	35	.723	6.67	•13	.00	•00
3S	17.40	.500	15.64	-6.555	1.74	19	-718	6.60	•13	•00	.00
1T	16.50	-494	14.69	-6.116	1.90	-,57	.708	6.10	.13	.00	.00
2 T	16.60	• 4 9 4	14.92	-6.579	1.72	21	.718	6.23	.13	.00	.00
3т	16.70	• 494	15.06	-6.670	1.69	35	•726	6.33	.13	.00	•00
4T	15.90	•488	14.02	-5.796	2.04	68	.695	5.70	.13	.00	.00
AVERAGES	5: 702	112 B	ASELIN	E W020 0	0 0 0 0						
	22.76	• 5 5 8	20.77	-7.096	1.71	37	.748	10.04	4.06	7.30	7.00
STD	.13	.001	.16	.283	.09	.04	•009	•12	• 32	*	*
	702	112 W	061CR-	TIOO1 (1	E15-2	E13) 19	ST RE	TEST 3-	-29-77		
	16.71	.495	14.82	-6.112	1.99	70	.705	6.16	-13	.00	.00
STD	.76	.004	.75	.798	.48	•91	.023	• 38	•00	*	*
PERCENT	OF BA	SELIN	E								
	73.4	88.7	71.4	113.9	116	11.8	94.3	61.4	3.2	.0	•0
STDZ	3.8	• 9	4.2	15.1	36	290.7	4.2	4.6	• 3	• 0	•0

160

in 14 . 2 . 100

1. YE

A STATE A

.

.

.

. . . .

70502 W062N-CU001 (2.5E15) N BASE W060 00 900 *SOL1 1 /? /80 AM1: P0=91.60MW/CM² NO AR COATING

Æ

1.1.

1

. .

• •

t

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	• 5 5 6	20.28	-6.553	1.89	21	.723	9.57	.00	.00	.00
1 B	22.30	.562	20.61	-8.154	1.44	.21	.758	10.05	•26	•00	.00
2 B	22.00	.559	19.84	-6.398	1.97	78	.735	9.56	4.03	•00	.00
3B.*	22.70	.565	20.23	-5.857	2.24	-1.00	.719	9.76	3.25	•00	.00
4 B	22.30	.560	20.11	-6.393	1.97	75	•734	9.70	5.20	.00	.00
5 B	22.20	.562	20.44	-7.739	1.54	14	•759	10.01	5.85	•00	•00
10	22.60	.565	20.88	-8.020	1.48	.00	.762	10.29	7.80	.00	.00
2C•*	15.60	.560	13.20	-4.403	3.60	-4.99	.681	6.29	7.15	•00	.00
3C	22.50	.561	20.91	-8.533	1.36	.01	• 7 7 4	10.33	10.40	•00	•00
4C	22.60	• 5 5 8	19.64	-5.272	2.57	52	.673	8.98	6.50	•00	•00
5C	22.60	.569	21.11	-9.141	1.27	• 27	.777	10.57	1.30	•00	.00
6C	21.69	.560	19.75	-7.196	1.69	41	.751	9.61	6.50	•00	.00
7C	22.40	.554	19.37	-4-895	2.85	-1.74	.686	9.00	3.64	.00	.00
8C	21.70	.547	18.90	-5-135	2.63	-1.43	.691	8.67	5.85	.00	.00
15	21.90	.550	19.71	-6.292	1.98	84	.733	9.33	• 39	•00	.00
2 S	22.00	.555	20.03	-6.901	1.77	58	•747	9.65	5.20	•00	.00
35	22.60	.560	21.09	-9.022	1.27	.27	.775	10.37	10.40	•00	.00
4 S	22.30	• 5 5 5	20.49	-7:602	1.56	15	.755	9.89	50	•09	.00
55	22.30	.555	20.20	-6.591	1.88	70	.741	9.70	•	.00	.00
1 T	22.10	• 5 7 2	20.46	-8.267	1.45	.16	.762	10.19		•00	.00
2 T	22.70	• 568	21.05	-8.360	1.41	.09	•767	10.46	9.10	.00	.00
3T	22.70	• 568	20.95	-?.946	1.51	02	.761	10.37	5.20	.00	•00
4 T	22.00	• 567	20.21	-7.529	1.61	27	.757	9.99	8.19	•00	.00
5T	22.50	.568	20.70	-7.636	1.58	22	•759	10.25	6.50	•00	.00
AVERAGE	s: 705	رم 02	ASELIN	E W060 0	0 0 00						
	22.20	.561	20.25	-7.171	1.73	37	•747	9.83	3.84	.00	.00
STD	.12	.001	.30	.789	• 2 4	.42	.012	.21	2.16	*	*
	705	02 WO	62N-CU	001 (2.5)	E15)	N BASE					
	22.30	.561	20.32	-7.314	1.76	36	•745	9.86	6.39	•00	•00
STD	• 34	.007	.65	1.270	• 4 7	.55	.031	.56	2.71	*	*
PERCENT	OF BA	SELIN	E								
	100.5	100.0	100.3	98.0	101	102.6	99.8	100.3	166.7	*****	****
STD 🕱	2.1	1.5	4.7	30.9	45	432.0	5.8	8.0	204.6	****	*****

161

and the second second

• • •

.

a state and the second s

70518 W063N-CR001 (8E14) W060 00 000 *SOL1 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

Ÿ,

مر به ...

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.552	20.27	-6.517	1.89	21	.722	9.48	.00	.00	.00
1 B	22.10	.555	20.13	-7.211	1.67	.18	.733	9.50	1.04	.00	.00
2 B	22.00	. 562	20.44	-8.750	1.32	.51	.761	9.96	8.71	.00	.00
3B	21.30	.559	19.64	-7.976	1.48	.13	.756	9.52	7.80	.00	.00
4 B	21.50	.560	19.63	-7.187	1.69	25	.746	9.49	6.50	.00	.00
5B*	21.40	.551	19.18	-6.219	2.02	62	.722	9.00	5.20	.00	.00
10	18.40	.523	16.12	-5.929	2.08	.83	.064	6.76	1.30	.00	.00
2C	18.50	.522	17.09	-8.465	1.30	.81	.746	7.62	1.69	.00	.00
3C	18.40	.522	16.98	-8.268	1.33	.52	.750	7.62	1.56	.00	.00
4C	18.30	.524	16.96	-8.643	1.27	.65	.755	7.66	1.69	•00	.00
5C.*	18.50	.527	15.06	-3.966	3.94	-3.09	.620	6.39	1.17	.00	.00
6C	19.00	.526	17.59	-8.678	1.26	.91	.747	7.90	1.69	.00	.00
7C	18.60	.524	16.66	-6.229	1.95	76	.722	7.44	1.56	.00	.00
8C	18.40	.521	16.21	-5.859	2.11	03	.684	6.94	1.30	.00	.00
90	18.70	.525	17.28	-8.405	1.31	.58	.751	7.80	1.30	.00	.00
15.*	18.80	.516	14.50	-3.268	5.54	-6.29	.590	6.05	1.04	.00	.00
25	18.90	.521	17.30	-7.578	1.49	.25	.740	7.71	1.30	.00	.00
35	19.10	.522	17.66	-8.534	1.28	•77	.748	7.89	1.69	.00	.00
45.*	19.10	.523	14.89	-3.506	4.87	-3.88	.580	6.13	1.30	.00	.00
55	19.10	.522	17.49	-7.637	1.47	.34	.739	7.79	1.69	.00	.00
1 T	18.70	.524	17.22	-8.024	1.39	.33	.750	7.77	1.69	.00	.00
2 T	18.60	.526	17.10	-7.786	1.45	.08	.751	7.77	1.56	.00	.00
3T	18.80	.524	17.22	-7.573	1.50	.12	.744	7.75	1.30	.00	.00
4T	18.80	. 524	17.14	-7.345	1.56	.22	.734	7.65	1.30	.00	.00
5T	19.10	.523	17.61	-8.120	1.36	.34	.752	7.94	1.30	.00	.00
6T	18.80	.522	17.18	-7.423	1.53	.04	.742	7.70	1.56	.00	.00
• -											
AVERAGE	s: 705	18 B.	ASELIN	E W060 0	0 0 0 0						
	21.73	.559	19.96	-7.781	1.54	.14	.749	9.62	6.01	.00	.00
STD	.33	.003	. 34	.643	.15	.27	.011	.20	2.98	*	*
	705	18 WO	63N-CR	001 (8E1	4)						
	18.72	.523	17.11	-7.676	1.51	.35	.736	7.63	1.50	.00	.00
STD	.26	.002	.42	.880	.27	.40	.024	.31	.17	*	*
PERCENT	OF BA	SELIN	E	-							
	86.2	93.6	85.7	101.3	98	250.4	98.3	79.3	24.9	****	*****
STDZ	2.	.7	3.6	20.4	29	****	4.7	4.9	16.7	****	****

162

..

.

.

- 1 *

٠į

1. . -

70519 W064N-MN001 (1E15) W060 00 000 *S0L2 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCD5
18*	22.50	.555	20.22	-6.379	1.96	33	.721	9.52	.00	.00	.00
1 B	22.60	.568	20.82	-7.770	1.55	13	.759	10.31	1.43	.00	.00
2 B	22.10	.553	19.81	-6.125	2.07	87	.727	9.39	5.85	.00	•00
38	22.30	.553	20.44	-7.627	1.55	. 27	.742	9.67	7.54	.00	.00
4 B	22.20	.556	20.06	-6.637	1.86	30	.729	9.52	5.20	.00	.00
5B*	21.90	.553	19.35	-5.480	2.42	-1.51	.714	9.15	4.81	.00	.00
10	21.40	• 547	19.40	-6.840	1.77	23	.733	9.08	5.20	.00	.00
2C	21.90	.559	20.43	-9.041	1.27	•33	.773	10.01	6.76	.00	.00
3C	21.30	.546	19.73	-8.591	1.32	•66	.753	9.26	5.20	.00	.00
4C	21.00	• 5 4 1	19.28	-7.926	1.45	.68	.736	8.85	3.25	.00	.00
5C*	17.80	• 5 2 4	15.33	-5.053	2.65	-1.28	.670	6.61	1.95	.00	.00
6C	21.70	•547	20.16	-8.871	1.27	.70	.757	9.50	6.50	.00	.00
7C	21.50	.550	19.92	-8.387	1.37	• 2 2	.763	9.54	5.20	.00	.00
8C	21.20	.547	19.71	-8.855	1.27	• 5 5	.762	9.34	4.55	.00	.00
9C	21.20	.543	19.39	-7.394	1.59	02	.744	9.06	3.90	.00	•00
10C	22.00	.545	19.98	-6.521	1.87	-1.34	.759	9.62	5.20	.00	.00
15	21.20	.544	19.01	-6.259	1.98	55	.721	8.79	3.90	.00	•00
25	21.80	.546	19.58	-6.368	1.94	33	.720	9.06	4.16	.00	•00
35	21.50	.545	19.90	-8.110	1.41	,57	.744	9.27	5.85	.00	.00
4 S	21.90	.555	20.33	-8.566	1.34	• 2 8	.765	9.83	6.50	.00	.00
5 S	21.40	.549	19.83	-8.413	1.36	.28	.761	9.46	5.46	.00	.00
6 S	21.70	.544	19.95	-7.870	1.46	• 35	.745	9.31	4.94	.00	•00
1T	20.80	.549	19.11	-7.660	1.53	10	.754	9.11	4.29	.00	.00
2T	21.00	.545	19.20	-7.322	1.61	13	.746	9.03	3.90	.00	.00
3т	21.60	.556	19.97	-8.176	1.43	•12	.761	9.67	5.20	.00	•00
4T	21.00	.536	18.45	-5.458	2.37	-1.07	•698	8.31	2.34	.00	•00
5T	21.00	• 5 4 1	18.98	-6.642	1.82	35	.730	8.77	2.99	.00	•00
6T	21.60	.553	19.79	7.375	1.62	32	•754	9.53	3.90	.00	.00
AVERAGE	s: 705	19 B.	AGELIN	E W060 0	0 0 0 0						
	.22.30	.558	20.28	-7.040	1.76	26	.739	9.72	5.01	•00	.00
STD	.19	•006	• 38	.685	• 2 2	.41	.013	• 35	2.23	*	*
	705	19 WO	64N-MN	001 (1E1	5)						
	21.42	• 5 4 7	19.62	-7.650	1.57	.01	.747	9.26	4.72	.00	.00
STD	.34	.005	• 48	•974	.28	• 5 4	.018	. 39	1.15	*	*
PERCENT	OF BA	SELIN	Е								
	96.0	98.1	96.7	91.3	90	205.6	101.0	95.2	94.4	****	****
STD 🕱	2.4	2.0	4.2	25.8	29	558.3	4.2	7.6	75.2	****	****

163

2

بالمعودية

,

..

.

70520 W065N-TI001 (2E14) W060 00 000 *SOL2 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

· ·

•

6~~

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.555	20.34	-6.794	1.80	.10	.722	9.53	•00	.00	.00
1 B	22.10	.565	20.41	-7.972	1.49	07	.763	10.07	9.75	.00	.00
2 B	22.40	.569	20.86	-8.805	1.33	•25	•771	10.40	10.40	.00	.00
3 B	22.40	.562	20.51	-7.385	1.64	14	•749	9.97	8.45	.00	.00
4 B	21.90	.563	19.97	-7.068	1.74	35	.745	9.72	7.80	.00	.00
5B	22.60	.568	20.95	-8.672	1.35	• 7 2	.753	10.22	9.10	.00	.00
10	19.10	.531	17.53	-7.643	1.50	06	•752	8.06	1.69	•00	.00
2C	19.10	.525	17.37	-6.948	1.68	47	•742	7.87	1.56	.00	.00
3C	19.20	.529	17.52	-7.202	1.61	28	•745	8.00	1.04	•00	.00
4C	19.20	.529	17.57	-7.380	1.56	25	.750	8.05	1.56	•00	.00
5C	19.10	• 5 2 6	17.18	-6.390	1.88	70	•728	7.73	1.30	•00	.00
6C	19.20	• 5 2 4	17.33	-6.594	1.79	46	•729	7.76	1.30	.00	.00
7C	18.90	.534	17.22	-7.105	1.66	34	•743	7.93	1.30	•00	.00
8C	19.00	• 5 2 9	17.30	-7.122	1.64	18	.739	7.86	1.30	•00	.00
9C	19.20	• 5 3 2	17.61	-7.530	1.53	18	.752	8.12	1.30	•00	•00
15	19.30	.531	17.68	-7.518	1.53	07	•748	8.11	1.56	•00	•00
2 S	19.30	• 5 2 8	17.59	-7.088	1.64	40	•745	8.03	1.30	•00	.00
3S	19.80	• 534	18.23	-7.954	1.43	• 2 2	•752	8.40	1.69	•00	.00
4S	19.10	• 5 2 9	17.48	-7.394	1.56	20	•748	8.00	1.30	.00	.00
5S	19.30	.530	17.71	-7.584	1.51	10	•751	8.13	1.56	.00	.00
1 T	19.10	.531	17.44	-7.327	1.58	02	•741	7.95	1.56	.00	.00
2 T	19.00	• 527	17.29	-7.102	1.64	18	•739	7.82	1.56	.00	.00
3T	18.90	.530	17.29	-7.471	1.54	.00	.744	7.89	1.30	.00	.00
4T	19.00	• 5 2 7	17.11	-6.476	1.85	~.60	.728	7.71	1.30	•00	.00
5T	19.10	.528	17.33	-6.867	1.71	40	•737	7.86	1.30	.00	• ^ 0
6T	19.10	.528	17.40	-7.074	1.65	40	•744	7.94	1.30	.00	.00
AVERAGE	s: 705	20 B	ASELIN	E W060 0	0 000			_			
	22.28	• 5 6 5	20.54	-7.980	1.51	•08	•756	10.07	9.10	•00	•00
STD	• 2 5	.003	• 3 5	•685	.16	• 37	.010	• 2 3	•92	*	*
	705	20 WO	65N-TI	001 (2E1	4)						
	19.15	• 5 2 9	17.46	~7.188	1.62	25	.743	7.96	1.40	•00	.00
STD	•19	.003	• 2 4	.391	.11	• 2 2	.007	.16	•17	*	*
PERCENT	OF BA	SELIN	Е								
	86.0	93.6	85.0	109.9	108	****	98.2	79.0	15.4	****	****
STD 🕱	1.8	• 9	2.6	13.0	20	*****	2.2	3.4	3.6	****	****

164

.....

. . .

× ...

. .

1. yh 1. 7. 7

1.0 10 2.000

4

•

÷.

· • • •

70422 W066TI005 (3.3E13) W054 00 000 *S0i1 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

- 1

. .

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDE
12*	22.50	. 556	20.22	-6.388	1.96	- 33	. 721	9.54	.00	. 00	. 0.0
IR	22.70	. 558	21.05	-8.267	1.41	- 14	. 773	10.35	5.20	.00	6.30
2 B	22.70	.553	20.89	-7.610	1.55	- 30	. 761	10.11	4.55	.00	6.30
2 D 3 R	22.90	. 554	20.99	-7-311	1.63	41	. 756	10.15	4.55	.00	6.30
4 R	22.50	.553	20.64	-7.336	1.62	49	. 760	10.00	4.55	.00	6.30
5 B	22.80	558	21.07	-7-958	1.48	- 21	. 768	10.33	5.20	.00	6.30
	16.50	500	14.68	-6.210	1.80	- 16	. 702	6 12	26	.00	0.30
20	17 00	501	15 00	-6 060	1 05		700	6 31	•20	•00	.00
30	16.60	.498	14.72	-6.075	1.94	24	. 698	6.10	. 26	.00	.00
40	16.60	. 498	14.72	-6.075	1.0/	- 24	. 698	6.10	.26	00	•00
50	16 40	490	14.72	-5 984	1 00	-12	600	5 07	•20	-00	.00
60	17.10	. 500	15 10	-5.887	2 03		603	5.27	• 2 0	.00	•00
10	17 20	502	15 27	-6 122	1 0 2		- 0 - 5 - 5	6 6 6	• 2 0	•00	•00
12	17.30	• 10 3	15 37	-0.123	1.93	22	• 700	0 • 4 4	• 2 0	.00	.00
20	16 60	- 203	12.3/	-0.123	1.93	22	• / 00	0 • 4 4	• 20	.00	•00
35	10.00	. 500	14.00	-0.292	1.03		• / 04	0.10	• 20	.00	•00
45	1/+10	• JUZ	13.17	-0.004	1.94	1/	•09/	0.33	• 20	.00	.00
55	1/.50	• 502	12.38	-5.6/1	2.14	63	• 6 9 0	6.41	+26	.00	.00
11	16.90	•497	14.92	-5.882	2.02	~38	• 6 9 3	6.15	•26	•00	•00
2T	16.60	•499	14.80	-6.314	1.84	• 02	.701	6.14	•26	•00	•00
3T	16.50	• 497	14.63	-6.044	1.95	32	•698	6.06	•26	•00	-00
4T	16.80	•498	14.89	-6.059	1.94	14	•695	6.15	•26	•00	•00
AVERAGES	s: 704	22 В.	ASELINE	E W054 0	0 000	1					
	22,72	.555	20.93	-7.696	1.54	31	.764	10.19	4.81	- 00	6.30
STD	.13	.002	.16	.369	.09	.13	.006	.13	. 32	*	*
012	704	22 00	66T 100'	5 (3.3E)	3)	•••		• • • •	• • • •		
	16.85	.500	14.94	-6.059	1.95	24	.697	6.21	.26	.00	.00
STD	. 3 3	.002	.28	.157	.07	.15	-004	. 14	.00	*	*
PERCENT	OFBA	SELIN	E		- 57			* * *			
1 DROMMI	74.2	90.0	71.4	121.3	127	122-1	91.3	61.0	5.4	****	.0
S TD 2	1.9	.7	1.9	5.9	12	100.3	1.7	2.2		*****	.0
0 1 D A		• /		2.2	1 4	100.0	1 • 4	4 • Z	+ 4		• •

165

An and the second and the second s

70425 W067CR-MN-TIOO1 (4E14-5E14-3.3E12) W054 OG 000 *SOL1 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

×

*

· . .

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1 R *	22.50	• 5 5 4	20.24	-6.452	1.93	27	.721	9.51	•00	.00	.00
1 B	22.70	• 5 5 3	20.96	-7.898	1.48	17	•765	10.15	4.94	.00	.00
2B*	22.70	.548	20.06	-5.591	2.32	-1.01	.707	9.30	3.64	.00	•00
3 B	22.70	.549	20.69	-7.113	1.68	14	.741	9.76	5.20	.00	•00
4 B	22.90	• 5 5 6	21.18	-8.092	1.44	06	•766	10.31	5.85	.00	•00
10	18.70	.519	16.77	-6.267	1.91	79	•725	7.44	• 39	.00	.00
2 C	19.10	.519	17.13	-6.431	1.84	14	•713	7.48	•52	.00	.00
3C	19.70	.529	17.69	-6.464	1.86	18	.716	7.90	•78	.00	.00
4 C	19.80	• 5 2 9	17.74	-6.331	1.91	34	.716	7.93	•78	.00	.00
5C	19.60	.518	16.61	-4.633	2.96	-1.59	.654	7.02	• 5 2	.00	.00
6 C	19.20	.518	17.28	-6.554	1.79	22	•721	7.58	• 39	.00	•00
7 C	19.00	• 5 1 4	16.59	-5.436	2.31	72	.683	7.05	• 39	.00	.00
15	19.30	• 5 2 9	17.33	-6.252	1.95	92	.729	7.87	•78	.00	.00
2 S	19.60	•526	17.45	-6.165	1.97	08	.701	7.64	•78	.00	•00
3S	19.60	•526	17.50	-6.067	2.02	80	•718	7.83	•78	.00	.00
4 S	19.30	.525	17.37	-6.546	1.82	24	.721	7.72	•78	.00	.00
5 S	19.70	.529	17.53	-5.907	2.10	94	.715	7.88	1.04	.00	•00
1 T	18.60	.516	16.27	-5.382	2.36	-1.21	•692	7.02	• 5 2	.00	•00
2 T	19.00	•515	16.73	-5.636	2.26	85	•697	7.21	• 3 9	.00	.00
3T	18.90	•511	16.57	-5.598	2.20	52	•686	7.00	•26	.00	•00
4 T	18.60	.513	16.58	-6.076	1.97	67	.713	7.19	• 3 9	.00	.00
5 T	18.90	• 5 1 4	16.91	-6.247	1.90	51	•716	7.36	.39	•00	•00
AVERACES	s. 7043	25 B.	ACELINI	F WASA A							
II V DIGHO DI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 5 5 3	20.94		1.53	- 12	757	10 07	5 3 2	00	00
STD	.10	.003	.20	-/•/01	10	-•12	011	10.07	7.17	••••	*
515	704	25 tan	•20 6700-M	1001 J	•10 (AF1A.	•05 -5F14-3	•011 2 2m1	•25	• 10	•	
	10.21	521	17 06	_5 000	2 06	- 63	707	4) 7/9	5.9	0.0	00
S T D	30	006	45	- J • J 5 5 5	2.00	05	• / 0 /	/ • 40	• 50	••••	••••
DEBCENT	• J 7 OF BA9	SFI TNI	•4J	• 4 9 0	• 4 0	• 4 0	• • • • •	• • • •	• 4 1	-	~
IERCENT	84.4	94.2	81.5	122.1	135	****	03 /	74.2	10 0	*****	*****
STD %	2.1	1.6	2.9	11.1	29 (662.9	3.9	5.1	5.1	*****	*****

166

-

• •

. . .

70426 W068CR004 (1E15) W054 00 000 *SOL1 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

्य सं ह

*

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСЪЪ
1 R *	22.50	• 5 5 6	20.22	-6.388	1.96	33	.721	9.54	.00	.00	.00
1 B	22.30	.556	20.57	-7.730	1.53	42	.768	10.08	4.55	.00	.00
2 B	22.90	.558	21.21	-8.150	1.43	17	.771	10.42	5.60	.00	.00
3B	22.40	•555	20.39	-6.781	1.81	87	.754	9.91	5.20	.00	.00
4 B	23.10	•556	21.24	-7.520	1.58	40	.763	10.36	5.60	.00	.00
5 B	22.50	.553	20.72	-7.551	1.56	58	.769	10.12	4.81	.00	.00
10	19.30	.519	17.43	-6.563	1.79	65	.734	7.77	.65	.00	.00
2 C	20.00	.519	17.89	-6.060	1.99	97	.724	7.95	.65	.00	.00
3C	20.10	.518	17.87	-5.790	2.11	-1.19	.718	7.91	•65	.00	.00
3C	19.70	•514	17.24	-5.354	2.35	-1.20	.694	7.43	• 5 2	.00	.00
6C	19.10	.515	16.88	-5.638	2.19	-1.21	.708	7.37	.52	.00	.00
7C	19.90	• 5 2 0	17.88	-6.241	1.91	92	.730	7.99	•65	.00	•00
8C	20.20	.519	17.95	-5.770	2.13	-1.18	.717	7.95	•65	.00	.00
9C	20.60	• 524	18.55	-6.312	1.89	94	.735	8.39	.78	•00	.00
15	20.40	• 5 2 4	18.36	-6.319	1.89	85	.732	8.28	.91	.00	.00
25	20.20	• 5 2 4	18.15	-6.241	1.93	91	.731	8.18	• 78	•00	.00
35	20.20	• 5 2 4	18.12	-6.223	1.93	78	.726	8.12	.78	.00	.00
4 S	20.30	•524	18.11	-5.990	2.04	88	.719	8.08	• 7 8	•00	.00
5 S	20.90	• 5 2 7	18.90	-6.621	1.78	55	•736	8.57	.91	•00	.00
1 T	19.60	• 5 2 0	17.64	-6.414	1.85	66	•729	7.86	• 78	.00	.00
2 T	19.60	.517	17.47	-5.943	2.04	-1.01	.719	7.70	• 5 2	•00	.00
3T	19.80	.517	17.75	-6.244	1.90	63	.721	7.81	• 5 2	.00	.00
4T	20.00	.519	17.32	-5.247	2.44	57	.669	7.35	• 5 2	•00	.00
5T	19.60	• 5 1 7	17.51	-6.069	1.98	88	.721	7.73	.65	.00	.00
AVERAGES	5: 7042	26 BA	ASELINE	E W054 OC	000						
	22.64	.556	20.83	-7.546	1.58	49	•765	10.18	5.15	•00	.00
STD	.31	.002	• 34	.444	•12	• 2 3	.006	.19	• 4 2	*	*
	7042	26 WO6	58CR004	(1E15)							
	19.97	.520	17.83	-6.058	2.01	89	•720	7.91	• 6 8	•00	.00
STD	• 4 4	.004	• 4 8	• 370	.18	•21	.016	• 3 3	-13	*	*
PERCENT	OF BAS	GELINI	5								
<i>-</i> -	88.2	93.6	85.6	119.7	127	18.6	94.1	77.8	13.2	****	****
STD %	3.2	• 9	3.8	9 - 9	22	148,8	2.9	4.7	3.7	****	*****

167

and the second and the second of the second s

as the

Ę,

r,

70512 W069FE004 (1E15) W054 00 000 1 /7 /80 AM1: $P0=91.60MW/CM^2$ *SOL1 NO AR COATING ID ISC VOC IP LOG(IO) N R FF Eff OCD PCDa PCDb 1R* 22.50 .553 20.21 -6.362 1.96 -.33 .720 9.47 .00 .00 .00 22.30 .550 19.87 -5.735 2.25 -1.49 .729 1B.* 9.45 3.25 .00 .00 2 B 22.50 .552 20.60 -7.213 1.66 -.56 .758 .00 9.96 3.25 .00 3 B 22.50 .552 20.43 -6.621 1.85 -.93 .750 9.85 3.90 .00 .00 22.10 .550 19.78 .00 4B* -5.953 2.14 -1.27 .732 9.41 3.12 .00 22.80 .550 20.45 5 B -6.020 2.10 -1.17 .734 9.73 3.64 .00 .00 20.30 .564 17.71 -5.160 2.72 -1.80 .697 1 C 8.44 .91 .00 .00 2C 20.90 .571 19.08 -7.067 1.77 -.65 .753 .00 9.51 1.17 .00 -7.284 1.70 -.55 .756 3C 20.30 .570 18.59 9.25 1.30 .00 .00 19.00 .563 17.30 4 C -6.882 1.82 -.92 .751 8.50 .65 .00 .00 5 C 20.30 .567 17.72 -5.076 2.80 -2.36 .706 8.60 .91 .00 .00 18.90 .562 17.26 6 C -7.111 1.74 -.77 .755 8.48 .91 .00 .00 7 C 20.50 .572 18.60 -6.651 1.93 -1.04 .749 9.29 1.04 .00 .00 20.30 .575 18.52 8C -6.956 1.82 -.89 .755 9.32 1.30 .00 .00 9 C 20.30 .568 17.91 -5.491 2.50 -1.64 .712 .00 8.68 1.30 .00 10C 20.20 .570 18.07 -5.874 2.28 -1.85 .738 8.99 1.30 .00 .00 110 20.80 .573 18.60 -5.946 2.24 -1.37 .730 9.20 .00 1.30 .00 21.20 .575 18.79 15 -5.547 2.48 -1.83 .723 9.32 1.17 .00 .00 20.90 .500 15.67 25* -4.958 2.55 6.69 .455 5.03 .13 .00 .00 3 S 21.40 .573 19.11 -5.855 2.29 -1.44 .729 9.45 1.30 .00 .00 .00 4 S 21.40 .571 18.68 -5.066 2.81 -2.18 .705 9.11 1.30 .00 55* 21.20 .455 15.44 -5.314 2.09 7.74 .424 .13 .00 .00 4.32 1T* 17.10 .551 15.68 -7.404 1.63 -.74 .760 7.58 .65 .00 .00 2T* 17.90 .400 13.25 -5.566 1.75 7.88 .433 3.28 .13 .00 .00 3T* .13 17.70 .317 13.06 -4.985 1.64 5.36 .442 2.62 .00 .00 4 T 18.30 .555 16.69 -7.116 1.72 -.54 .748 8.03 .52 .00 .00 5T* 16.70 .403 12.53 -5.654 1.74 8.17 .443 3.15 .13 .00 .00 6T 17.90 .552 16.42 -7.594 1.58 -.21 .753 7.87 .65 .00 .00 AVERAGES: 70512 BASELINE W054 00 000 22.60 .551 20.49 -6.618 1.87 9.85 3.60 .00 .00 STD .14 .001 •08 .487 .18 .25 .010 .09 .27 * * 70512 W069FE004 (1E15) 20.13 .568 18.07 -6.292 2.14 -1.25 .735 8.88 1.06 .00 .00 1.02 .007 STD .80 .848 •41 .62 .020 .50 .26 * × PERCENT OF BASELINE 88.2 89.0 102.9 104.9 114 58.4 98.4 90.2 29. ***** ***** 20.7 35 131.2 STD 🛛 5.1 1.4 4.3 4.1 5.9 10.1 ***** *****

168

ىر ئىرىدى، خىرىنى خىسىدىنىسى

and the second second

70516 W070AL003 (5E16) W054 00 000 *SOL1 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

57

*

* -

. . .

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1R*	22.50	• 5 5 6	20.25	-6.469	1.93	27	.722	9.55	.00	.00	.00
1B*	18.60	• 5 4 9	16.08	-4.746	3.04	-3.53	•705	7.61	2.99	•00	.00
2 B	22.00	.551	19.86	-6.306	1.98	-1.20	•745	9.55	3.25	.00	•00
3B*	21.70	• 5 3 6	17.06	-3.443	5.01	-4.21	.597	7.34	1.56	•00	•00
4B•*	21.90	.553	19.34	-5.303	2.53	-2.21	•725	9.29	3.25	•00	.00
5B*	21.50	.535	17.02	-3.583	4.65	-3.38	• 596	7.25	1.69	.00	•00
10.*	18.40	.532	15.20	-3.925	4.05	-5.03	.659	6.82	•52	.00	.00
2C•*	18.40	.522	14.36	-3.423	5.14	-5.43	• 5 9 4	6.04	.39	.00	.00
4C	18.20	.537	16.66	-7.423	1.58	21	•749	7.74	•78	•00	•00
90.*	18.50	.534	15.51	-4.098	3.77	-4.90	.678	7.08	•65	.00	.00
110.*	17.70	.258	12.32	-4.241	1.73	4.12	•415	2.00	.13	.00	.00
15	14.40	.519	12.32	-4.973	2.77	-1.90	.665	5.25	•52	.00	.00
25.*	16.90	.494	11.91	-3.075	6.23	-3.82	.488	4.30	.13	.00	.00
35.*	14.00	.517	11.58	-4.285	3.55	-3.73	.637	4.88	• 39	•00	.00
45.*	18.70	.523	15.17	-3.898	4.02	-3.32	.619	6.40	• 39	.00	.00
5 S	17.40	-525	14.57	-4.413	3.30	-2.55	.648	6.26	• 39	•00	.00
6S	16.70	.528	14.34	-4.904	2.82	-2.12	.675	6.29	.39	•00	.00
1T.*	18.30	•509	12.57	-2.658	8.77	* * * * *	• 5 0 3	4.95	.26	.00	.00
2T•*	18.60	.361	12.84	-4.173	2.46	5.56	.410	2.90	.13	.00	.00
3т	18.60	.539	16.79	-6.544	1.87	72	.733	7.77	•52	•00	.00
4T.*	19.00	.484	12.28	-2.811	7.20	-2.13	.422	4.10	.65	.00	.00
5T.*	18.80	•437	14.66	-2.480	8.85	****	•806	7.00	•65	.00	.00
AVERAGE	s: 705	16 B.	ASELINE	E W054 0	0 0 0 0						
	22.00	.551	19.86	-6.306	1.98	-1.20	.745	9.55	3.25	.00	.00
STD	.00	.000	.00	.000	.00	•00	.000	•00	•00	*	*
	705	16 WO	70AL003	3 (5E16)							
	17.06	• 5 3 0	14.94	-5.651	2.47	-1 50	.694	6.66	• 5 2	.00	.00
STD	1.48	.007	1.66	1.139	•64	• 8	.040	•97	•14	*	*
PERCENT	OF BA	SEL IN	E								
	77.5	96.1	75.2	110.4	125	74.7	93.1	69.8	16.0	****	****
STD 🕱	67	1.4	8.3	18.1	32	73.8	5.3	10.1	4.4	****	****

ىيەنھەرىنى ئالىم

. .

•

_ 1 *

. . .

5

70608 W072CR005 (4E14) W054 00 000 *SOL1 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

,

.

• • • • •

f 3¹, 1000

1

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.552	20.27	-6.517	1.89	~.21	.722	9.48	.00	.00	•00
1 B	21.40	.555	19.70	-7.591	1.57	48	•765	9.61	4.81	.00	•00
2 B	21.90	.552	19.89	-6.680	1.84	88	.749	9.58	3.90	.00	.00
3 B	21.70	.552	19.91	-7.366	1.62	49	.759	9.62	3.90	.00	.00
4 B	21.70	.549	19.52	-6.097	2.07	-1.41	•742	9.35	3.25	.00	.00
5в.*	22.40	.549	19.95	-5.730	2.25	-1.38	.726	9.44	2.34	.00	.00
15	18.80	. 524	16.94	-6.499	1.83	64	.730	7.61	1.30	.00	0
25	19.50	.162	12.36	-3.815	1.28	2.86	.365	1.22	.13	.00	.00
35.*	20.80	.387	13.69	-4.056	2.72	6.40	.380	3.24	.13	.00	.00
45.*	20.10	.527	17.02	-4.099	3.65	-3.57	.660	7.51	.78	.00	.00
55.*	29.10	.244	13.00	-3.601	2.13	3.26	.381	1.98	.13	.00	.00
10	21.20	541	19.36	-7.119	1.66	46	.750	9.10	2.34	.00	.00
20.*	21.30	.528	16.37	-3.137	5.96	-6.52	.594	7.06	.78	.00	.00
30.*	21.40	.533	17.31	-3.557	4.70	-5.40	.644	7.76	1.04	.00	.00
40	21.30	.541	19.31	-6.656	1.81	73	.743	9.05	2.21	.00	.00
50	21.40	.544	19.65	-7.466	1.57	38	.759	9.34	2.60	.00	.00
6C	21.50	.541	19.55	-6.825	1.75	63	.746	9,18	2.21	.00	.00
7C	21.30	- 541	19.19	-6.336	1.94	90	.736	8.97	1.95	.00	.00
80	21.50	.542	19.69	-7.329	1.60	34	.753	9.28	2.34	.00	.00
90	21.40	. 544	19.57	-7.187	1.65	- 46	.753	9.26	2.60	. 00	.00
100.*	19.00	.132	12.24	-4.964	.68	3.34	. ? 56	. 94	.13	.00	.00
1000	20.30	.163	13.02	-3.644	1.39	2.34	.375	1.31	.13	.00	.00
1T	21.30	.537	18.99	-5.859	2.14	-1.19	.724	8.75	1.69	.00	.00
2 T	20.80	.537	18.79	-5.470	1.87	89	.740	8.74	1.87	.00	.00
3T	21.00	.538	18.95	-6.356	1.92	1.05	.741	8.85	1.95	.00	.00
4 T	20.90	.535	18.82	-6.363	1.91	85	.735	8.69	1.56	.00	.00
5T	20.70	.535	18.97	-7.422	1.56	22	.751	8.80	1.87	.00	.00
6T	20.90	.536	18.74	-6.097	2.03	-1.10	•731	8.66	1.87	.00	.00
AVERAGES	S: 706	08 B.	ASELIN	E W054 0	0 0 0 0						
	21.68	.552	19.75	-6.933	1.77	81	•754	9.54	3.97	.00	.00
STD	. : 8	.002	.16	.588	.20	.38	.009	.11	.56	*	*
	706	08 WO	720-00	5 (4E14)					•		
	20.86	.401	18.25	-6.340	1.74	29	.696	7.93	1.79	.00	.00
STD	.73	.124	2.19	1.091	.22	1.13	.124	2.55	.71	*	*
PERCENT	OF BA	SELIN	E /								
	96.3	89.0	92.4	108.6	98	164.4	92.3	83.1	45.1	****	*****
STDŽ	4.2	23.0	11.9	24.8	5	220.2	17.7	28.0	26.8	****	*****

.

• •

70609A W073CR-M: NI-TI-V001(4E14-4E14-8E15-2.4E12-4E12) W0 00 000 *SOL1 1 /7 /80 AM1: P0=91.60MV/CM^2 NO AR COATING

;

1

1

ID	ISC	VCC	τp	LOC(I0)	N	R	FF	Eff	(_ D	PCDa	РСДЪ
18*	22.50	.555	20.34	-6.757	1.81	.01	.724	9.56	.00	.00	.00
1 B	22.60	.556	21.17	-9.33	1.19	-28	.783	10.40	5.20	.00	.00
2 B	22.50	.553	20.93	-8.673	1.31	.16	.771	10.15	5.46	.00	.00
3 B	22.90	.556	21.46	-9.578	1.17	.44	.779	10.49	5.98	.00	.00
4 B	22.70	.555	21.26	-9.519	1.18	• 46	.778	10.36	5.72	.00	.00
5 B	22.60	.554	21.16	-9.405	1.19	.28	.782	10.35	5.20	.00	.00
10	17.20	.500	15.56	-6.962	1.61	.14	.723	6.58	•65	.00	.00
2 C	17.50	.500	15.70	-6.480	1.77	22	.716	6.62	.78	.00	.00
30	17.50	.500	15.66	-6.356	1.82	25	.712	6.58	• 5 2	• 0 0	.00
4C	17.50	.501	15.75	-6.688	1	.04	.716	6.64	• 5 2	•00	.00
5C	17.40	.497	15.35	~5.824	2.04	4%	.693	6.33	• 78	.00	.00
6C	17.50	.499	15.54	-6.131	1.91	05	.696	6.43	.65	.00	.00
70	17.10	.503	15.39	-6.644	1.72	12	.719	6.54	.65	•00	.00
80	17.20	.503	15.42	~6.453	1.79	25	.715	6,54	•52	•00	• 00
90	17.20	.501	15.47	-6.661	1.71	•04	.715	6.52	.52	.00	.00
100	16.90	.488	14.04	-4.460	3.03	-1.39	.625	5.46	• 5 2	•00	.00
110	17.50	.498	15.29	-5.476	2.24	80	•684	6.31	•65	•00	.00
15	17.80	.511	16.09		1.67	05	.725	6.97	• 5 2	.00	•00
25	17.50	.505	15.80	-6.761	1.69	10	•723	6.76	•65	•00	.Ou
35	17.70	.505	15.90	-6.410	1.81	58	•723	6.84	•65	•00	.00
45	17.70	.504	15.91	-6.538	1.76	20	.718	6.77	•65	•00	.00
55	17.90	.503	15.53	-5.236	2.41	-1.09	•678	6.46	• 5 2	.00	•00
1 T	17.30	.500	15.54	-6.618	1.72	• 0 8	•712	6.52	•78	.00	•00
2 T	17.30	.498	15.51	-6.539	1.74	.11	.708	6.45	.73	.00	.00
3T	17.30	.500	15.51	-6.519	1.76	01	.711	6.51	.78	.00	•00
4 T	17.20	.499	15.44	-6.612	1.72	•12	.711	6.45	.65	.00	.00
5T	17.20	.498	15.49	-6.843	1.64	• 4 1	.711	6.44	.78	.00	.00
6T	17.10	.497	15.25	-6.382	1.80	• 2 3	.699	6.28	. 39	• U O	•00
AVERAGE	s: 705	09A B	ASELIN	IE W054 0	0 0 0 0						
	22.66	.555	21.20) -9.321	1.21	• 3 3	•779	10.35	5.51	.00	.00
STD	.14	.001	• 1 7	• .330	•05	.11	.004	.11	• 30	*	*
	706	09A W	073CR-	- MN - N I - T I	-V001	(4E14 -	4E14-	8E15-2	4E12-4	4E12)	
	17.39	.500	15.51	-6.328	1.87	20	.706	6.50	.63	.00	• 76
STD	• 2 4	•004	• 38	.584	• 3 2	• 4 2	.021	.28	.11	*	*
PERCENT	OF BA	SELIN	E								
	76.7	90.2	73.2	2 132.0	154	~61.2	90.7	62.8	11.5	*****	***
STD %	1.5	1.0	2.4	8.9	34	195.9	3.2	3.4	2 • 8	****	****

71

•r1

بد ب به طور، کوه درسه بو

.

S 20 1 1

and the second second
1 .

• • .

ID	ISC	VOC	IP	I OG (10)	N	R	FF	Eff	OCD	PCDa	PCDb
1 R *	22.50	.555	20.16	-0.256	2.01	36	.717	9.47	.00	.00	.00
1 B	22.00	.554	20.19	-7.413	1.61	39	.758	9.77	4.68	.00	.00
2 B	22.20	554	20.38	-7.417	1.61	47	.761	9.89	4.55	.00	.00
3 B	22.30	.551	20.31	-6.983	1.73	41	.745	9.68	4.94	.00	.00
4 B	22.50	.551	20.63	-7.362	1.61	40	.757	9.93	4.55	.00	.00
5B.*	22.30	.551	19.88	-5.765	2.24	-1.40	.727	9.45	4.29	.00	.00
10	20.70	.541	18.81	-4.,58	1.78	78	.747	8.85	1.82	.00	.00
2 C	20.60	.538	18.56	-6.399	1.91	77	.733	8.59	1.30	.00	.00
3C	20.80	.539	18.83	580	1.84	79	.741	8.79	1.56	.00	.00
4C	20.80	• 5 4 0	18.97	5	1.63	46	.748	8.88	1.82	.00	.00
5C	20.60	.538	18.53	- 0.310	1.94	85	.732	8.58	1.69	.00	.00
6C	21.00	.537	18.98	-6.514	1.85	76	.738	8.80	1.56	.00	.00
7C	21.10	.537	18.97	-6.275	1.95	84	.731	8.7J	1.56	.00	.00
8 C	20.90	.539	18.95	-6.674	1.80	76	•744	8.86	1.82	.00	.00
9C	21.20	.559	19.06	-6.365	1.92	53	.725	8.76	1.95	.00	.00
10C	21.10	.539	19.17	-6.836	1.74	51	.742	8.93	1.95	.00	.00
110	20.50	• 5 3 3	18.30	-5.999	2.07	92	•720	8.32	1.30	.00	.00
15	20.60	.545	18.83	-7.229	1.64	37	.750	8.91	2.34	.00	.00
25	21.10	.543	18.79	-5.832	2.18	- 1.15	.720	8.73	1.95	.00	.00
3S	1.30	.545	19.34	-6.800	1.77	51	.741	9.10	2.60	.00	.00
4 S	21.30	• 5 4 5	19.53	-7.387	1.59	38	•756	9.28	2.60	.00	.00
5 S	21.40	• 546	18.94	-5.567	2.34	-1.43	.716	8.84	2.60	.00	.00
1 T	20.10	• 5 3 9	18.16	-6.606	1.83	50	.732	8.39	1.30	.00	.00
2T	20.30	.538	18.40	-6.776	1.77	44	.737	8.51	1.30	.00	.00
3T	20.50	• 5 3 8	18.57	-6.591	1.83	87	•744	8.67	1.56	.00	.00
4T	20.40	.536	18.44	-6.722	1.78	21	.728	8.41	1.69	.00	.00
5T	20.70	• 5 3 9	18.90	-7.138	1.65	44	.749	8.84	1.69	.00	.00
6T	20.40	• 5 3 7	18.46	-6.639	1.81	65	•738	8.55	1.69	.00	.00
AVERAGES	5: 7061	О ВА	ASELINI	E W054 00	000						
	22.25	• 5 5 3	20.38	-7.294	1.64	42	•755	9.82	4.68	.00	.00
STD	.18	.002	.16	.181	•05	.03	.006	.10	.16	*	*
	7061	LO WO7	74MN-CI	R-NI-TI-V	7002(8	8E13-8E	E13-2E	15-3.3	E11-61	211)	
	26.79	• 540	18.79	-6.593	1.85	68	•737	8.74	1.80	.00	.00
STD	• 35	.003	.33	•426	•17	•27	.010	.22	.40	*	*
PERCENT	OF BAS	SELINE	Ξ								
	93.	97.7	92.2	109.6	113	37.5	97.6	89.0	38.5	****	****
STD Z	2.5	.9	2.4	8.2	14	82.1	2 `	3.2	10.2	****	****

70610 W074MN-CR-NI-TI-V002(8E13-8E13-2E15-3.3E11-6E11) W054 C0 000 *SOL1 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

٢

•

1 i

æ

. .

Ţ

æ % 1.2

. . .

ind the base of the state of

1

· ·

Ŧ

.

.- •

. .

ŧ

-1

:

.

70614 W075TI-V002 (5.6F13-1E14) W054 00 000 *SOL2 1 // /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
1 k *	22.50	.554	26.33	-6.747	1.81	.01	.723	9.53	.00	.00	.00
18.*	22.20	• 548	19.81	-5.876	2.17	-1.16	.725	9.33	3.38	.00	.00
2 B	22.10	.548	20.03	-6.636	1.84	68	.742	9.50	3.90	.00	.00
3 B	22.20	.549	20.16	-6.682	1.82	~.83	.748	9.65	3.90	.00	.00
άB	22.20	.549	20.42	-7.620	1.54	27	.760	9.80	4.16	.00	.00
10	15.40	.486	13.79	-6.604	1.69	.38	.702	5.56	• 2 2	.00	.00
2C	15.30	.485	13.62	-6.309	1.80	.03	.699	5.49	.13	.00	.00
3C	15.50	.483	13.79	-6.250	1.82	09	.700	5.54	.39	.00	.00
4 C	15.50	.483	13.70	-5.953	1.95	45	.696	5.51	.39	•00	.00
5C	15.40	.482	13.55	-5.923	1.96	.06	.681	5.35	.91	.00	.00
6C	15.40	.479	13.48	-5.732	2.0-	16	•677	5.28	.65	.00	•00
70	15.40	.483	13.66	-6.190	1.84	.08	.693	5.45	.91	.00	.00
80	15.50	.482	13.71	-6.178	1.84	• 4 4	•684	5.40	.91	.00	.00
9ú•*	15.40	.478	12.71	-4.214	3.32	-3.15	.634	4.94	.39	.00	.00
10C	15.70	.483	13.91	-6.176	1.85	• 24	.689	5.52	•91	.00	• 00
110	15.60	.480	13.56	-5.729	2.04	14	.677	5.36	.91	.00	.00
15	15.70	.483	13.80	-5.747	2.05	59	•689	5.53	.91	.00	.00
2 S	15.60	.486	13.91	-6.255	i.83	36	.707	5.67	.39	.00	•00
35	15.90	• 1.86	14.12	-6.117	1.88	35	.701	5.73	1.04	.00	.00
4 S	15.70	• 486	13.97	-6.158	1.86	41	•705	5.69	.65	.00	.00
1T	15.10	.483	13.51	-6.568	1.70	• 30	.703	5.42	.65	.00	.00
2 T	15.10	.480	13.40	-6.316	1.78	• 4 7	.689	5.28	.65	.00	.00
3T	15 10	.481	13.51	-6.608	1.68	.46	.700	5.38	.65	.00	.00
4 T	15.10	.481	13.22	-5.823	2.01	•23	.672	5.16	.91	.00	.00
5T	15.30	.482	13.68	-6.545	1.70	.31	.702	5.47	.91	.00	.90
6T	15.30	.483	13.68	-6.514	1.72	.17	.704	5.50	.91	.00	.00
AVERAGES	s: 706	14 B.	ASELIN	E W054 00	000						
	22.17	• 5 4 9	20.21	-6.980	1.73	59	.750	9.65	3.99	.00	.00
STD	•05	.000	•16	.453	•14	• 2 4	.008	•12	.12	*	*
	706	14 WO	75TI-V	002 (5.61	El 3-1!	E14)					
	15.43	.483	13.68	-6.185	1.85	•03	.694	5.47	•70	.00	.00
STD	• 2 2	.002	.20	.287	.12	• 3 2	.010	.14	.26	*	*
PERCENT	OF EA	SELIN	E								
	69.6	88.0	67.7	111.4	197 :	205.2	92.5	56.6	17.6	****	*****
STD %	1.2	• 4	1.6	10.1	16	79.0	2.3	2.2	7.3	****	****

٠.

•

ç,

-

70613 V	1076POL	1002 ·	w054 00	000							
*SOLI	1 /7 /8	80 .	AM1: PO	91.60M	W/CM^:	2 NO 4	AR COA	TING			
ID	ISC	voc	I P	LOG(10)	N	R	FF	Eff	ü C D	PCDa	PCDb
18*	22.50	. 553	20.18	-6.315	1.98	30	.717	9.44	.00	.00	.00
12*	21.70	.542	18.85	-4.932	2.77	-2.11	.698	8.68	2.99	.00	.00
2 R	22.30	.549	20.39	-7.257	1.64	23	.748	9.69	5.46	.00	.00
38	22.30	- 5 5 0	20.28	-6.777	1.79	74	.749	9.72	4.55	.00	.00
4B*	21.70	.543	19.03	-5.208	2.56	-1.88	.710	8.84	3.51	.00	.00
58	22.10	.548	20.03	-6.636	1.84	68	.742	9.50	5.20	.00	.00
10	18.40	.508	16.24	-6.051	1.97	.43	.680	6.72	1.04	.00	.00
20	19.00	.505	16.18	-4.936	2.62	50	.646	6.55	.78	.00	.00
3C	18.70	.509	15,92	-5.170	2.47	.59	.631	6.35	.91	.00	.00
4C	18.50	.510	16.34	-5.942	2.02	07	.690	6.88	04	.00	.00
5C	18.80	.506	16.23	-5.452	2.27	.51	.649	6.53	.78	.00	.00
6C	19.40	.507	16.55	-5.092	2.51	.11	.640	6.66	.91	.00	.00
7C	19.30	.512	17.06	-6.040	1.98	.27	.685	7.16	1.04	.00	.00
8C	19.80	.512	17.17	-5.222	2.43	80	•674	7.23	1.04	.00	.00
9C	19.00	.504	16.31	-4.927	2.63	-1.33	.658	6.77	•91	.00	.00
10C	19.20	.514	17.05	-6.011	2.00	39	.703	7.34	•91	.00	.00
110.*	19.00	.359	14.12	-4.258	2.36	3.45	•469	3.39	• 3 9	.00	.00
15.*	18.70	• 412	14.40	-4.475	2.50	3.40	.500	4.07	• 39	.00	.00
25	19.30	.514	17.27	-6.241	1.90	47	.715	7.51	1.17	.00	.00
35	19.40	• 509	16.15	-4.220	3.39	-2.65	•645	6.74	• 7 8	.00	.00
4S	18.50	• 4 9 2	15.52	-4.592	2.87	-1.10	•635	6.12	• 5 2	.00	•00
55.*	17.90	• 4 2 7	13.47	-4.310	2.78	3.92	.481	3.89	•26	•00	•00
63	18.60	•416	14.15	-4.211	2.80	2.85	•497	4.06	•26	.00	.00
7 S	18.10	.481	14.58	-3.997	3.56	-1.83	• 5 9 7	5.49	3.90	.00	•00
1 T	20.70	• 528	18.61	-6.421	1.86	37	.722	8.74	1.30	•00	.00
2 T	19.70	-519	17.57	-6.170	1.94	26	.707	7.64	1.04	.00	.00
3T	20.20	.515	17.50	-5+130	2.50	-1.12	•679	7.47	.78	.00	•00
4T	20.00	• 5 2 3	17.88	-6.244	1.92	28	•711	7.86	1.17	.00	.00
5T	19.50	• 514	17.26	-5.894	2.01	39	• 6 9 8	7.40	1.04	.00	•00
6 T	19.70	• 5 1 7	17.50	-5.970	2.03	51	.705	7.60	1.04	.00	•00
AVERAG	ES: 706	13 B	ASELINE	W054 0	<u>२ ०००</u>						
	22.23	• 5 4 9	20.23	-6.890	1.70	55	•746	9.63	5.07	•00	.00
STD	.10	.001	.15	•265	.09	. 23	.003	•09	• 38	*	*
	706	13 WO	76POLY0	02							
_	19.23	.505	16.52	-5.425	2.37	35	•666	6.88	1.06	•00	•00
STD	•64	.022	1.03	•731	• 4 8	1.05	•050	• 8 9	•67	*	*
PERCEN	T GF BA	SELIN	Е						.		
	86.5	92.1	٤1	121.3	135	136.8	89.2	71.4	21.0	*****	****
STDZ	3.3	4.2	5.8	14 • 1	- 35	293.7	7.1	10.0	15.8	****	****

.-

: ¥

Ϊ.

ø

÷ ъ

•

.

. .

•

-

70615 W077M0001 (4.2E12) W054 00 000 *SOL2 1 /7 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

. . .

.

*

÷.

ς.

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
lR*	22.50	. 551	20.12	-6.149	2.04	- 43	. 714	9.37	.00	.00	.00
18	22.70	. 551	20.79	-7.302	1.63	32	.753	9.96	5.60	.00	.00
2 B	22.00	.548	20.07	-7.072	1.69	42	.748	9.54	4.40	.00	.00
3B	22.70	.550	20.98	-7.956	1.46	19	.767	10.13	5.20	.00	.00
4 B	22.30	.549	20.41	-7.236	1.64	45	.755	9.77	5.20	.00	.00
5в	22.60	.549	20.76	-7.672	1.52	.06	.751	9.85	4.55	.00	.00
10	19.10	.504	17.07	-6.152	1.90	66	.718	7.30	.52	.00	.00
2C	18.70	.504	16.74	-6.190	1.89	73	.720	7.18	1.04	.00	•00
3C	18.80	.504	16.72	-5.886	2.02	-1.01	.715	7.16	.91	.00	.00
4C	18.80	.503	16.39	-5.214	2.41	-1.60	.694	6.94	.91	•00	.00
5C	18.70	.505	16.78	-6.267	1.86	82	.726	7.25	.78	.00	.00
6C	18.80	.505	16.82	-f.100	1.93	-1.02	.725	7.28	•91	.00	.00
7C	18.60	.503	16.24	-2.160	2.45	-2.04	.702	6.95	.91	.00	.00
8C	19.50	.506	17.23	-5.672	2.13	-1.01	.706	7.37	.91	.00	.00
9C	18.70	• 503	16.62	-5.912	2.01	86	.711	7.08	.65	.00	.00
100	18.80	.504	16.87	-6.317	1.83	04	.723	7.25	•91	.00	.00
15	18.40	.505	16.51	-6.221	1.88	1.01	.729	7.17	.65	.00	•00
2 S	18.80	.505	16.91	-6.455	1.78	52	•725	7.28	- 78	.00	.00
3S	19.00	• 505	17.03	-6.250	1.86	70	.723	7.33	.65	.00	.00
4 S	19.00	.503	16.98	-6.099	1.92	83	•720	7.28	• 7 8	.00	.00
55	19.00	• 503	17.11	-6.524	1.75	44	.726	7.34	.91	.00	.00
1 T	19.50	• 508	17.47	-6.179	1.90	81	.724	7.58	•91	•00	•00
2 T	19.30	.508	17.41	-6.533	1.76	58	.731	7.58	.91	.00	•00
31	19.40	• 507	17.39	-6.243	1.87	71	.723	7.52	•91	•00	•00
4 T	19.40	.507	17.42	-6.261	1.86	85	.728	7.58	1.04	.00	.00
5T	19.30	• 506	17.35	-6.373	1.81	63	.726	7.50	1.04	.00	.00
6T	19.40	• 505	17.30	-6.046	1.95	72	.715	7.41	1.17	•00	.00
AVERAGES	5: 706	15 B.	ASELINI	- W054 00	<u>, 000</u>						
	22.46	.549	20.60	-7.448	1.59	26	.755	9.85	4.99	.00	.00
STD	.27	.001	.32	. 321	.09	.18	.007	.19	.45	*	*
• • •	706	15 00	771000	1 (4.2E1)	2)			,			
	19.00	.505	16.97	-6.093	1.94	87	.720	7.30	. 87	.00	.00
STD	.32	.002	.35	.357	.18	.35	.009	.18	.15	*	*
PERCENT	OF BAS	SELIN	E								
	84.6	91.9	82.4	118.1	122	****	95.4	74.1	17.4	*****	*****
S T D X	2.5	• 5	3.0	8.5	19	457.5	2.1	3.4	4.9	****	*****

- and the second s

۰.

70721 W080PH001 (7E14) W054 00 000 *SOL2 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

1

Ł

•

÷

ţ

يىتى يە ر

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
lR*	22.50	• 553	20.18	-6.347	1.97	21	.715	9.41	.00	.00	.00
1 B	21.50	.54/	19.73	-7.456	1.58	29	•755	9.39	3.90	•00	.00
2 B	21.90	.549	19.82	-6.514	1.82	86	.743	9.44	3.90	.00	.00
3 B	21.40	• 546	19.30	-6.312	1.96	-1.11	.741	9.16	3.25	.00	.00
4 B	21.60	• 546	19.64	-6.823	1.77	64	•747	9.31	3.25	•00	.00
10	22.30	.550	20.37	-7.120	1.68	41	.750	9.73	4.55	•00	•00
2C	22.10	.549	20.13	-6.905	1.75	59	•748	9.60	4.94	.00	.00
3C	22.20	.550	20.18	-6.794	1.79	64	•746	9.64	5.85	.00	•00
4 C	22.30	.549	20.47	-7.540	1.56	11	.752	9.74	5.20	.00	•00
5C	22.10	• 546	20.03	-6.741	1.79	41	.737	9.40	5.46	.00	.00
6C	22.20	• 5 4 6	19.73	-5.860	2.17	69	•709	9.09	4.55	.00	.00
7C	22.10	.549	20.24	-7.245	1.64	52	•757	9.72	5.85	.00	.00
8C	22.00	.546	19.66	-5.939	2.13	-1.10	.726	9.22	4.55	.00	.00
9C	22.00	.545	19.87	-6.545	1.86	51	.732	9.29	5.20	.00	.00
15	21.70	.548	19.77	-6.961	1.73	53	•748	9.40	4.55	.00	.00
25	22.10	.550	20.38	-7.973	1.45	•11	.757	9.72	6.50	.00	•00
3S	22.00	.548	20.16	-7.347	1.61	35	•755	9.62	5.85	.00	•00
4S	22.00	.546	19.90	-6.570	1.86	63	•737	9.37	5.20	.00	.00
5 S	21.90	.547	20.05	-7.315	1.62	32	.753	9.53	5.85	.00	•00
1 T	21.70	.548	19.87	-7.440	1.58	04	.747	9.39	5.20	.00	.00
2 T	21.90	- 548	19.98	-7:101	1.68	32	.746	9.46	4.55	.00	•00
3T	21.90	.546	19.92	-6.892	1.74	44	•743	9.39	4.81	.00	•00
4 T	22.30	.546	29.04	-6.250	1.98	71	•728	9.37	4.55	.00	.00
5T	22.30	• 5 4 7	20.34	-7.162	1.66	10	.741	9.55	5.59	.00	.00
AVERAG	ES: 707	21 B	ASELINI	E W054 0	0 0 00						
	21.60	.547	19.62	-6.776	1.80	73	.746	9.33	3.58	.00	•00
STD	•1-	.001	•13	.432	.15	.30	.005	.11	• 3 3	*	*
	707	21 WC	90PH00	1 (7514)							
	22.06	• 5 4 8	20.06	-ú.932	1.75	44	•743	9.49	5.20	.00	•00
STD	.18	.002	• 2 3	.522	.18	• 2 7	.012	•18	• 5 8	*	*
PERCEN	T OF JA	SELIN	E								
	102.1	100.1	102.2	97.7	97	139.8	99.3	101.7	145.5	*****	**> **
STDŽ	1.7	• 5	2.2	14.7	19	78.3	2.3	3.1	30.9	****	****

, s . .

ş

.

.

4

.

	-										
ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	• 5 5 7	20.26	-6.511	1.91	18	.721	9.55	.00	.00	.00
1 B	21.40	.557	19.42	-7.077	1.72	• 30	•724	9.13	7.80	.00	.00
2 B	22.10	.568	20.62	-9.078	1.28	.34	•774	10.27	9.10	.00	.00
3B	21.50	.560	19.80	-7.945	1.49	.29	•750	9.55	7,80	.00	.00
4 B	21.30	.559	19.57	-7.810	1.52	• 32	.745	9.38	6.76	.00	.00
10	21.20	.541	17.89	-4.407	3.31	-2.34	.660	8.01	1.95	.00	•00
2C	21.10	.540	17.52	-4.140	3.66	-2.70	•644	7.75	1,56	.00	.00
3C	20.90	.294	15.99	-3.727	2.39	•04	.529	3.44	1.69	.00	.00
4C	21.40	.466	17.08	-4.656	2.61	2.62	• 5 3 6	5.65	1.04	.00	.00
5C	21.30	•372	16.88	-4.159	2.50	•66	.551	4.62	.65	.00	.00
6CNS	20.60	.371	16.30	-4.353	2.32	1.46	• 5 3 9	4.35	1.30	.00	.00
7CNS	21.00	.369	16.41	-4.087	2.56	•93	• 5 3 5	4.38	1.30	.00	.00
8CNS	20.80	•357	16.28	-4.140	2.42	1.04	• 5 3 5	4.20	.91	.00	.00
9CNS	20.80	• 360	16.17	-4.089	2.50	1.11	• 5 2 8	4.18	.91	.00	.00
10CNS	21.30	.414	17.01	-4.298	2.63	•98	• 5 5 5	5.17	1.56	.00	.00
15	21.00	.513	17.04	-4.225	3.36	22	• 5 8 7	6.69	1.56	.00	.00
25	21.50	• 4 4 7	16.61	-4.309	2.83	2.68	- 508	5.16	1.82	.00	.00
3S	21.10	•498	16.79	-4.100	3.43	•28	• 5 6 2	6.25	•65	.00	.00
4S	21.30	•436	16.61	-4.274	2.80	2.06	• 5 2 2	5.12	1.17	.00	.00
5S	21.10	.519	16.98	-3.891	3.91	-1.92	• 598	6.92	•78	.00	•00
1 T	21.90	.335	17.35	-3.798	2.61	88	• 576	4.47	1.95	.00	.00
2T	21.30	• 345	16.56	-3.958	2.52	• 5 4	• 536	4.16	1.82	.00	•00
3T	21.20	.411	16.85	-4.401	2.52	1.61	• 5 4 2	4.99	2.34	.00	.00
4T	21.40	• 365	16.64	-4.107	2.50	1.21	• 5 2 7	4.35	1.30	.00	•00
AVERAGE	s: 707	25 B.	ASELIN	E W060 0	0 0 0 0						
	21.58	.561	19.85	-7.978	1.50	.31	•748	9.58	7.87	.00	•00
STD	.31	•004	•46	.716	.16	• 0 2	.018	.42	.83	*	*
	707	25 WO	81N-NI	001 (6.9)	E15)						
	21.17	•419	16.79	-4,164	2.81	• 4 8	• 5 5 6	5.26	1.38	.00	•00
STD	.29	•074	.47	•219	• 46	1.49	.040	1.26	•47	*	*
PERCENT	OF BA	SELIN	E								
	98.1	74.5	84.6	147.8	187	153.8	74.3	54.8	17.6	*****	****
STD 🕱	2.8	13.8	4.4	7.7	53	512.3	7.2	16.1	8.5	****	*****

70725 W081N-NI001 (6.9E15) W060 00 000 *SOL2 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

...

ť

ţ

*

.

:

,

`. ...

and a second and a second a se

ĩ

70726 W082N-V001 (4E14) W060 00 000 *SOL2 1 /7 /80 AM1: P0=91.60MW/CM² NO AR COATING

•:

ч. У.

*****.

ς.

تحو

۲

÷ :

٠*.* -

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	рсръ
1R*	22.50	.553	20.21	-6.394	1.95	24	.718	9.45	.00	.00	.00
1B.*	21.60	.551	19.30	-5.984	2.13	98	.723	9.10	6.50	.00	.00
2 B	21.40	.555	19.69	-7.782	1.52	•07	.753	9.45	6.50	.00	.00
3HFB	21.90	.562	20.24	-7.992	1.48	10	.766	9.97	9.10	.00	.00
4HFB	21.40	.552	19.61	-7.453	1.59	15	•751	9.38	6.54	.00	.00
1 CN S	17.70	.511	15.39	-6.333	1.87	33	.712	6.62	1.69	.00	.00
3CNS	17. J	.514	16.08	-6.346	1.87	80	•727	7.07	• 91	.00	.00
4 CN S	17.00	.512	15.99	-6.962	1.64	40	.739	7.04	- 91	.00	.00
5CNS	17.70	.512	15.95	-6.542	1.79	61	.729	6.99	1.56	.00	.00
6CNS	17.60	.510	15.72	-6.246	1.90	39	.711	6.75	1.56	.00	.00
70	17.50	.512	15.69	-6.281	1.89	86	•725	ó.87	• 91	.00	.00
8C	17.50	.510	15.44	-5.662	2.18	-1.21	.705	6.65	1.04	.00	.00
90	17.70	.510	15.88	-6.262	1.89	94	.727	·.94	1.30	•00	.00
100	17.90	.512	16.0	-6.398	1.84	83	.730	.07	1.30	.00	.00
15	17.60	.513	15.79	-6.478	1.81	19	.715	.33	1.30	.00	.00
25	17.30	.513	15.61	-6.723	1.73	20	.724	6.80	1.04	.00	.00
3S	17.70	.514	15.97	-6.656	1.75	35	.726	6.99	1.04	.00	.00
45	17.60	.513	15.88	-6.678	1.74	28	.725	6 +2	1.69	.00	.00
1 T	17.20	.503	14.83	-5.023	2.58	-1.66	.677	6.19	.78	.00	.00
2T	17.10	.508	14.86	-5.246	2.44	-1.37	.683	6.28	1.30	.00	.00
3T	17.10	.504	14.85	-5.341	2.36	81	~675	6.15	.78	.00	•00
4T	17.40	.509	15.51	-6.15!	1.94	49	.709	6.64	1.82	.00	.00
5T•*	17.30	.508	12.93	-3.692	4.38	• 5	.506	4.70	1.56	.00	•00
6T	17.50	.495	14.60	-4.444	3.08	-1.78	•636	5.82	.78	.00	•00
AVERAGE	s: 707	26 B.	ASELIN	E W060 0(000						
	21.57	.556	19.85	-7.743	1.53	08	.756	9.60	7.38	.00	•00
STD	• 2 4	.004	.28	22	.05	.11	.007	.26	1.22	*	*
	7073	26 WO8	32N-V0	01 (4E14))						
	17.51	.510	15.56	-6.098	2.02	75	.710	6.70	1.21	.00	.00
STD	•24	.005	.46	.658	.36	.47	.025	.35	.34	*	*
PERCENT	OF BAS	SELINE	2								
	81.2	91.6	78.4	121.2	132	****	93.8	69.8	16.3	****	* * * * *
STD %	2.0	1.5	3.5	11.0	28	*****	4.3	5.7	8.0	****	****

.

- -

· · · · ·

70829 W083NFE001 (1E15) W060 00 000 <70412> *SOL2 1 /7 /80 AM1: P0=91.60MW/CM^? NO AR COATING

2

-un k.

*

, se

-

1-

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	O C D	PCDa	PCDb
1 C B	22.70	.567	21.12	-8.705	1.34	.22	.770	10.48	9.10	.00	•00
2 C B	22.50	.561	20.99	-8.550	1.36	.17	•769	10.30	9.10	.00	.00
3CB	22.90	.568	21.41	-9.248	1.25	.30	.779	10.71	3.25	.00	.00
4CB	22.90	.565	21.18	-8.093	1.46	03	.765	10.47	9.10	•00	.00
5CB	22.80	.568	21.05	-,.944	1.51	07	.762	i0.44	9.10	.00	.00
10	19.50	• 535	16.97	-5.098	2.64	-1.88	.694	7.66	1.30	.00	.00
2 C	20.00	•539	17.53	-5.400	2.43	-1.20	.696	7.93	2.21	.00	.00
3C	19.10	.534	16.74	-5.394	2.43	-1.40	.698	7.53	1.69	.00	.00
4C•*	18.50	.526	15.50	-4.151	3.63	-4.33	.671	6.91	1.56	.00	.00
5C	20.30	.543	18.39	-6.654	1.83	70	.740	8.62	2.34	.00	.00
6 C	19.40	.534	17.23	-5.890	2.14	83	.710	7.77	1.82	.00	.00
7C	19.30	• 5 2 9	16.99	-5.726	2.20	42	.690	7.45	1.69	.00	.00
8C	20.90	• 542	17.88	-4.644	3.05	-2.27	•677	8.11	2.34	.00	•00
9 C	20.50	•545	18.70	-7.220	1.65	11	•742	8.76	3.51	•00	.00
10C	18.80	• 530	16.26	-4.833	2.85	-2.86	•699	7.36	1.04	•00	.00
110	21.00	- 544	19.00	-6.915	1.73	•23	•721	8.71	4.55	.00	•00
120	21.30	• 545	18.59	-5-368	2.46	69	.682	8.37	3.77	.00	.00
15	21.40	• 5 5 0	19.50	-7.204	1.66	•09	.735	9.15	5.85	.00	.00
2 S	21.50	• 5 4 8	19.54	-7.037	1.70	•03	•732	9.12	4.55	.00	•00
5S•*	21.50	• 547	17.29	-3.448	5.11	-6.24	•644	8.01	4.55	.00	.00
1T	17.70	• 514	15.43	-5.542	2.27	25	.673	6.48	1.69	.00	•00
2 T	18.30	.521	16.18	-5.824	2.13	61	.698	7.04	•91	.00	.00
3T	18.00	• 5 2 1	16.07	-6.217	1.95	37	•709	7.03	1.95	•00	•00
4 T	18.40	•52 5	16.31	-5.888	2.11	73	.705	7.20	1.04	.00	•00
5T	18.00	• 5 2 3	15.94	-5.911	2.10	56	.701	6.98	1.69	•00	•00
AVERAGES	s: 708	С, В.	ASELIN	E WOAD 00	000	<704	i 2>				
	22.78	• 566	21.15	->)8	1.38	•12	.769	10.3	7.93	.00	.00
STD	•12	.003	•15	. 64	•09	•14	.006	.13	2.34	*	*
	708	29 WO	83N FEO	01 (1Fl5))						
	19.63	.535	17.40	-5.932	2.18	81	•706	7.85	2.44	•00	•00
STD	1.24	.010	1.26	•772	.39	. 91	.020	• 7 7	1.37	*	*
PERCENT	OF BA	SELIN	E								
	86.2	94.5	82.3	130.3	158	* * * * *	91.8	74.9	30.8	****	*****
STD %	5.9	2.3	6.5	13.4	41	****	3.3	8.4	31.5	****	****

.

. .

ʻ.

: • •

. . .

•

:

;

1 · · · ·

71104 W084N/AL001 (51)6) W078 00 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

ŧ

1

an and country

ID	ISC	VOC	IP	LOC(10)	N	R	FF	Eff	OCD	PCDa	рсиъ
1R*	22.50	.558	20.09	-6.064	2.11	55	•714	9.49	.00	.00	.00
1B*	22.30	.555	19.70	-5.485	2.42	-1.41	.713	9.33	3.90	.00	.00
2B.*	22.50	.551	20.01	-5.753	2.24	-1.14	.719	9.43	3.64	.00	.00
3 B	22.70	.553	20.47	-5.369	1.95	80	.736	9.77	3.90	.00	.00
4B*	22.20	.546	19.39	-5.126	2.63	-1.73	.701	8.99	2.99	.00	.00
5B.*	22.90	.551	20.19	-5.472	2.40	-1.16	.706	9.42	3.90	.00	.00
10	19.50	.520	16.68	-4.955	2.68	81	.656	7.04	.65	.00	.00
20	20.10	.527	17.70	-5.618	2.25	77	.696	7.80	.91	.00	.00
30	15.80	.525	17.47	-5.674	2.21	82	.700	7.69	.78	.00	.00
4C	20.20	.526	17.26	-4.987	2.67	44	.649	7.30	.78	.00	.00
5C	20.00	.526	17.54	-5.449	2.34	- 01	.694	7.72	.78	.00	.00
6C	20.10	.523	17.37	-5.022	2.63	-1.41	•679	7.55	.65	•00	.00
7C	20.20	.525	17.50	-5.226	2.48	68	.671	7.53	.78	.00	.00
8C	19.90	.524	17.11	-4.926	2.71	-1.37	.671	7.40	.78	.00	.00
90	19.70	.526	17.37	-5.863	2.11	03	.686	7.52	.78	.00	.00
100	20.00	.525	17.37	-5.187	2.51	-1.14	.682	7.57	.78	.00	.00
11C	19.70	.525	17.30	-5.565	2.27	76	.692	7.57	•65	.00	.00
1 2 C	19.60	.521	16.94	-5.048	2.61	-1.37	.678	7.33	.65	.00	.00
1 3C	19.60	.520	16.94	-5.061	2.59	-1.26	.676	7.29	.65	.00	.00
15	20.80	.528	17.97	-5.120	2.57	82	.6/0	7.79	.78	.00	.00
25	19.80	.523	17.28	-5.381	2.38	78	.685	7.48	.78	.00	.00
35	20.00	.524	17.44	-5.534	2.28	04	.670	7.43	.91	.00	.00
45	20.30	.525	17.59	-5.240	2.47	61	.671	7.56	.91	.00	.00
55	19.90	.526	17.30	-5.306	2.44	71	.677	7.49	.78	.00	.00
11	19.50	.523	16.66	-4.821	2.81	-1.40	.663	7.15	.78	.00	.00
2 T	20.00	.529	17.55	-5.499	2.33	90	.693	7.76	.91	.00	•00
3T	19.30	.524	17.05	-5.789	2.15	59	.698	7.47	.91	.00	.00
4 T	19.60	.525	17.21	-5.534	2.29	85	.693	7.54	.91	.00	.00
5 T	19.70	.527	17.46	-5.889	2.10	56	.703	7.71	1.04	.00	.00
6T	20.00	• 5 2 5	17.44	-5.239	2.48	-1.30	•690	7.66	•91	.00	•00
AVERAGES	S: 711	04 в/	ASELIN	E W078 0(000						
	22.70	.553	20.47	-6.369	1.95	80	.136	3.77	3,90	- 0.0	.00
STD	.00	.000	.00	.000	.00	.00	.000	.00	.00	*	*
	711	04 W08	B4N/AL	001 (5E1e	5)						
	19.89	.525	17.31	-5.331	2.43	85	.681	7.51	. 80	.00	.00
STD	.31	.002	.30	.304	.20	.38	.014	.19	.10	*	*
PERCENT	OF BA	SELINI	E			•		/			
-	87.6	94.9	84.6	116.3	124	93.2	92.5	76.9	20.6	****	****
STD %	1.4	. 1	1.4	4.8	10	47.4	1.9	2.0	2.7	****	*****

, **,** ,

1

80524 W085N/ZR001 (7E11) RSPEAT W079 00 000 *SOL9 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

4

ŧ

7 .1

.

. محک

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
a = 1									• •		
2R#	21.90	• 2 2 9	19.67	-6.001	2.14	-1.55	•/42	9.56	.00	•00	•00
1 B	21.20	• 5 4 6	19.27	-7.121	1.67	.15	•730	8.94	5.20	•00	•00
2B*	21.40	.540	19.28	-6.534	1.85	22	•722	8.83	4.55	•00	.00
3 B	21.70	• 546	19.69	-6.936	1.73	03	.730	9.15	5.85	.00	.00
4 B	21.70	.550	19.75	-6.975	1.73	38	.743	9.38	4.29	.00	.00
5B*	21.40	.525	17.98	-4.455	3.15	-1.56	•645	7.66	1.36	.00	.00
10	21.90	.553	18.32	-4.508	3.24	85	.629	8.06	7.15	•00	.00
2 C	21.40	•547	19.73	-7.995	1.44	.18	.755	9.34	5.20	.00	.00
3C	21.50	.548	19.85	-7.986	1.45	01	.761	9.48	5.20	•00	.00
15	21.20	.547	19.54	-7.876	1.47	.00	•757	9.29	5.85	.00	.00
2 S	21.70	.553	19.96	-7.671	1.54	14	.757	9.60	8.18	.00	.00
2 T	21.00	.546	19.02	-6.703	1.81	48	.736	8.93	5.20	.00	•00
3T	21.60	• 5 5 3	19.99	-3.239	1.41	•10	•764	9.64	5.20	.00	•00
AVERAGES	s: 805	24 ви	ASELINI	E W079 0	0 0 0						
	21.53	.547	19.57	-7.010	1.71	08	.735	9.16	5.11	.00	.00
STD	.24	.002	.21	.080	.03	. 2 2	.006	.18	.64	*	*
010	805	24 WO	85N/ZR	001 (7E1	1) RE	PEAT					
	21.47	.550	19.49	-7.283	1.77	17	.737	9.19	6.00	.00	.00
STD	• 28	.003	.57	1.222	.62	• 34	.045	.51	1.11	*	*
PERCENT	OF BAS	SELINI	E								
	99.7	100.4	99.6	96.1	103	-5.3	100.3	100.4	117.3	*****	*****
STD %	2.4	• 9	4.0	18.8	38	****	7.0	7.7	39.1	****	****

. ..

. . .

- • •

'n,

-

.

a la las la turne metanen set fa stata a un

· .

70926 W086C001 POLY (4E17) W078 00 000 *SOL6 1 /8 /80 AM1: PO=91.60MW/CM^2 NO AR COATING

ť.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.556	20.23	-6.452	1.93	15	.718	9.49	.00	.00	.00
1 B	21.50	.553	19.82	-7.732	1.52	37	.766	9.63	3.51	.00	.00
2 B	21.70	.555	20.08	-8.062	1.45	25	•771	9.82	4.94	.00	.00
3 B	21.50	.553	19.73	-7.399	1.61	48	.760	9.55	4.94	.00	•00
4 B	21.40	.552	19.61	-7.295	1.64	56	.759	9.48	4.16	.00	.00
5 B	21.60	.552	19.94	-7.824	1.50	37	.768	9.69	4.94	.00	.00
1C	21.50	.549	19.16	-5.768	2.24	-1.44	.727	9.07	3.64	.00	•00
2 C	21.50	• 5 5 1	19.78	-7.527	1.57	54	.766	9.59	4.55	.00	•00
3C	21.60	.551	19.53	-6.714	1.82	87	.750	9.44	3.90	.00	•00
4C	21.30	.553	19.44	-7.061	1.71	53	•750	9.35	4.29	.00	.00
5C	21.60	.552	19.18	-5.569	2.36	-1.79	.727	9.17	3.64	.00	.00
6C	21.00	.546	18.12	-4.690	3.03	-2.93	.700	8.48	2.60	.00	•00
7 C	21.40	.549	18.97	-5.544	2.37	-1.74	•724	8.99	3.14	.00	•00
8C	21.50	.550	19.24	-5.865	2.19	-1.63	.737	9.22	3.90	.00	•00
9C	21.80	.551	19.70	-6.413	1.94	-1.03	•744	9.45	3.64	.00	•00
10C	21.70	.551	19.59	-6.328	1.97	-1.13	.743	9.40	3.90	.00	.00
110	21.60	.549	19.08	-5.468	2.41	-1.61	.716	8.98	3.25	•00	.00
1 S	21.50	.547	18.76	-4.998	2.74	-2.38	.709	8.82	2.99	.00	.00
2 S	21.50	.551	19.44	-6.415	1.94	-1.13	•746	9.35	4.29	.00	.00
35	21.40	.543	18.76	-5.242	2.54	-1.74	.706	8.68	2.60	.00	•00
4S	21.30	.549	19.43	-6.922	75	88	•757	9.36	3.64	.00	•00
5S	21.60	• 5 5 0	19.77	-7.214	1.66	54	•756	9.50	4.16	.00	•00
1 T	21.50	.544	د5،18	-4.805	2.90	-2.12	•688	8.51	2.34	.00	•00
2 T	21.50	.550	19.19	-5.813	2.22	-1.47	•730	9.13	3.64	•00	.00
3T	21.80	.548	19.24	-5.418	2.44	-1.65	.715	9.04	3.12	•00	.00
4 T	21.50	• 5 4 8	19.54	-6.748	1.80	79	•748	9.32	3.38	.00	.00
5T	21.90	• 5 4 8	19.71	-6.138	2 04	-1.35	•743	9.42	3.38	•00	•00
6T	21.90	• 5 4 8	19.65	-6.002	2.11	-1.40	•738	9.37	3.90	.00	•00
AVERAGI	ES: 709	26 B	ASELIN	E W078 0	0 000						
	21.54	.553	19.84	-7.662	1.54	40	.765	9.63	4.50	.00	.00
STD	.10	.001	.16	.281	•07	.11	.005	.11	• 5 8	*	*
	709	26 WO	860001	POLY (4)	E17)						
	21.54	.549	19.27	-6.030	2.17	-1.39	•733	9.16	3.54	.00	.00
STD	• 2 0	.002	• 4 2	.773	.39	.60	.020	• 1	• 5 7	*	*
PERCENT	COF BA	SELIN	Е								
	100.0	99.3	97.1	121.3	141	****	95.8	95.1	78.7	*****	* **
STDZ	1.4	.6	2.9	13.3	33	277.7	3.2	4.4	24.4	*****	* * * *

4

-.

ĩD	ISC	voc	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
1R*	22.50	.557	20.17	-6.303	2.00	27	.716	9.48	.00	.00	.00
18	22.50	.553	20.21	-6.094	2.08	-1.16	.736	9.68	4.29	.00	.00
2 B	22.80	.556	20.83	-7.135	1.69	41	.751	10.06	4.55	.00	.00
3B.*	22.40	.549	20.05	-5.972	2.12	-1.14	.730	9.49	3.90	.00	.00
4B.*	22.50	.550	19.90	-5.475	2,40	-1.57	.718	9.40	3.90	.00	.00
5 B	22.50	.550	20.20	-6.214	2.01	70	.726	9.50	4.55	.00	.00
10	22.70	.549	20.34	-6.301	1.97	22	.714	9.41	4.55	.00	.00
2 C	22.00	.555	20.82	-7.878	1.49	.12	.754	10.00	5.59	.00	.00
3C	22.30	.552	20.08	-6.354	1.96	66	.730	9.51	4.16	.00	.00
4 C	22.40	• 5 5 6	20.08	-6.107	2.08	87	.726	9.57	4.42	.00	.00
5 C	22.50	.552	19.93	-5.609	2.33	23	.715	9.38	3.90	.00	.00
6C	22.40	.553	20.17	-6.338	1.97	72	.732	9.58	4.29	.00	.00
7C	22.30	.551	20.08	-6.260	2.00	93	.735	9.55	3.90	.00	.00
8C	23.10	• 5 5 5	21.04	-7.003	1.73	27	•742	10.06	5.20	.00	.00
9C	220	.556	20.87	-7.561	1.57	27	.759	10.13	4.55	.00	.00
10C	22.50	.551	20.04	-5.814	2.21	-1.07	.720	9.44	3.90	.00	.00
15	22.60	• > 58	20.50	-6.664	1.86	71	•744	9.92	4.94	.00	.00
2 S	22.60	.555	20.55	-6.828	1.79	58	•746	9.89	4.55	.00	.00
3S	22.60	.553	20.11	-3.729	2.26	-1.27	.722	9.55	4.55	.00	.00
4 S	22.60	• 5 5 2	20.30	-6.115	2.06	-1.10	.735	9.70	4.42	.00	.00
5 S	22.60	.551	20.30	-6.137	2.05	-1.00	.733	9.65	4.81	.00	.00
1 T	22.70	• 5 5 0	19.93	-5.323	2.50	-1.35	•703	9.28	4.42	.00	.00
2 T	22.60	• 5 5 3	20.40	-6.493	1.91	53	.732	9.67	3.51	.00	•00
3T	22.60	• 5 5 1	20.01	-5.583	2.34	-1.28	.715	9.42	3.77	.00	.00
4 T	22.60	• 5 5 0	19.98	-5.565	2.34	-1.16	.710	9.34	3.77	.00	.00
5T	22.80	• 5 5 2	20.66	-6.676	1.83	47	•737	9.81	4.55	•00	.00
AVERAGE	ES: 709	30 B.	ASELINE	E W078 00	000						
	22.60	• 5 5 3	20.41	-6.481	i.93	75	دد7.	9.75	4.46	.00	.00
STD	.14	.002	• 30	•465	•17	•31	.010	.23	.12	*	*
	709:	30 WO8	87CA001	L (UNKNOW	NN) BI	CRYS1	TAL				
	22.59	.553	20.31	-ó.317	2.01	78	.730	9.64	4.5	.00	.00
STD	.17	.002	• 3 2	•645	•2ó	•41	•014	• 2 4	.50	*	*
PERCENT	OF BAS	SELINI	E								
	100.0	100.0	99.5	102.5	104	96.7	99.0	98.9	98.3	****	****
STD %	1.4	• 9	3.1	17.7	24	117.7	3.3	5.0	14.2	* * * * *	****

70930 W087CA001 (UNKNOWN) BI CRYSTAL WC78 OC 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM^? NO AR COATING

. 1

۴

5

183

.

- - ----

-

70919 W*088CR001 LOW RESISTIVITY (5E14) 0.5 OHMCM W058 00 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.558	20.18	-c.311	2.00	27	.716	9.51	.00	•00	.00
1F.*	20.10	.561	16.98	-4.784	3.04	44	•635	7.57	.65	•00	•00
2 B	20.90	.595	18.98	-6.821	1.93	61	.743	9.77	1.56	•00	.00
3B.*	20.90	.576	17.59	-4.563	3.34	-1.27	•641	8.15	• 91	.00	.00
4 B	20.50	.595	18.99	-8.208	1.52	19	•771	9.95	1.69	.00	.00
5 B	21.00	.596	19.40	-7.903	1.60	36	•769	10.17	1.56	00	•00
20	21.50	,585	18.38	-4.641	3.29	-2.27	.675	8.98	1.04	.00	•00
3C	20.60	.552	17.55	-5.254	2.58	1.07	.625	7.51	•65	.00	•00
4C	20.60	.594	18.61	-6.460	2.08	-1.00	.740	9.57	1.56	.00	.00
5 C	21.50	.596	19.51	·6.701	1.98	77	•744	10.08	1.69	.00	•00
6 C	21.40	.599	19.69	-7.568	1.70	55	.766	10.38	1.95	.00	.00
70	20.0	.587	17.92	-4.759	3.19	-2.57	.689	8.89	1.04	.00	.00
80	20.50	.594	18.72	-7.080	1.84	74	.755	9.72	1.55	.00	.00
90	20.80	.431	15.33	-3.659	3.63	1.31	.487	4.62	.52	.00	.00
15	21.30	.592	19.21	- 6.379	2.10	92	.736	9.81	1.56	.00	•00
25	21.50	.574	18.07	-4.388	3.52	-2.11	.650	8.48	.65	.00	.0(
35	21.50	.574	18.12	-4.573	3.30	-1.24	.643	8.39	•65	.00	•00
45	21.10	.586	19.00	-6.371	2.08	74	.730	9.54	1.17	.00	•00
55	21.50	.597	20.02	-8.615	1.44	17	.781	10.60	1.95	.00	.00
1 T	21.20	.569	17.69	-4.337	3.57	-1.85	.638	8.14	.91	.00	•00
27	20.60	.587	18.23	-5:559	2.53	-1.69	.717	9.17	1.30	.00	.00
5 9	20.80	.565	17.63	-4.788	3.04	65	.642	7.98	•65	.00	.00
.1	20.50	.580	17.74	-4.953	2.97	-1.99	•687	8.64	.91	.00	•00
AVERAG	ES: 709	19 B	ASELIN	E W058 0	0 000						
	20.80	.595	19.12	-7.544	1.69	38	.761	9.96	1.60	.00	•00
STD	.22	.000	.19	.595	.18	.17	.013	.17	• 96	*	*
	709	19 W*	088CR0	01 LOW R	ESIST	IVITY	(5E14) 0.5 0	HMCM		
	21.04	.574	18.32	-5.652	2.64	99	•688	8.85	1.16	.00	.00
STD	.39	.038	1.05	1.306	.70	1.04	.070	1.35	.46	*	*
PERCEN	T OF BA	SELIN	Е								
	101.2	96.5	95.8	126.1	156	-58.3	90.5	88.9	72.5	****	*****
ና ፐቦ ኛ	3.0	6.5	6.5	24.2	ú 3	504.0	10.8	15.3	32.7	*****	****

. . .

:

÷

ç

i

۲,

and the second second

: ; ; ;

ί.

,

5 : .

70922 W*089CUJ01 LOW RESISTIVITY (2E15) W058 00 000 *SOL6 1 /8 /80 AM1: P0=91.66MW/CM² NO AR COATING

ę .

.۳

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСЛР
1R*	22.50	.559	20.18	-6.289	2.01	36	.718	9.55	.	. 00	. 00
1B.*	20.30	.586	ì7.97	-5.585	2.51	-1.67	.717	9.02	2.34	.00	.00
2B.+	20.20	.582	17.41	-4.806	3.12	-2.49	•688	8.55	2.34	.60	.00
3 B	20.90	.594	18.90	-6.710	1.97	31	.730	9.59	1.32	.00	.00
4 B	20.30	.590	18.80	-8.131	1.53	34	•773	9.79	1.56	.00	.00
10	21.30	.589	18.57	-5.036	2.92	-2.28	.703	9.33	` ۱	.00	.00
20.*	21.20	.585	17.69	-4.067	4.08	-3.98	.663	8.69	1.4	.00	.00
3C	21.40	.599	19.86	-8.319	1.50	18	•774	10.5)	2.60	.00	.00
4C	21.30	.597	19.54	-7.368	1.75	56	.760	10.22	1.95	.00	.00
5C	21.20	.598	19.59	-7.949	1.59	34	.770	10.32	2.60	.00	.00
60	21.20	.597	19.57	-7.825	1.62	40	∠ 68	10.28	2.60	•00	.00
7 C	21.40	.501	18.45	-4.917	2.99	-1.59	.677	8.91	1.04	.00	.00
8C	21.13	.586	18.61	-5.461	2.59	-1.63	.71	9.30	1.30	.00	.00
9 C	21.30	.574	17.93	-4.518	3.37	-1.49	•64+	8.33	•78	.00	.00
й с	21.40	.596	19.36	-6.491	2.06	-1.02	•743	10.02	1.95	.00	.00
2 S	21.10	.595	19.45	-7.734	1.64	40	.765	10 16	1.56	•00	.00
35	21.40	.596	. 3.10	-5.740	2.45	-1.92	.735	9.91	2.21	• 10	• Ù Ŭ
4 S	21.40	.589	18.93	-5.552	2.53	-1.53	.715	9.52	1.56	.00	•00
5 S	21.30	.590	18.68	-5.205	2.79	-2.09	.709	9.42	1.56	•00	.00
1 T	21.30	.595	19.34	-6.745	1.96	77	•745	9.99	⊾ 82	.00	.00
2Г	21.50	.595	19.32	-6, tú2	2.2:	-1-20	•735	9.94	1.26	.00	•00
3т	21.40	•604	19.85	-8.213	1.54		.777	10.62	2.60	.00	.00
4 T	20.70	.597	19.05	-7.510	1.71	··· ? ·	•770	10.06	2.3 <	.00	•00
5T	21.30	.601	19.90	-9.001	1.37	– • 0 A	•786	10.64	2.60	•00	.00
6T	21.50	.599	20.03	-8./24	1.42	04	•780	10.62	2.60	.00	.00
AVERAG	ES: 707	22 E.	ASELIN	E W058 0	000						
	20.60	.592	18.85	-7.421	1.75	32	•752	9.69	1.69	.00	.00
STD	.30	.002	.05	•711	• 2 2	.01	-022	.10	•13	*	*
	709	22 W*	089CU0	01 LOW RI	ESIST	IVITY	(2E15))			
	21.29	. 594	19.22	-6.762	2.11	99	.740	9.90	:.92	.00	.00
STD	.18	•^ U7	.56	1.382	.60	. 23	•038	•61	• 5 8	*	*
PERCENT	T OF BA	SELIN	E								
	103.3	100.3	101.9	108.9	120 1	* * * * *	98.5	102.2	113.8	*****	****
STU X	2.4	1.5	3.2	29.1	54	230.7	8.0	7.4	45.8	****	****

·.....

710.5 W*0901 01 LOW RESISTIVITY (7E14) W058 00 000 *SOL5 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

the grant of the second s

4

7

÷

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.551	20.1.	-6.149	2.04	43	.714	9.37	.00	.00	.00
1B*	20.80	.518	16.50	-4.075	3.61	•27	.560	6.38	• 39	.00	.00
2B.*	20.90	.586	18.39	-5.402	2.63	-1.63	.707	9.16	1.04	.00	.00
3B*	21.00	.544	16.99	-4.169	3.65	41	• 586	7.08	• 5 2	.00	.00
4B.*	20.70	.578	17.74	-4.749	3.15	-2.03	.674	8.53	1.04	•00	.00
5 B	20.40	.587	18.55	-6.955	1.86	41	.741	9.38	1.30	.00	.00
10.*	19.60	.582	16.78	-4.563	3.40	-3.51	.690	8.33	1.04	.00	.00
2 C	17.90	.580	16.18	-6.678	1.96	68	•735	8.06	1.04	.00	.00
3C	20.50	.547	16.58	-4.143	3.72	67	• 589	6.98	• 5 2	.00	.00
4C	19.00	.532	15.54	-4.361	3.37	33	• 5 9 7	6.38	• 6 5	.00	.00
5C*	19.10	.477	14.96	-4.038	3.43	.61	.544	5.24	• 5 2	.00	.00
6C*	19.80	.487	15.69	-4.065	3.44	.16	.559	5.70	•52	.00	.00
7C	19.10	.567	16.23	-4.707	3.17	-1.72	•657	7.53	•91	.00	.00
8C*	19.80	.502	15.38	-3.902	3.81	• 2 7	.540	5.68	• 39	.00	.00
9C	20.10	.564	16.72	-4.296	3.62	-2.06	.635	7.61	•65	.00	•00
10C	20.10	.549	16.12	-4.039	3.91	84	• 581	6.78	.65	.00	•00
11C	18.00	.582	16.69	-8.489	1.44	.17	•766	8.49	1.17	.00	.00
1S*	17.90	.486	14.07	-4.174	3.34	1.19	.542	4.99	•65	.00	.00
2 S	18.90	.583	16.54	-5.302	2.72	-1.82	•699	8.15	•78	•00	.00
35	20.30	.593	18.56	-7.193	1.80	57	•753	9.59	1.30	.00	.00
4 S	20.00	.593	18.67	-8.939	1.37	06	•783	9.83	1.69	•06	.00
5S*	20.00	.504	15.92	-4.136	3.45	• 34	.562	5.99	• 5 2	.00	•00
1T•*	17.50	.570	14.67	-4.315	3.72	-3.68	.659	6.95	•91	.00	.00
2T *	19.80	.525	16.06	-4.364	3.30	.45	.579	6.37	• 5 2	.00	.00
3T *	17.70	• 527	14.14	-3.979	3.95	-1.59	.583	5.76	• 5 2	.00	.00
4T•*	19.70	.476	13.63	-3.238	5.15	.66	•450	4.46	• 39	.00	.00
5 T	19.00	.556	15.59	-4.296	3.61	-1.10	.608	6.79	• 39	•00	.00
AVERAGES	5: 7102	28 BA	ASELIN	E W058 00	000						
	20.40	• 587	18.55	-6.955	1.86	41	•741	9.38	1.30	•00	.00
STD	• 00	.000	.00	•000	.00	.00	.000	.00	•00	*	*
	7102	28 W*(090MN0	01 LOW RE	ESIST	LVITY ((7E14)				
	19.35	• 568	16.67	-5.677	2.79	88	•673	7.84	• 8 9	•00	.00
STD	•86	.019	•99	1.746	.93	•69	•073	1.08	•37	*	*
PERCENT	OF BAS	SELINE	2								
	94.9	96.7	89.9	118.4	150 -	-16.2	90.8	83.5	68.2	*****	****
STD Z	4.2	3.3	5.3	25.1	50	170.5	9.9	11.5	28.2	****	****

186

C - 3

ì

71031 W091CR-MN002 (5E14-3E14) W078 00 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

F

•

í

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
18*	22.50	. 551	20.01	-5-905	2.16	63	- 710	9.31	.00	.00	.00
18.*	22.40	.547	20.01	-5.944	2.13	-1.02	.724	9.39	4.16	.00	.00
2B.*	22.40	.548	20.04	-5.965	2.12	-1.14	.729	9.47	3.51	.00	.00
3B	22.23	.548	20.08	-6.595	1.85	55	.736	9.47	4.29	.00	.00
4B.*	22.10	.544	19.23	-5.029	2.69	-1.77	.696	8.85	2.60	.00	.00
10	15.60	.474	13.48	-5.253	2.30	93	.669	5.24	.65	.00	.00
20	17.50	.500	15.63	-6.352	1.82	02	.705	6.52	.91	.00	.00
30	16.70	.489	14.74	-5.792	2.03	79	.699	6.04	.91	.00	.00
4C	17.10	.495	15.15	-5.940	1.98	54	.700	6.27	.65	.00	.00
5C	16.80	.492	14.38	-4.881	2.65	-1.74	.658	5.84	•65	•00	.00
6C	15.70	.476	13.39	-4.920	2.55	-1.35	.657	5.20	.65	•00	.00
7C	17.50	.501	15.72	-6.543	1.75	17	.717	6.65	•78	.00	.00
80	17.80	.500	15.56	-5.420	2.28	-1.10	.690	6.49	•65	.00	.00
90	16.70	• 483	14.10	-4.645	2.81	-1.75	.650	5.54	• 5 2	.00	.00
10C	15.40	.474	13.14	-4.872	2.59	-1.80	.663	5.12	•65	.00	.00
15	17.80	.504	15.80	-5.888	2.03	91	.709	6.73	.65	.00	.00
25	17.10	.498	15.14	-5.922	2.00	56	.700	6.30	.78	.00	.00
3S	17.20	• 499	15.25	-5.900	2.02	83	.706	6.41	•91	•00	.00
4 S	17.80	.502	15.63	-5.529	2.22	-1.12	.696	6.58	•78	.00	.00
5S	17.50	• 498	15.27	-5.398	2.28	-1.02	.685	6.32	.65	.00	.00
1 T	16.00	• 484	13.79	-5.168	2.40	-1.00	.667	5.46	.65	•00	.00
2T	16.50	.484	14.41	-5.554	2.14	53	.679	5.74	.78	.00	•00
3т	16.10	.480	14.00	-5.420	2.21	74	.676	5.53	• 78	•00	•00
4T	16.00	.480	13.88	-5.342	2.26	84	•674	5.47	•78	.00	•00
5T	15.90	.479	13.61	-4.962	2.52	-1.41	.663	5.33	.65	.00	.00
6T	15.90	•476	13.39	-4.593	2.84	-2.07	.650	5.20	• 78	•00	•00
		. .									
AVERAGES	S: 710	21 B.	ASELIN	E W078 0	000	-					
	22.20	• 5 4 8	20.08	~6.595	1.85	~.55	.736	9.47	4.29	•00	.00
STD	.00	.000	•00	.000	•00	•00	•000	•00	•00	*	*
	710	31 WO	91CR-M	NOO2 (5E)	14-3E	14)					
	16.70	.489	14.55	-5.442	2.27	-1.01	•682	5.90	• 72	•00	.00
STD	•78	.010	• 88	.521	•30	• 5 2	•020	• 5 4	.10	*	*
PERCENT	OF BA	SEL IN	E								
	75.2	89.2	72.4	117.5	123	16.1	92.7	62.3	16.9	*****	*****
STD 🕱	3.5	1.9	4.4	7.9	16	94.8	2.7	5.8	2.4	****	****

187

.

. Mariana

. .

71101	WO92PHO	02 (2	.8E16)	W078 00	000						
*SOL6	1 /8 /8	80 .	AM1: P	0=91.60M	W/CM^:	2 NO 4	AR COA	TING			
ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
18*	22.50	. 5 5 5	20.11	-6.138	2.06	40	.713	9.41	. 00	.00	.00
1 R	22 40	.550	20 05	-6 113	2.06	- 69	721	0 20	4.55		.00
2 B	22.40	\$53	20.03	-6 608	1 87	- 74	749	9 50	4.55	.00	.00
38.*	22-10	550	10 85	-5.724	2 26	-1.37	.794	9 4 0	3.90	.00	.00
4R.*	21.80	.545	17.69	-3.556	4.79	-5.61	.650	8.16	3.12	.00	.00
58.*	22.40	.547	19.13	-4.490	3.22	-2.71	.684	8.86	2.60	.00	.00
10	22.30	. 566	19.52	-5.144	2.71	-1.91	.706	9.43	3.51	.00	.00
20	22.10	. 561	19.05	-4.751	3.03	-2.29	.690	9.04	3.12	.00	.00
30	22.30	. 5 5 0	18.66	-4.751	3.50	-2.18	.648	8.40	1.30	.00	.00
40	22.50	. 564	19.78		2.70	-1.90	.707	9.53	5.20	.00	.00
50	22.10	567	10.22	-4.960	2.84	-2.13	700	9.10	2.73	.00	.00
50 60	22.10	565	10 60	-4.900	2 0 4	-1 96	705	0 / 3	3 00	.00	.00
70	22.40	562	10 79	-5 104	2 • 7 1	-1 00	709	9.4J 0.51	1.50	.00	
70 90	22.00	• JUL	19.70	-2.104	2 • / 1	-1 69	.700	0 27	3 30	••••	.00
	21.70	• 5 6 7	13+30	- 5 . 7 0 5	2.33	-1.40	•/24	3.31	J.J0 / 55	.00	•00
9C	22.40	• 207	19.09	-2.072	2	-1-32	•/19	9.00	4.33	.00	.00
100	22.40	• 200	19.01	-4.98/	2.03	-2.10	./02	9.41	2.99	.00	.00
110	22.00	• 203	19.08	-4.894	2.91	-2.17	.090	9.12	2.99	.00	.00
120	22.20	• 202	19.04	-5.490	2.40	-1.60	•/18	9.52	4 • 10	.00	.00
15	22.20	• 208	19.85	-5-918	2.23	-1.28	•/30	9.73	4.33	.00	.00
2S	21.70	• 565	18.85	-4.844	2.97	-2.71	.706	9.16	3.64	.00	.00
35	22.30	• 565	19.56	-5.234	2.63	-1.70	.706	9.40	3.25	.00	.00
4S	22.10	• 565	19.45	-5.353	2.55	-1.62	•710	9.38	3.64	.00	.00
55	22.50	• 565	19.81	-5.319	2.57	-1.76	.714	9.59	3.90	.00	.00
1 T	21.90	• 563	19.43	-5.760	2.29	94	.711	9.27	4.16	.00	•00
2T	22.00	• 567	19.68	-6.045	2.16	93	.724	9.55	3.51	.00	.00
3T	22.30	• 562	20.13	-6.467	1.95	66	.734	9.73	4.58	•00	.00
4T	22.10	• 561	19.93	-6.445	1.96	59	•731	9.58	4.55	.00	.00
5T	22.50	• 5 5 9	19.80	-5.435	2.47	-1.19	.703	9.35	3.90	•00	.00
AVERAG	ES: 7110	01 B.	ASELINI	E W078 0	0 0 0 0						
	22.25	.552	20.04	-6.361	1.96	71	.732	9.49	4.55	.00	.00
STD	•15	.002	.01	.248	.10	.03	.011	.10	.00	*	*
	7110	01 00	92 PHO0:	2 (2.8E1)	6)						
	22.21	.563	19.52	-5.367	2.58	-1.65	.709	9.38	3.73	.00	.00
STD	.25	.004	• 36	.528	.36	.54	.017	.28	.83	*	*
PERCEN	T OF BAS	SELINI	E		•						
	99.8	102.2	97.4	115.6	132 .	-32-0	96-9	98-8	82-1	*****	*****
STD X	1.8	.9	1.9	11.9	26	87.4	3.8	4.0	18.2	*****	*****

2 ¢

7

۰. .

1

. .

.

71108 W093MN004 (6.6E14) W078 00 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

· ···

-

2

Ę

•

,

. .

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
10.	22.50	556	20.08	-6-076	2.10	46	.712	9.42	.00	.00	.00
	22.50	.548	20.32	-6.899	1.74	08	.731	9.50	5.85	.00	.00
15 28 *	22.50	.548	19.88	-5.637	2.29	84	.704	9.17	4.29	.00	.00
38*	21.40	. 5 2 5	15.56	-3.164	5.82	-2.36	. 506	6.01	.65	.00	.00
55 ∕R ≱	22.50	.539	18.74	-4.255	3.45	-1.86	.639	8.19	1.95	.00	.00
4D. 1	22.40	.545	19.37	-4.989	2.73	-1.27	.679	8.76	3.64	.00	.00
	21.90	.551	19.71	-6.363	1.96	62	.729	9.30	4.55	.00	.00
28*	21.90	.549	19.70	-6.346	1.96	62	.728	9.26	4.16	.00	.00
3R#	22.20	.54/	19.59	-5.547	2.35	-1.05	.705	9.05	3.90	.00	.00
 ∠ R★	22.20	.549	19.84	-6.007	2.11	88	.722	9.31	3.90	.00	.00
10	21.00	.536	18.17	-5.056	2.65	-1.24	.679	8.08	1.30	.00	.00
20	20.70	.538	18.12	-5.287	2.49	-1.43	.698	8.22	1.04	.00	.00
30	20.70	- 5 3 1	17.49	-4.558	3.09	-1.61	.652	7.58	.91	.00	.00
40	20.50	.531	17.84	-5.145	2.57	-1.44	.689	7.93	.91	.00	.00
50	20.80	.529	17.85	-5.031	2.64	57	.657	7.65	1.04	.00	.00
60	20.90	.533	18.16	-5,193	2.53	-1.05	.682	8.03	1.30	.00	.00
70	20.70	- 534	18.04	-5.174	2.56	-1.48	.693	8.10	1.30	.00	.00
80	20.90	. 534	18.23	-5.224	2.52	-1.31	.691	8.16	1.30	.00	.00
90	20.60	.534	18.18	-5.545	2.31	-1.24	.707	8.23	1.30	.00	.00
100	20.40	. 528	17.58	-4.884	2.76	-1.76	.680	7.75	.78	.00	.00
	20.80	. 534	18.50	-5.941	2.09	64	.710	8.33	1.30	.00	.00
120	21.00	.539	19.08	-6.973	1.70	16	.735	8.80	2.08	.00	.00
120	20.70	.536	18.11	-5.296	2.48	-1.32	. 695	8.16	1.30	.00	.00
20	21 00	- 5 4 3	10.00	-6.959	1.72	26	.738	8.90	1.95	.00	.00
20	21.20	.540	19.01	-6.248	1.97	59	. 7 2 2	8.74	1.82	.00	.00
55 69	20.60	.533	17.55	-4.816	2.84	95	.653	7.58	.91	.00	.00
59	21.20	.544	19.35	-7.241	1.63	11	.743	9.06	2.21	.00	.00
)5)T	20.30	.532	17.82	-5.381	2.41	-1.43	.703	8.02	.91	.00	.00
21	20.90	.535	18.55	-5.801	2.17	90	.711	8.41	1.96	.00	.00
37	20.40	.528	17.63	-4.947	2.71	-1.72	.684	7.79	.91	.00	.00
<u>уг</u> 4т	20.40	. 529	17.79	-5.142	2.56	-1.70	.696	7.95	1.04	.00	.00
5T . *	20.40	. 424	17.36	-3.334	4.28	****	.852	7.79	.78	.00	.00
6T.*	20.40	. 424	17.07	-3.159	4.78	****	.825	7.54	.65	.00	.00
01.	20140		1/00/	3							
AVERAGE	S: 711	08 B	ASELIN	E W078 0	0 000						
	22.40	• 5 4 8	20.32	-6.899	1.74	08	•731	9.50	5.85	.00	.00
STD	.00	•000	•00	.000	.00	•00	•000	•00	•00	*	*
	711	08 WO	93MN00	4 (6.6El	4)			0.14			
	20.75	• 5 3 4	18.20	-5.516	2.40	-1.09	• 6 9 6 0 1 F	8.10	1.1	•00	•00
STD	•25	.004	• 54	• / 32	• 18	• 5 1	•023	• 4 1	.43	~	^
PERCENT	OF BA	SELIN	E	100.0	1 2 0		05 2	96 0	 /	*****	*****
	92-6	9/.5	89.5	120.0	861	*****	93.2	00.0	22.4	*****	*****
S T D Z	1.1	• 8	2.6	10.6	22	02/.)	4 • د	4 • 4	1.3	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~

80509 W094MN005 (9E14)(POLY REPEAT RUN WITH 76 POLY BASE PB) W079 00 000 *SOL8 1 /14/80 AM1: PO=91.60MW/CM^2 NO AR COATING

.

د مراجع مروقه به جمعه مروقه مراجعه

1

:

`. . .

•

•

the second se

.

1

÷

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.558	19.75	-6.225	2.04	-1.35	.746	9.64	.00	.00	.00
1 B	22.30	.549	20.08	-7.016	1.71	60	.752	9.61	4.55	.00	.00
2B*	22.20	.549	19.54	-5.372	2.47	-1.48	.708	9.13	3.64	.00	.00
3B	22.20	.547	20.23	-7.055	1.69	30	.744	9.55	3.90	.00	.00
4B*	22.20	.544	19.89	-6.155	2.02	67	.722	9.23	2.99	.00	.00
5B	22.40	.548	20.02	-5.952	2.13	-1.02	.725	9.41	4.55	.00	.00
1BP*	17.10	.225	10.21	-5.642	•97	8.07	.318	1.29	.00	.00	.00
2BP*	18.30	.496	16.13	-5.860	2.01	13	.687	6.60	.65	.00	.00
3BP*	19.40	.502	16.69	-5.003	2.55	-1.12	.669	6.89	.91	.00	.00
4BP *	19.20	.506	16.95	-5.768	2.09	58	.697	7.16	1.17	.00	.00
5BP*	18.90	.503	16.67	-5.773	2.07	46	.693	6.97	.91	.00	.00
1C*	18.60	.325	11.44	-5.578	1.41	10.12	.330	2.11	.52	.00	.00
2C*	17.80	.302	10.89	-6.828	•99	10.88	.322	1.83	.52	.00	.00
3C	20.60	.515	17.47	-4.652	2.90	-1.38	.654	7.34	.52	.00	.00
4C*	17.70	.259	10.72	-8.352	- 66	10.11	.315	1.53	.52	.00	.00
5C*	16.60	.198	10.02	-8.184	• 5 2	8.24	.314	1.09	.52	.00	.00
6C	19.10	.505	16.96	-6.070	1.94	17	.699	7.13	.91	.00	.00
7C*	18.90	.407	11.46	-4.666	2.31	11.28	.330	2.69	.39	.00	.00
8C*	18.50	.318	10.91	-5.428].44	10.58	.314	1.95	.39	.00	.00
15*	19.10	.380	11.61	-5.138	1.86	11.20	.328	2.51	.39	.00	.00
25	20.40	.517	17.38	-4.719	2.85	-1.46	.660	37	.78	.00	.00
35*	18.90	.375	11.63	-4.823	2.02	10.35	.335	2.51	.26	.00	.00
4S*	17.70	.261	10.67	-6.497	•92	9.50	.318	1.55	.00	.00	.00
1T*	16.90	.230	10.21	-8.595	• 56	9.50	.314	1.29	.00	.00	.00
2T*	16.70	.192	10.00	-9.826	• 40	8.36	.309	1.05	.00	.00	.00
3T*	16.70	.205	10.08	-8.246	• 5 3	8.50	.314	1.14	.00	•00	.00
AVERAGES	6: 8050)9 BA	SELINE	: w079 00	000						
	22.20	.548	20.11	-6.674	1.84	64	.740	9.52	4.33	.00	.00
STD	.16	.001	.09	.511	• 20	.29	.012	.08	.31	*	*
	805	09 WO9	94MN005	5 (9E14)((POLY	REPEAT	C RUN	WITH 7	6 POLY	BASE	PB)
	20.03	.512	17.27	-5.147	2.56	-1.00	.671	7.28	.74	.00	.00
STD	•67	.005	• 2 2	.653	.44	. 59	.020	.10	.16	*	*
PERCENT	OF BAS	SELINE	2								
	90.2	93.5	85.9	122.9	139	42.7	90.7	76.4	17.0	****	****
STD 🕱	3.7	1.1	1.5	16.4	42	207.3	4.1	1.8	5.2	****	****

71208 W095MN006 FAST GROWTH (1E15) W097 00 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

in a contration of the

•

· · · · · · · .

٣

•

بحقحا

۴

.

:

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.555	20.19	-6.332	1.98	30	.718	9.48	.00	.00	.00
1B• *	22.80	.551	20.36	-5.951	2.14	90	.722	9.59	3.90	.00	.00
2B*	20.40	.525	17.65	-5.209	2.49	61	.669	7.58	.65	•00	.00
3B	22.70	.550	20.66	-7.009	1.71	21	•740	9.77	.49	•00	•00
4B.*	22.40	.546	19.87	-5.754	2.22	87	.710	9.19	3.25	•00	.00
5B.*	22.90	.543	19.73	-4.774	2.89	-1.87	•684	9.00	2.60	.00	.00
6B.*	22.70	.543	19.52	-4.862	2.82	-1.28	.671	8.75	3.77	.00	-00
10	20.50	.534	18.17	-5.632	2.26	-1.47	.718	8.32	•91	•00	•00
2C	20.50	• 5 3 4	18.47	-6.373	1.90	85	.734	8.50	1.17	•00	.00
3C	20.50	.524	17.46	-4.579	3.03	-2.24	•671	7.62	.65	•00	• 00
4C	20.50	• 5 3 1	18.01	-5.354	2.42	-1.59	•706	8.13	.91	.00	.00
5C	20.20	.526	17.56	-5.003	2.66	-2.11	•698	7.85	.91	.00	•00
60	20.50	.529	17.98	-5.268	2.47	-1.77	.707	8.10	1.04	•00	•00
7C	20.30	.537	18.13	-5.911	2.13	-1.33	•728	8.39	1.17	•00	•00
8C	20.40	• 5 3 3	17.66	-4.954	2.73	-1.87	•688	7.91	.91	• ^ `	•00
90	20.40	• 5 2 8	17.60	-4.868	2.78	-1.98	•685	7.81	•78	• • • •	•00
100	20.40	.528	17.46	-4.649	2.98	-2.34	•679	7.73	• 7 8	•00	.00
110.*	20.30	• 5 2 5	16.91	-4.119	3.61	-3.28	•654	7.37	•65	.00	•00
15	20.70	• 5 3 6	18.17	-5.262	2.50	-1-89	.710	8.33	•91	.00	•00
25	20.70	• 5 3 4	18.04	-5.050	2.65	-2.05	.701	8.20	.91	•00	.00
35	21.00	• 5 3 9	18.81	-5.984	2.09	-1.34	.733	8.78	1.30	.00	.00
45	21.00	• 5 3 5	18.34	-5.110	2.60	-1.95	.704	8.36	1.17	•00	.00
5\$	20.80	.535	18.48	-5.791	2.17	-1.09	•716	8.42	1.17	•00	•00
65	20.80	• 5 3 5	18.48	-5.791	2.17	-1.09	.716	8.42	1.17	•00	•00
1T•*	20.30	• 5 2 3	16.81	-4.009	3.77	-3.62	.651	7.31	• 5 2	•00	•00
2 T	20.50	• 5 2 7	17.65	-4.778	2.85	-2.22	.686	7.84	•65	•00	.00
3T	20.70	• 5 2 6	17.65	-4.561	3.05	-2.40	•675	7.77	• 5 2	•00	•00
4T•*	20.30	• 5 2 5	17.09	-4.285	3.38	-3.06	•666	7.50	•65	.00	.00
5 T	20.30	.531	17.95	-5.519	2.32	- ' 68	•718	8.19	1.04	•00	•00
6T	20.60	• 5 2 6	17.74	-4.789	2.83	-2.13	.685	7.85	•65	.00	•00
AVERAGE	s: 712	68 B.	ASELIN	E W097 0	0 000						
	22.70	.550	20.66	-7.009	1.71	21	•740	9.77	.49	.00	.00
STD	.00	.000	.00	.000	.00	.00	.000	.00	.00	*	*
~ ~ ~ ~	712	08 00	95MN00	6 FAST G	ROWTH	(1E15))				
	20.57	.531	17.99	-5.261	2.53	-1.77	.703	8.13	-94	.00	.00
STD	.22	.004	. 38	.506	.33	.44	.019	.31	.21	*	*
PERCENT	OF BA	SELIN	E				_	_	-		
	90.6	96.6	87.1	124.9	148	* * * * *	95.0	83.2	189.5	****	****
STDZ	• 9	. 8	1.8	7.2	19	210.4	2.5	3.1	42.9	* * * * *	*****

1.10

Countrality.

and history

Manual . 3

ŧ

.

:

. .. .

71213	W096MN00	07 (6)	3E14)	W097 00	000						
*SOL6	1 /8 /8	30	AM1: PO	=91.60M	A/CM^2	2 NO A	AR COA	TING			
				•	•						
ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1R*	22.50	.553	20.18	-6.285	1.99	39	.719	9.46	.00	.00	.00
1B.*	22.50	.549	19.79	-5.289	2.52	-1.73	.712	9.31	4.16	.00	.00
2B.*	22.30	.545	19.85	-5.809	2.19	-1.04	.718	9.2	3.77	.00	.00
3B	22.20	.548	19.88	-6.100	2.06	82	•725	9.32	4.03	.00	.00
4 B	22.20	• 548	20.13	-6.626	1.84	79	.745	9.59	3.90	.00	.00
1 C	22.50	.547	19.78	-5.315	2.49	-1.55	.708	9.22	3.64	.00	.00
2 C	22.70	.548	20.21	-5.809	2.20	-1.05	.720	9.47	3.90	.00	.00
3C	22.60	.539	19.14	-4.490	3.17	-1.85	.660	8.50	2.21	.00	.00
4C	22.60	• 5 4 3	19.15	-4.380	3.32	-2.54	.670	8.10	2.60	.00	.00
5 C	22.30	• 546	19.57	-5.228	2.55	-1.74	.708	9.12	3.25	•00	.00
6C	22.60	• 5 4 8	20.09	-5.717	2.25	-1.18	.719	9.42	3.77	•00	.00
7C	22.30	.549	20.04	-6.176	2.03	99	•734	9.50	4.55	.00	.00
8C	22.30	.547	19.76	-5.587	2.32	-1.36	.717	9.25	4.42	•00	.00
9 C	22.50	•546	19.77	-5.327	2.48	-1.45	.706	9.17	2.99	.00	.00
15	22.40	.548	20.04	-5.990	2.11	-1.05	.728	9.44	3.38	.00	.00
2 S	22.30	.546	19.80	-5.684	2.26	-1.24	.719	9.25	3.90	.00	.00
35	22.60	• 5 4 8	20.17	-5.885	2.16	-1.08	.724	9.48	4.55	.00	.00
4 S	22.50	.541	19.88	-5.530	2.33	-1.23	.711	9.15	4.29	.00	.00
55	22.40	.546	20.14	-6.220	2.00	90	.733	9.48	3.64	•00	•00
6 S	22.40	•546	19.81	-5.482	2.38	-1.50	.716	9.27	3.64	.00	•00
1 T	21.60	.541	19.16	-5.748	2.21	94	.711	8.78	1.95	.00	.00
2 T	21.90	.535	18.88	-4.885	2.77	-1.56	.679	8.42	1.30	.00	.00
3т	22.00	.542	19.7	-6.332	1.94	44	.722	9.10	2.60	. UO	.00
4T	22.10	.536	19.21	-5.122	2.58	-1.20	.685	8.58	1.69	.00	.00
5T	22.10	.543	20.14	-7.239	1.62	.18	.734	9.31	2.99	.00	.00
6T	22.00	• 5 36	19.04	-4.997	2.68	-1.36	.681	8.50	1.69	.00	.00
AVERAC	GES: 712	13 B.	ASELINE	W097 00	000						
	22.20	.548	20.01	-6.363	1.95	81	.735	9.45	3.97	.00	.00
S TD	.00	.000	.12	.263	.11	.01	.010	•13	•06	*	*
	712	13 WO	96MN007	(6.3E1	4)						
	22.32	• 5 4 4	19.69	-5.578	2.37	-1.24	.709	9.10	3.19	•00	•00
STD	.27	.004	.41	.632	• 3 8	.52	.021	• 36	•97	*	*
PERCE	NT OF BA	SELIN	Е								
	100.5	99.2	98.4	112.3	122	46.1	96.5	96.3	80.4	****	****
STD 🕱	1.2	.8	2.7	14.0	28	68.0	4.2	5.2	26.2	****	****

192

*****-----

¥.

•

.

শ

.

71214 W098 MG 002 (9.2E11) W097 00 000 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

ι,

÷

÷

-

इ

Ť.

1"

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1 R *	22.50	.555	20.25	-6.493	1.91	18	•720	9.51	.00	.00	.00
18.*	22.70	.546	19.94	-5.328	2.48	-1.37	.704	9.23	3.51	.00	.00
2 B	22.40	.547	20.20	-6.440	1.91	60	.732	9.48	4.29	.00	.00
3B.*	22.70	.547	19.89	-5.251	2.53	-1.41	.701	9.20	3.64	.00	.00
4B.*	22.60	.550	20.18	-5.901	2.16	-1.08	.725	9.53	3.77	.00	.00
10	20.80	.522	18.13	-5.161	2.51	-1.46	.693	7.95	1.04	.00	.00
2 C	21.10	.524	18.61	-5.632	2.21	79	.700	8.18	1.43	.00	.00
4C	21.00	.524	18.88	-6.413	1.85	37	.722	8.40	1.30	.00	.00
5 C	20.80	.518	18.14	-5.214	2.45	-1.28	.691	7.87	.78	.00	.00
6C	20.80	• 514	17.62	-4.631	2.91	-1.33	.651	7.37	1.04	.00	.00
7 C	20.80	.521	18.37	-5.551	2.25	-1.28	.710	8.14	1.04	.00	.00
8 C	20.80	.519	18.18	-5.186	2.47	-1.68	.701	8.00	1.04	.00	.00
90	20.80	.517	18.00	-4.998	2.60	-1.53	•684	7.78	1.04	.00	.00
100	21.00	.520	18.54	-5.529	2.26	-1.28	.710	8.19	1.04	.00	.00
110	21.10	.519	18.38	-5.279	2.41	84	.682	7.90	1.04	•00	.00
15	20.90	• 5 2 7	18.65	-6.040	2.02	68	.716	8.34	1.30	•00	.00
25	20.90	.527	18.58	-5.964	2.05	48	.706	8.22	1.17	.00	.00
35	21.30	.526	18.82	-5.578	2.25	-1.17	.709	8.40	1.30	.00	.00
4 S	21.00	.525	18.65	-5.786	2.13	97	.713	8.32	1.04	.00	.00
58	20.80	.525	18.48	-5.787	2.14	-1.05	.715	8.26	1.30	.00	.00
6S	20.80	.522	18.31	-5.470	2.30	-1.23	.704	8.09	•91	.00	.00
1 T	21.30	• 524	18.60	-5.321	2.40	94	.688	8.12	1.04	.00	.00
2 T	20.90	.525	18.73	-6.256	1.92	50	.719	8.35	1.43	.00	.00
3T	20.90	.521	18.22	-5.283	2.42	98	.686	7.90	•91	.00	.00
4 T	20.80	• 5 2 3	18.38	-5.729	2.16	65	.700	8.05	1.30	.00	.00
5T	20.80	.523	18.54	-5.962	2.04	78	.715	8 - 2 3	1.04	.00	.00
AVERAGES	5: 712	14 BA	ASELIN	E W097 0(000						
	22.40	• 5 4 7	20.20	-6.440	1.91	60	.732	9.48	4.29	•00	.00
STD	•00	.000	•00	.000	•00	.00	.000	•00	•00	*	*
	712	14 WO	98 MO	002 (9.21	EII)						
	20.92	• 5 2 2	18.42	-5.560	2.27	-1.01	.701	8.10	1.12	.00	.00
STD	.16	.003	• 2 9	• 4 2 1	• 2 4	• 36	.016	• 2 4	.17	*	*
PERCENT	OF EAS	SELINI	E								
	93.4	95.5	91.2	113.7	119	29.9	95.7	85.4	26.1	****	****
STDZ	• 7	.6	1.4	6.5	13	59.7	2.2	2.6	4.0	****	****

• ,•

יאי^י --

71216 W100CU-TI002 (1E15-3.3E13) W097 00 000 *SOL7 1 /8 /80 AM1: P0=91.60NW/CM² NO AR COATING

.

1

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСDЪ
12*	22.50	.555	20.25	-6.561	1.89	.01	•717	9.46	.00	.00	.00
18.*	22.70	.547	20.00	-5.490	2.38	-1.05	.703	9.23	3.64	.00	.00
2B.*	22.80	.540	19.07	-4.320	3.37	-1.73	.642	8.36	2.08	.00	.00
3B.*	22.70	.546	19.80	-5.136	2.61	-1.43	.694	9.10	3.25	•00	.00
4 B	22.70	.550	20.46	-6.378	1.94	70	.733	9.68	4.42	.00	.00
5 B	22.70	.552	20.50	-6.413	1.93	82	.739	9.79	4.55	.00	.00
10	15.40	.488	13.57	-6.009	1.94	•21	•682	5.42	•91	.00	.00
2 C	15.60	.486	13.59	-5.625	2.13	06	•670	5.37	.91	.00	.00
3C	15.50	.486	13.66	-6.016	1.93	•20	.682	5.44	1.04	.00	.00
4C	15.70	•484	13.63	-5.513	2.18	14	.666	5.35	•91	•00	.00
5 C	15.90	.488	13.94	-5.822	2.03	•08	.677	5.55	.78	.00	.00
6C	15.60	.484	13.61	-5.659	2.10	09	.672	5.37	.78	.00	.00
7 C	15.40	.484	13.45	-5.679	2.09	10	.673	5.30	•91	.00	.00
8C	16.20	.486	14.00	-5.337	2.29	42	.663	5.52	•91	.00	.00
90	16.20	.485	14.00	-5.329	2.29	42	.663	5.51	•91	•00	.00
100	15.20	•483	12.95	-5.027	2.51	71	.648	5.03	.91	.00	.00
110	15.60	•489	13.69	-5.803	2.04	14	.681	5.49	•91	.00	•00
12C	15.70	•486	13.64	-5.561	2.16	•01	.665	5.36	• 5 2	.00	.00
15	15.70	•490	13.81	-5.861	2.02	11	.683	5.56	1.04	.00	•00
2 S	15.50	.486	13.61	-5.870	2.00	•11	•678	5.40	•91	.00	.00
35	16.00	.489	13.93	-5.564	2.17	23	.671	5.55	•91	.00	.00
4S	15.80	•487	13.75	-5.550	2.17	25	.671	5.46	•91	•00	.00
5 S	15.80	•489	13.85	-5.766	2.06	17	•680	5.56	1.04	•00	.00
6 S	15.50	.487	13.67	-6.102	1.90	•49	•679	5.42	1.04	.00	.00
1 T	15.30	•486	13.14	-5.256	2.36	30	•654	5.14	•91	•00	•00
2 T	15.40	•489	13.52	-5.913	1.99	• 2 7	•676	5.38	1.04	•00	.00
3T	15.70	.491	13.81	-5.870	2.02	11	•684	5.57	•65	•00	•00
4 T	15.50	•488	13.65	-6.052	1.92	• 5 2	•676	5.41	•91	.00	.00
5T	15.60	• 489	13.75	-6.029	1.93	• 2 5	•682	5.50	•91	.00	.00
AVERAGE	S: 712	16 B.	ASELIN	E W097 00	000						
	22.70	.551	20.48	-6.395	1.94	76	.736	9.74	4.49	.00	.00
STD	.00	.001	• 0 2	.017	.00	•06	003	.05	.06	*	*
	712	16 WI	00CU-T	1002 (1E)	15-3.	3E13)					
	15.64	.487	13.66	-5.705	2.10	05	.673	5.42	•90	.00	.00
STD	• 2 5	.002	• 2 4	•277	.15	• 2 9	.009	•13	.12	*	*
PERCENſ	OF BAS	SELINI	E								
	68.9	88.4	66.7	110.8	108	193.6	91.4	55.7	20.0	****	****
STD %	1.1	• 5	1.2	4.6	8	40.9	1.6	1.6	3.0	****	****

. K . 🖣

automate Management Management and and an automatic cause and the second and the Andrews and a second and a

80106 W102TI006 POLY (1.1E14) W097 00 000 *SOL7 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

221

2. **2** . 2

•

. *

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
1R*	22.50	.552	20.24	-6.402	1.94	36	.723	9.49	.00	•00	.00
1 B	22.80	.547	20.54	-6.381	1.93	58	.730	9.63	3.90	•00	.00
2B.*	22.70	.545	20.08	-5.582	2.31	-1.13	.711	9.30	3.51	.00	.00
3B.*	23.30	.548	20.36	-5.156	2.60	-1.45	.698	9.42	3.25	•00	.00
4 B	23.30	.549	20.88	-6.144	2.03	64	•722	9.77	4.29	•00	.00
10	14.00	.457	11.77	-4.810	2.58	87	•633	4.28	.39	.00	.00
2 C	13.90	.450	11.34	-4.207	3.20	-2.58	.614	4.06	• 39	•00	•00
3C•*	13.00	.382	8.77	-4.180	2.78	8.61	.398	2.09	•26	•00	.00
4C•*	13.60	.420	9.68	-3.377	4.60	-1.25	.480	2.90	•26	.00	•00
5C•*	13.60	.433	9.89	-3.231	5.23	-5.34	.519	3.23	.26	•00	.00
6C•*	13.50	.528	9.42	-4.795	3.01	13.44	•407	3.06	•26	.00	.00
7C	13.10	.421	9.78	-3.933	3.42	1.88	•497	2.90	• 2 6	•00	.00
80.*	13.60	.429	10.31	-3.577	4.17	-3.16	• 544	3.36	•26	.00	.00
9C	13.60	•451	11.37	-4.706	2.65	-1.15	.629	4.08	•78	.00	•00
100.*	13.30	.442	10.49	-3.758	3.91	-4.55	.592	3.68	.39	.00	.00
11C	13.70	.445	10.99	-4.056	3.39	-2.51	.595	3.83	.52	.00	.00
15	14.10	.462	12.25	-5.667	2.02	•29	.661	4.56	.91	.00	.00
2 S	13.10	.446	10.89	-4.574	2.77	-1.67	.626	3.87	.65	.00	•00
3S.*	14.20	• 4 38	10.45	-3.217	5.27	-6.08	•3.J6	3.53	.39	.00	.00
lT•*	13.70	.453	10.91	-3.845	3.81	-4.26	.601	3.94	.91	.00	.00
2T•*	13.20	•439	9.97	-3.465	4.59	-4.94	.551	3.38	.39	.00	•00
3т	13.50	•453	11.27	-4.622	2.75	-1.68	•633	4.09	.91	.00	.00
4T	13.80	.456	11.53	-4.655	2.72	-1.39	.631	4.20	.91	.00	.00
5T•*	13.30	.432	9.81	-3.433	4.60	-3.29	.520	3.16	.26	.00	•00
6T.*	13.20	•445	10.26	-3.726	4.01	-3.71	.570	3.54	.52	•00	.00
AVERAGES	5: 801	06 B.	ASELINI	E W097 0	0 0 0 0						
	23.05	•548	20.71	-6.263	1.98	61	.726	9.70	4.10	.00	.00
STD	• 2 5	.001	•17	.118	۰05	.03	.004	•07	•19	*	*
	801	06 WI	02TIO0	5 POLY (1.1E1	4)					
	13.64	•449	11.24	-4.581	2.83	-1.08	.613	3.99	•64	•00	.00
STD	• 34	.011	•64	•482	•42	1.32	•044	.43	• 2 4	*	*
PERCENT	OF BA	SELIN	E								
	59.2	81.9	54.3	126.8	143	23.9	84.4	41.1	15.5	****	****
STD X	2.1	2.2	3.6	9.2	25	233.3	6.5	4.8	6.9	****	****

- -

.

• • •

• • • •

80109 W*103T1001 (1.7E14) LOW RESISTIVITY W058 00 000 *SOL7 1 /14/80 AM1: P0=91.60MW/CM² NO AR COATING

in the second

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
1R*	22.50	.551	20.20	-6.314	1.97	42	.721	9.45	•00	.00	.00
18*	20.30	•487	16.13	-4.089	3.39	.19	.562	5.87	• 5 2	.00	.00
2 B	20.50	• 5 7 5	17.72	-4.905	2.99	-2.10	.687	8.57	1.30	•00	.00
3B*	20.40	.532	17.09	-4.857	2.81	.66	.611	7.01	•65	.00	.00
4B	20.70	.570	17.56	-4.659	3.20	-1.47	.653	8.15	• 78	.00	.00
5 B	20.30	.582	17.62	-4.950	2.98	-2.43	.698	8.72	1.17	•00	.00
1 C	11.50	.489	8.80	-3.77	4.42	-3.03	.546	3.25	•65	•00	.00
2 C	11.60	.471	8.86	-3.771	4.27	-2.70	.543	3.14	• 5 2	.00	.00
3C	11.70	.508	9.62	-4.285	3.60	-4.57	•631	3.97	•91	•00	• 00 ·
4 C	11.60	•467	9.32	-4.313	3.28	-1.09	.582	3.34	• 5 2	• 00	.00
5C	11.70	.457	9.19	-4.100	3.52	-1.03	.560	3.17	.65	•00	.00
6C	11.80	• 5 2 0	10.30	-5.467	2.45	-2.50	.695	4.51	1.30	.00	•00
7C	11.90	.502	9.74	-4.304	3.52	-3.40	.618	3.90	.91	• 00	.00
80	11.50	•482	8.83	-3.701	4.55	-4.61	• 5 5 7	3.27	.91	•00	.00
90	11.80	.504	9.49	-3.975	4.11	-5.67	.612	3.85	.91	.00	•00
10C	11.80	.491	9.53	-4.247	3.53	-2.48	• 597	3.66	•65	• 00	.00
110	11.60	• 482	9.28	-4.185	3.58	-2.12	• 584	3.45	•65	.00	•00
12C	11.80	.525	10.80	-7.642	1.53	10	•746	4.88	1.56	.00	•00
15	11.60	•498	9.53	-4.422	3.34	-2.72	.617	3.77	• 7 8	.00	•00
2 S	11.70	.520	10.31	-5.801	2.24	-1.76	.701	4.51	1.04	•00	• 0 0
35	11.70	• 5 2 1	10.17	-5,334	2.56	-2.83	.692	4.46	1.04	•00	.00
4S	11.40	.507	9.57	-4.665	3.11	-3.36	•648	3.96	•91	•00	•00
5 S	11.70	• 5 2 3	10.58	-6.862	1.77	99	•735	4.76	1.17	•00	•00
1 T	11.50	.515	9.84	-4.973	2.83	-3.21	•671	4.20	1.17	.00	•00
2 T	11.20	• 502	9.32	-4.554	3.22	-3.40	•637	3.79	•91	•00	•00
3T	11.70	• 5 2 5	10.77	-8.276	1.38	•77	•746	4.85	1.69	.00	•00
4 T	11.70	• 501	9.57	278	3.56	-3.87	•621	3.85	•91	.00	•00
5T	11.30	• 519	10.00	-6.328	1.98	• 5 7	•685	4.25	1.43	•00	.00
6 T	11.80	• 515	10.09	-4.978	2.82	-2.89	•668	4.29	1.04	.00	.00
AVERAGE	s: 801	09 в	ASELIN	E W058 0	0 000						
	20.50	• 5 7 6	17.63	-4.838	3.06	-2.00	•679	8.48	1.08	.00	.00
STD	•16	•005	• 0 7	•128	.10	•40	.019	• 2 4	• 2 2	*	*
	801	09 W*	103TI0	01 (1.7E	14) L	OW RES	ISTIVI	TY			
	11.63	• 5 0 2	9.72	-4.967	3.10	-2.48	•639	3.96	•97	•00	•00
STD	•17	•019	• 5 7	1.221	•87	1.58	.061	.53	• 31	*	*
PERCENT	OF BA	SELIN	Е								
	56.8	87.2	55.1	97.3	101	76.4	94.0	46.7	89.2	*****	*****
STD %	1.3	4.1	3.5	28.6	33	119.0	11.9	7.8	52.2	****	****

• -

÷

80110 W104CU-TI003 (2E15-1.4E14) W097 00 000 *SOL7 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

ی در بر مان<mark>ده</mark> پردیدینیهاکه بر در ارشیاری از و در میکورهای در برهم از از میکورهای میکورهای از میکورد میکوه وادر می

.

č,

r,

•

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
1R*	22.50	.552	20.15	-6.231	2.01	36	.716	9.40	.00	.00	.00
1B.*	23.20	.546	20.51	-5.629	2.28	85	.705	9.45	3.90	.00	•00
2 B	23.30	.551	21.30	-7.293	1.63	04	.743	10.09	5.20	.00	.00
3 B	23.00	.552	21.10	-7.473	1.58	16	.753	10.11	4.94	•00	.00
4B*	22.70	.542	19.48	-4.672	2.99	-2.07	.682	8.87	2.99	.00	•00
5B*	23.10	.547	19.65	-4.777	2.91	68	.648	8.66	3.51	.00	•00
10	14.50	.472	12.48	-5.310	2.27	38	.657	4.76	1.64	.00	.00
2C	14.60	.473	12.73	-5.639	2.08	19	.672	4.91	1.04	.00	.00
3C	14.70	.470	12.64	-5.229	2.31	67	•659	4.82	.78	.00	.00
4 C	14.50	.471	12.73	-5.876	1.95	.01	.679	4.91	1.17	•00	.00
5C	14.70	.471	12.86	-5.773	2.00	.00	•674	4.94	1.04	.00	.00
6C	14.50	.469	12.64	-5.593	2.09	39	•674	4.85	• 91	.00	•00
7C	14.70	.475	12.81	-5.614	2.10	28	.673	4.97	1.04	.00	.00
8C	14.50	.471	12.67	-5.729	2.02	10	•674	4.87	1.04	•00	.00
9C	14.90	.473	12.91	-5.441	2.19	39	.666	4.96	.91	.00	.00
10C	14.70	.469	12.79	-5.603	2.08	12	•668	4.87	.91	.00	.00
110	14.70	.470	12.73	-5.402	2.20	57	•668	4.88	1.04	.00	.00
15	14.70	.474	12.84	-5.739	2.03	.02	.672	4.95	1.30	.00	•00
2 S	14.60	.469	12.71	-5.572	2.10	35	.672	4.87	1.04	.00	•00
3S	14.30	•471	12.46	-5.636	2.07	18	•671	4.78	1.04	.00	.00
4 S	14.40	•469	12.54	-5.645	2.06	06	•669	4.78	1.04	•00	•00
55	14.80	•471	12.85	-5.499	2.14	34	•668	4.92	1.17	.00	.00
6 S	14.60	.468	12.68	-5.480	2.14	49	•670	4.84	1.04	•00	.00
1 T	14.10	•467	12.38	-5.979	1.89	• 4 4	•674	4.69	•91	.00	•00
2 T	14.60	•466	12.55	-5.248	2.28	55	•658	4.73	•91	.00	•00
3 T	14.20	.466	12.36	-5.595	2.08	26	•670	4.69	1.04	•00	.00
4 T	14.80	•469	12.84	-5.483	2.14	34	•667	4.90	.91	•00	.00
5T	15.20	• 4 7 2	13.11	-5.243	2.30	82	• 6 5 5	5.05	1.17	.00	•00
6 T	14.40	• 465	12.50	-5.504	2.12	~.35	•668	4.73	•91	•00	•00
AVERAGE	s: 801	10 B	ASELIN	E W097 0	0 000						
	23.15	.552	21.20	-7.383	1.60	10	•748	10.10	5.07	.00	.00
STD	.15	.000	•10	.090	.02	.06	.005	•01	.13	*	*
	801	10 W1	04CU-T	1003 (2E	15-1.	4E14)					
	14.60	.470	12.69	-5.558	2.11	28	.669	4.85	1.02	.00	.00
STD	• 2 3	.003	.18	.191	.11	• 2 6	.005	.09	.11	*	*
PERCENT	OF BA	SELIN	Е								
	63.0	85.2	59.8	124.7	132	-74.2	89.4	48.1	20.1	****	****
STD 🕉	1.4	• 5	1.1	3.5	9	568.9	1.3	.9	2.8	* * * * *	****

.

٩.

ť

÷.

and the state of the second se

10 C 100-0

80113 W105V001 (4E14) W057 00 000 SUL7 1 /25//8 AM1: P0=91.60HW/CM² NO AR COATING

4

.

* *********

۶.

r.

. .

ID	ISC	VUC	1 P	LOG(10)	н	R	FF	Eff	0 CD	rcDa	рсрь
1*	22.50	.552	20.12	-6.128	2.06	52	-716	9-41	.00	.00	.00
18	21.80	.589	19.58	-5.996	2.27	-1.74	. 144	10.10	2.47	.00	.00
2 B	21.40	.581	19.02	-5.735	2.39	1.35	.720	9.47	1.56	.00	.00
3 B	21.60	.580	19.40	-6.202	2.14	93	.730	9.67	1.69	•00	•00
4B*	21.60	.581	18.74	-4.931	2.97	-2.15	.695	9.22	• 91	.00	.00
5 B	21.90	· 58ó	19.65	-6.085	2.21	-1.18	.732	9.94	1.56	.00	.00
6B*	21.60	.568	18.45	-4.754	3.07	-1-44	.663	5.60	•91	.00	. 00
10	14.20	.480	11.00	-3.902	3.90	88	.547	3.94	• 39	.00	.00
2 C	14.10	.541	12.45	-5.743	2.32	-1.71	.706	5.70	1.04	.00	.00
3C	14.00	.468	10.99	-4.073	3.52	27	.554	3.84	• 5 2	.00	•00
4ŭ	14.20	• 526	11.20	-3.698	4.73	-5.54	• 595	4.70	•91	.00	.00
5 Ç	13.90	.543	12.36	-6.000	2.15	-1.13	.711	5.68	i • U4	• 00	•00
άÇ	14.20	.545	12-51	-5.950	2.22	-1.56	.714	5.85	.91	•ÛŬ	٠ÜÜ
7 C	14.30	• 549	13.11	-7.632	1.58	35	.753	6.26	1.56	.00	.00
кc	14.30	- 546	13.05	-7.373	1.65	31	•745	6.15	1.30	.00	.00
9C	14.40	.525	12.17	-4.764	3.00	-1.92	.649	5.18	.91	.00	.00
100	14.50	.525	12.13	-4.595	3.18	-1.99	.636	5.12	.78	.00	.00
110	14.20	.502	11.56	-4.368	3.33	92	. 595	4.49	.65	•00	.00
15	14.30	• 538	12.28	-5.013	2.84	-2.25	.677	5.47	1.04	.00	.00
25	14.50	. 541	12.60	-5-314	2.60	-1.83	. 6.8.5	5.60	1.17	.00	.00
35	14.50	.549	12.45	-4.841	3.05	-3.54	•685	5.76	1.17	.00	.00
48	14 . 3	.544	12.83	6.311	2.00	39	.715	5.95	1.17	•00	.00
55	14+40	• 5 5 2	13.44	-9.234	1.25	. 43	.775	6.52	1.30	.00	.00
65	14.50	• 547	13.29	-7.189	1.71	48	•743	6.23	1.56	.00	.00
1 T	14.30	• 534	12.11	-4.724	3.10	-2.63	.658	5.31	•91	.00	.00
27	14.30	.492	11.60	-4.394	3.22	29	.586	4.36	• 5 2	.00	.00
31	14.10	.403	10.70	-3.941	3.21	.97	.515	3-17	•65	.00	.00
4 T	14.20	+525	11.76	-4.347	3.51	-3.24	.635	5.Ûİ	•91	.00	•00
5T	14.20	• 5 2 5	12.22	-5.192	2.62	-1.26	.666	5.25	•91	.00	.00
6T	14.30	• 5 4 8	13.15	-7.915	1.51	02	•754	6.25	1.30	•00	•00
AVERAGES	s: 801	13 B-	ASELIN	E 1057 0	0 000						
	21.68	.584	19.41	-6.005	2.25	-1.30	•731	9.79	1.82	.00	• 00
STO	.19	.004	• 24	.172	.09	• 2 9	.009	.24	.38	*	*
	801	13 W10	058001	(4E14)							
	14.27	• 5 2 4	12.22	-5.504	2.71	-1.37	.665	5.29	• ^ ^	•00	•00
2 T D	•16	.034	• 7 5	1.457	.85	1-41	.071	.86	.31	*	*
PERCENT	OF BA	SELIN	E								
	65-9	89.7	J2.9	108.3	120	94.0	90.9	54.1	54.0	*****	*****
STD #	1.3	6.5	4.7	27.6	44	156.4	10.9	10.4	31.6	*****	*****

ORIGINAL PAGE IS OF POOR QUALITY

and the second
•

:

80116 W106N-AL002 (1E16) W079 00 C00 *SOL7 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

. . .

ĩ,

e e

ø

۴

;

ID	ISC	voc	IP	LOG(10)	n	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.553	20.24	-6.443	1.93	27	.721	9.49	.00	. 20	.00
18	22.10	.558	20.24	-7.353	1.64	22	.750	9.79	9.75	.00	.00
2B.*	21.60	. 552	18.90	-5.250	2.57	-1.45	.698	8.80	4.16	.00	.00
3B	22.00	.561	20.45	-8.602	1.35	.12	.771	10.07	11.05	.00	.00
4B.*	22.00	.547	19.22	-5.102	2.65	-1.86	.703	8.95	5.85	.00	.00
10	22.00	.551	20.04	-6.940	1.74	52	.747	9.58	8.45	.00	.00
20.*	21.70	.539	18.32	-4.244	3.49	-3.30	.675	8.35	5.20	.00	.00
30	21.60	.548	19.45	-6.262	1.99	-1.03	.737	9.23	6.50	.00	.00
4C	21.70	.549	19.39	-5.845	2.19	-1.47	.732	9.22	7.80	.00	.00
5 C	22.20	.547	19.45	-5.163	2.60	-1.88	.708	9.10	8.06	.00	.00
6C	22.20	. 538	18.96	-4.577	3.07	-2.20	.676	8.54	5.20	.00	.00
70	21.90	.541	18.72	-4.479	3.20	-2.95	.688	8.62	6.50	.00	.00
8C	21.90	.550	19.70	-6.192	2.03	-1.06	.736	9.37	9.78	.00	•00
90	21.80	.550	19.93	-7.215	1.65	34	.750	9.51	11.70	.00	.00
100	22.00	.544	18.98	-4.735	2.95	-2.39	.693	8.77	6.50	.00	.00
110	22.10	.546	20.22	-7.249	1.63	34	.751	9.59	10.80	.00	.00
15	22.10	•547	19.93	-6.402	1.92	72	.734	9.38	8.45	.00	.00
25	22.20	.541	19.98	-6.372	1.92	54	.727	9.24	8.84	.00	•00
35.*	21.90	.536	18.36	-4.145	3.60	-3.27	.666	8.26	6.50	.00	•00
4 S	22.00	.545	19.88	-6.508	.1.88	66	.736	9.33	9.75	.00	.00
1 T	22.30	.548	20.04	-6.222	2.00	81	.730	9.43	8.45	.00	.00
2 T	21.90	.549	19.77	-6.437	1.92	78	.737	9.37	9.75	.00	.00
3т	21.70	.543	19.23	-5.591	2.31	-1.44	.718	8.95	7.80	.00	.00
AVERAGES	s: 801	16 B	ASELIN	E W079 0	0 0 0 0						
	22.05	.560	20.34	-7.977	1.49	05	.761	9.93	10.40	.00	•00
STD	.05	.002	.11	.625	.14	•17	.010	.14	.65	*	*
	801	16 W1	06N-AL	002 (1E1)	6)						
	21.98	.546	19.60	-6.012	2.19	-1.20	.725	9.20	8.40	.00	.00
STD	.20	.004	.44	.853	• 4 9	• 76	.022	.31	1.66	*	*
PERCENT	OF BA	SELIN	E								
	99.7	97.6	96.4	124.6	147	* * * * *	95.3	92.7	80.7	****	****
STD %	1.1	.9	2.7	17.4	50	* * * * *	4.2	4.5	22.0	****	****

المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح

×€ - .¥

۰.

80202 REPEAT RUN OF W107FZ-ALOO1 (3E16) W101FZ001 *SOL6 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

a stange with the second se

• -

••

. .

•

•

محمد .

•

ID	180	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСРЪ
1 R *	22.50	.551	20.29	-6.560	1.87	23	.725	9.50	.00	.00	.00
2CZB.*	22.20	.540	19.43	-5.188	2.55	-1.65	.703	8.92	3.64	.00	.00
3CZB*	22.30	.545	20.41	-7.363	1.59	09	.746	9.59	4.55	.00	.00
IFZB.*	22.50	.543	19.86	-5.512	2.35	-1.20	.709	9.16	4.29	.00	•00
2 F Z B	22.70	.544	20.29	-5.991	2.09	85	.722	9.43	4.29	.00	.00
3FZB.*	22.50	.544	19.98	-5.677	2.26	-1.23	.719	9.30	4.29	.00	.00
4F28.*	22.60	.539	19.57	-4.9 8	2.73	-1.63	.683	8.86	3.64	.00	-00
10	21.90	.560	19.24	-5.300	2.57	-1.68	.708	9.19	2.60	.00	.00
20	22.30	.573	20.18	-6.578	1.94	09	.739	9.99	3.25	.00	.00
3C	22.30	.566	19.79	-5.641	2.37	-1.39	.719	9.60	3.25	.00	.00
4 C	22.20	.572	20.08	-6.511	1.97	77	.739	9.93	3.38	.00	.00
5 C	22.40	.575	20.39	-6.875	1.84	60	.747	10.18	3.77	.00	.00
6C	22.30	.560	19.50	-5.226	2.62	-1.40	.697	9.20	2.47	.00	.00
7C	22.50	.572	20.43	-6.783	1.86	48	.740	10.07	3.64	.00	.00
8C	22.10	.564	19.07	-4.757	3.04	-2.38	.692	9.12	1.95	.00	.00
90	22.30	.567	20.20	-6.747	1.86	73	.747	9.99	1.95	.00	.00
10C	22.20	.559	19.23	-4.923	2.86	-1.84	•690	9.05	2.86	.00	
110	22.20	• 567	19.94	-6.191	2.09	57	.729	9.71	1.30	• 00	.00
12C	22.30	• 5 5 5	18.63	-4.194	3.65	-2.59	.051	8.52	1.30	.00	.00
133	22.60	• 567	20.33	-6.252	2.06	88	• 7 3 3	9.94	3.90	.00	-00
14C	22.30	• 563	19.55	-5.205	2.65	-1.79	.707	9.39	2.21	.00	.00
15C	22.40	• 5 5 6	19.40	-4.928	2.83	-1.77	• 689	9.07	2.21	•00	• 00
AVERAGES	S: 8010)2 R/	ASELINI		01						
	22.70	.544	20.29	-5.991	2.09	85	. 722	9.43	4.29	. 00	- 00
STD	.00	.000	.00	.000	.00	.00	.000	.00	.00	* 0 0	*
	8020	02 REI	PEAT RI	UN OF WIG)7FZ-4	AL.001	•••••	•••			
	22.29	.565	19.73	-5.741	2.41	-1.32	.715	9.53	2.67	.00	.00
STD	.16	.006	.53	.840	. 52	.64	.027	.47	. 82	*	*
PERCENT	OF A:	SELINI	E						•••		
	98.2	***	97.3	104.2	115	44.4	99.1	101.1	62.2	*****	*****
STDZ	• 7	1.1	2.6	14.0	25	75.7	3.7	5.0	19.2	****	*****

• •

.

80222 W108N/V002 (8E13) W079 00 000 *SOL8 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

•

•

~

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.552	20.21	-6.380	1.95	24	.718	9.43	.00	.00	.00
1 B	20.90	.550	18.89	-6.599	1.87	55	.734	8.92	6.89	.00	.00
2B.*	21.20	.545	18.62	-5.374	2.46	-1.38	.703	8.59	4.55	.00	.00
3B	21.00	.547	18.83	-6.126	2.05	98	.728	8.85	4.55	.00	.00
4 B	21.50	.552	19.51	-6.943	1.75	05	.731	9.18	7.80	.00	.00
5B.*	20.90	.546	18.69	-6.014	2.10	-1.05	•725	8.75	5.85	.00	.00
10	18.30	.523	16.37	-6.219	1.95	65	.718	7.26	1.95	.00	.00
2C	18.90	.522	16.01	-5.985	2.06	80	.711	7.06	1.43	.00	.00
3C	18.30	.523	16.27	-5.925	2.09	97	.713	7.22	1.04	.00	.00
4C	18.20	.522	16.21	-6.000	2.05	92	.715	7.19	1.30	.00	.00
5C	18.10	.524	16.33	-6.579	1.81	57	.730	7.32	1.56	.00	•00
6C	18.40	.525	16.52	-6.220	1.96	-1.11	.731	7.47	1.69	•00	•00
7 C	18.10	• 515	15.95	-5.773	2.13	44	.691	6.81	1.56	.00	.00
8C	17.80	.517	15.66	-5.639	2.22	89	.695	6.77	1.82	•00	.00
9C	18.20	-519	16.13	-5.885	2.09	70	.704	7.03	1.56	.00	.00
100	18.90	.528	17.17	-6.892	1.71	53	•741	7.82	1.95	.00	.00
110	18.60	.519	16.12	-5.227	2.48	89	•674	6.88	1.56	•00	.00
12C	18.30	.520	16.39	-6.273	1.92	57	.718	7.22	2.47	.00	.00
15	19.00	.527	17.26	-6.842	1.72	68	.745	7.88	1.95	•00	.00
2 S	19.00	.527	17.26	-6.842	1.72	68	.745	7.88	1.56	•00	•00
33	18.50	• 519	16.22	-5.534	2.28	82	•690	7.00	•65	.00	.00
4S	18.46	• 5 2 0	16.37	-6.101	1.99	37	.705	7.13	1.30	.00	.00
58	18.50	.520	16.33	-5.697	2.19	95	.702	7.14	1.30	.00	.00
1 T	17.90	.527	16.32	-7.225	1.61	17	•741	7.39	1.56	.00	.00
2 T	17.80	.522	15.76	-5.827	2.14	85	.704	6.92	1.95	•00	•00
3T	17.80	.520	15.85	-6.149	1.97	37	.706	6.91	1.56	.00	.00
4T	17.90	• 518	16.05	-6.562	1.86	•19	.708	6.94	2.08	•00	.00
5T	17.90	.517	15.67	-5.493	2.31	95	•689	6.75	1.95	•00	•00
AVERAGE	s: 802	22 В.	ASELIN	E W079 00	000						
	21.13	• 5 5 0	19.08	-6.556	1.89	53	•731	8.98	6.41	.00	.00
STD	• 26	.002	-31	• 3 3 5	.13	• 38	.002	•14	1.37	*	*
	802	22 W1	08N/VO	02 (8E13)						
	18.27	• 5 2 2	16.28	-6.131	2.01	67	.712	7.18	1.63	•00	.00
STD	• 36	•004	.44	• 504	• 2 2	• 36	.019	• 3 3	• 38	*	*
PERCENT	OF BA	SELIN	E								
	86.4	94.9	85.4	106.5	106	73.2	97.4	80.0	25.3	****	****
STD Z	2.8	1.0	3.7	12.9	19	185.9	3.0	5.0	12.6	*****	*****

C0220 W109C-002 (1.4E17) WG.7 00 000 *SOL8 1 /8 /80 AN1: P0=91.60MW/CM² NO AR COATING

:

÷.,

1 D	ISC	voc	IP	LOG(10)	N	R	FF	Eff	0CP	PCDa	РСДЪ
lR*	22.50	• 5 5 2	20.15	-6.231	2.01	36	.716	9.40	.00	.00	.00
1B*	22.70	.538	18.52	-3.768	4.22	-3.65	.637	8.22	2.08	.00	.00
2B.*	22.99	.544	19.57	-4.547	3.13	-2.30	•679	8.95	3.12	.00	•00
3B	22.90	.548	20.59	-6.267	1.98	72	.730	9.68	4.94	.00	.00
4 B	22.60	.548	20.38	-6.381	1.93	72	.734	9.61	5.20	.00	.00
5B*	22.80	.538	18.71	-3.875	4.02	-3.21	.638	8.28	2.21	.00	.00
10	22.20	.548	19.40	-5.014	2.72	-2.32	.712	9.16	4.16	.00	.00
2C	22.10	.543	19.24	-4.955	2.75	-2.21	.704	8.94	2.86	.00	.00
3C	22.10	.542	19.65	-5.765	2.20	-1.14	.719	9.11	4.42	.00	.00
4C	22.40	.544	19.79	-5.509	2.35	-1.32	.712	9.18	4.55	.00	•00
5C	22.30	.542	19.53	-5.144	2.59	-1.88	.708	9.05	4.42	•00	.00
6C	21.90	.543	19.63	-6.050	2.07	-1.07	.730	9.18	4.42	.00	.00
7C	22.10	.541	19.79	-6.063	2.05	90	.726	9.18	4.29	.00	.00
8C	22.50	.540	19.80	-5.366	2.43	-1.42	.708	9.10	3.25	.00	.00
90.*	21.70	.540	18.56	-4.434	3.26	-3.36	.695	8.61	3.64	.00	.00
100	22.80	.543	19.76	-4.903	2.78	-1.84	.692	9.06	3.90	.00	.00
15	22.10	.547	19.59	-5.626	2.30	-1.26	.716	9.15	4.16	.00	.00
2 S	22.30	.547	19.90	-5.967	2.12	83	.719	9.28	5.85	.00	.00
4S	22.20	.544	19.47	-5.271	2.51	-1.50	.704	8.99	3.90	.00	.00
5S	22.00	.544	19.83	-6.447	1.90	50	.728	9.22	4.94	.00	.00
6S	22.00	.546	19.75	-6.169	2.02	88	.729	9.26	4.55	•00	.00
1 T	22.70	• 5 4 7	20.00	-5.609	2.30	59	•694	9.12	4.16	•00	.00
2T	22.30	• 546	19.90	-5.959	2.12	83	.719	9.26	4.94	.00	.00
3т	21.90	.541	19.24	-5.367	2.44	-1.35	.704	8.82	4.42	.00	.00
4 T	22.40	.543	19.84	-5.630	2.28	-1.11	.712	9.16	4.03	.00	.00
5T	22.30	.543	19.89	-5.911	2.13	92	•720	9.22	4.94	.00	.00
AVERAGES	5: 802	20 B	ASELINI	E W097 0	0 000						
	22.75	• 5 4 8	20.49	-6.324	1.96	 72	•732	9.65	5.07	.00	•00
STD	•15	•000	.11	•057	•02	.00	•002	•04	.13	*	*
	802	20 W1	09C-00	2 (1.4E1	7)						
	22.24	• 5 4 4	19.68	-5.617	2.32	-1.26	.713	9.13	4.32	•00	.00
STD	• 2 4	.002	.21	•430	•26	• 50	.011	.11	•63	*	*
PERCENT	OF BA	SELIN	E								
	97.8	99.3	96.1	111.2	119	24.8	97.5	94.6	85.3	****	****
S T D Z	1.7	• 4	1.6	7.7	15	69.7	1.8	1.5	14.8	****	****

80224 W*110FE001 LOW RESISTIVITY (8E14) W058 00 000 *SULE 1 /14/80 AM1: P0=91.60MW/CM⁺² NO AR COATING

5 N :

ý,

;

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.555	20.00	-5.844	2.21	74	.710	9.38	.00	.00	.00
lB*	19.30	.552	15.76	-4.118	3.83	-1.94	.612	6.89	• 5 2	.00	.00
284	19.50	• 570	15.78	-3.786	4.58	-4.18	.623	7.32	•65	.00	.00
3 F	20.10	• 588	18.01	-6.057	2.25	-1.41	.733	9.16	1.56	.00	.00
4.8*	19.30	.467	14.94	-3.920	3.53	.51	.535	5.10	.52	.00	.00
10	18.30	.580	15.23	-4.008	4.26	-5.53	.669	7.51	• 91	.00	.00
2C	18.30	.:72	14.60	-3.454	5.54	-7.76	.635	7.03	.91	.00	.00
3C	18.40	.570	15.78	-4.797	3.11	-2.37	.677	7.51	.91	.00	.00
4 C	18.30	.577	15.98	-5.199	2.78	-2.26	.702	7.83	1.04	.00	.00
5C	18.30	.584	16.24	-5.654	2.49	-2.07	.724	8.18	1.17	.00	.00
6C	18.30	.573	15.18	-4.112	4.03	-3.99	.649	7.20	.91	.00	.00
7C	18.10	.568	15.42	-4.641	3.27	-2.72	.671	7.30	. 91	.00	.00
8C	18.40	.585	16.47	-5.983	2.30	-1.83	.735	8.36	1.30	.00	.00
9C	18.50	.583	16.21	-5.190	2.82	-2.71	.712	8.12	1.04	.00	.00
1 OC	18.10	.574	15.22	-4.339	3.69	-3.63	•663	7.29	.65	.00	.00
110	18.20	. 5 . 4	16.42	-6.358	2.11	-1.49	.743	8.35	1.30	.00	.00
15	28.50	.583	16.65	-6.367	2.10	-1.07	.733	8.37	1.30	.00	.00
2 S	18.60	.581	16.47	-5.642	2.48	-1.72	.716	8.18	1.17	.00	.00
35	18.50	.566	15.16	-3.962	4.24	-4.04	.635	7.03	.91	.00	.00
45*	18.50	.553	15.03	-4.048	3.99	-2.31	.609	6.59	. 39	.00	.00
1T#	17.10	.503	13.11	-3.990	3.78	1.42	.521	4.74	.52	.00	.00
2 T	17.70	• 582	16.24	-7.501	1.69	56	.759	8.27	1.56	.00	.00
3T	17.80	.560	14.60	-4.103	3.97	-3.04	•626	6.60	.65	.00	.00
4T	18.10	.580	15.98	-5.579	2.53	-1.78	.712	7.90	1.30	.00	.00
AVERAGES	5: 3023	24 Br	SELINE	E W058 00	000						
	20.10	. ° 88	18.01	-6.057	2.25	-1.41	.733	9.16	1.56	.00	.00
STD	.0,	•000	.00	.000	.00	.00	.000	.00	.00	*	*
	8022	24 W*1	10FE00	DI LOW RI	ESIST	LVITY ((8E14)				
	18.26	• 577	15.76	-5.111	3.14	-2.86	.692	7.71	1.06	.00	.00
STD	• 24	.007	•64	1.047	• 98	1.71	.040	.55	• 2 4	*	*
PERCEN".	OF BAS	SELINE	2								
	96.8	98.1	87.5	115.6	139	-3.3	94.4	84.2	67.6	****	****
ST	1.2	1.2	3.6	17.3	44	21.6	5.5	6.0	15.4	****	****

11-----

80227 W111CU-V001 (2.5E15-3E14) W097 00 000 *SOL8 1 /8 /80 AN1: P0=91.60MW/CM² NO AR COATING

الم الد الديم بحاله والحور والحور ويدامه ومناطق و

-1

7

ŧ

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрр
1R*	22.50	.552	19.90	-5.666	2.29	84	.705	9.26	.00	.00	.00
18.*	21.60	.542	18.55	-4.741	2.94	-1.96	.679	8.41	3.51	.Ot	.00
2 B	21.70	.547	19.46	-6.159	2.03	83	.726	9.12	4.81	.00	.00
3B.*	21.30	.539	18.70	-5.361	2.44	-1.37	.702	8.53	3.90	.00	.00
4B.*	21.40	.540	18.60	-5.675	2.25	• 87	.652	7.96	3.64	.00	.00
10	15.00	.476	13.17	-5.965	1.92	.42	.674	5.09	.52	.00	.00
2C	15.60	.476	13.55	-5.546	2.13	06	.665	5.23	.52	.00	.00
3C	15.90	.474	12.98	-5.355	2.24	70	.669	5.03	.65	.00	.00
4C•*	14.20	.463	11.34	-3.871	3.81	-3.93	.601	4.18	.65	.00	.00
5C	15.30	.475	13.43	-5.832	1.98	~.05	.679	5.22	.65	•00	.00
6C	15.10	.469	12.97	-5.174	2.34	79	.660	4.94	.65	.00	.00
7C	15.20	.476	13.47	-6.141	1.84	03	.693	5.31	.78	.00	.00
8C	15.50	.476	13.71	-5.986	1.90	33	•694	5.42	•65	•00	.00
9C	15.40	.469	13.07	-4.920	2.52	87	.645	4.93	• 39	.00	.00
10C	15.40	.474	13.35	-5.427	2.19	47	•668	5.16	•65	.00	.00
110	15.60	.472	13.50	-5.377	2.21	48	.666	5.19	.78	.00	•00
120	15.10	.476	13.39	-6.078	1.87	37	•699	5.31	.91	.00	•00
15	15.60	.481	13.95	-6.393	1.75	27	.711	5.64	•91	.00	.00
25	15.50	•477	13.71	-6.033	1.89	18	•693	5.42	.78	•00	.00
3S	15.40	.478	13.64	-6.031	1.89	36	.697	5.43	.91	.00	.00
4 S	15.10	.478	13.47	-6.315	1.78	21	.706	5.39	• 91	.00	.00
5S	15.40	•478	13.75	-6.391	1.74	05	.705	5.49	•91	.00	.00
1T	15.10	.474	12.88	-4.913	2.56	-1.52	.659	4.99	.91	•00	.00
2T.*	14.80	.462	10.82	-3.980	3.58	4.01	.469	3.39	• 39	•00	.00
3T	15.20	.468	12.83	-4.746	2.67	-1.45	.645	4.85	•65	.00	.00
4 T	14.90	.469	12.86	-5.257	2.28	90	.667	4.93	•65	• 00	•00
5T	15.10	.469	13.02	-5.236	2.29	87	•666	4.99	•78	•00	•00
AVERAGE	s: 802	27 B	ASELIN	E W097 0	0 000						
	21.70	• 547	19.46	-6.159	2.03	83	.726	9.12	4.81	•00	•00
S TD	.00	.000	.00	.000	.00	• 0 0	.000	•00	.00	*	*
	802	27 W1	11CU-V	001 (2.5	E15-3	E14)					
	15.28	. 474	13.34	-5.656	2.10	48	.678	5.20	•73	•00	•00
STD	• 2 2	.004	• 3 3	• 509	•28	• 47	•020	• 2 2	•15	*	*
PERCENT	OF BA	SELIN	E								
	70.4	86.7	68.5	108.2	103	142.3	93.3	57.0	15.1	****	*****
STDZ	1.0	• 7	1.7	8.3	14	57.0	2.7	2.4	3.1	****	****

80522 W111CU/V001 (2.5E15/3E14) REPEAT RUN W097 00 000 *S019 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

5

7

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
2R*	21.90	.558	20.04	-7-143	1.70	67	•758	9.80	•00	.00	.00
1 B	22.30	.549	20.04	-6.176	2.03	99	.734	9.50	4.16	.00	-00
2 B	22.30	.551	20.34	-6.965	1.73	62	.752	9.77	4.42	.00	.00
3B.*	22.30	.544	19.84	-5.848	2.17	86	.715	9.17	3.64	•00	•00
4B.*	22.50	.548	19.84	-5.441	2-41	-1.33	.709	9.24	3.38	.00	.00
10	15.60	.481	13.93	-6.369	1.76	09	.705	5.60	•91	•00	•00
2C	15.80	.480	14.03	-6.043	1.89	62	.705	5.66	•91	.00	•00
15	15.70	.480	14.01	-6.337	1.77	16	.706	5.63	1.30	.00	.00
25	15.70	.479	13.97	-6.163	1.84	44	.706	5.61	.91	.00	.00
35	15.70	.474	13.09	-4.391	3.06	-2.56	.642	5.05	•65	.00	.00
IT	14.10	.467	12.74	-7.629	1.35	2.16	.691	4.81	• 39	.00	.00
2T•*	15.00	.461	12.00	-3.923	3.66	-3.06	.598	4.37	. 39	•00	.00
3T	15.60	.475	13.63	-5.587	2.10	59	• 6 8 1	5.34	•78	.00	•00
AVERAGES	5: 8052	22 B/	ASELINI	E W097 0	000						
	22.30	.550	20.19	-6.570	1.88	81	•743	9.63	4.29	.00	.00
STD	• 00	.001	.15	.394	.15	.19	.009	•13	.13	*	*
	8052	22 W1	11CU/V	001 (2.5)	E15/3	E14) RI	EPEAT	RUN			
	15.46	.477	13.63	-6.074	1.97	33	.691	5.38	•84	.00	.00
STD	• 56	.005	.48	• 899	.49	1.28	.022	.31	•26	*	*
PERCENT	OF BAS	SELIN	E								
	69.3	86.6	67.5	107.5	105	159.2	93.0	55.9	19.5	****	****
S TD Z	2.5	1.0	2.9	20.1	36	204.7	4.1	4.0	6.8	*****	*****

•

• •

1.

-

,

.

÷.,

1.2

80301	W112TA00	01 (8	•3E11)	W097 00	000						
*SOL8	1 /3 /8	BO 4	AMl: PO	=91.60M	v/cn^:	2 NO 1	AR COA	TING			
ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R*	22.50	.553	20.07	-6.052	2.10	46	.711	9.36	.00	-00	.00
1B.*	21.70	.536	17.94	-4.038	3.77	-2.87	.641	7.89	1.82	•00	.00
2B•*	22.00	• 5 4 7	18.90	-4.588	3.12	-2.79	.692	8.81	3.64	•0、	.00
3B.*	21.20	•541	16.75	-4.385	3.33	2.36	• 5 3 5	6.49	2.99	•00	.00
4 B	21.40	• 5 4 4	19.21	-6.176	2.02	90	.729	8.97	3.90	•00	.00
5 B	22.00	.548	19.92	-6.612	1.85	66	•740	9.43	4.42	-00	.00
1C	19.20	.525	16.31	-4.537	3.11	-2.58	.670	7.14	•91	.00	.00
2C	19.20	.528	16.97	-5.736	2.19	86	•703	7.53	•91	•00	.00
3C	19.60	.521	16.71	-4.815	2.80	-1.17	•657	7.09	•65	•00	.00
4C	19.60	.534	17.69	-6.734	1.77	05	•722	8.00	1.17	•00	.00
5C	19.40	.523	16.80	-5.113	2.57	-1.30	•680	7.30	.91	.00	.00
6C	19.20	.532	16.98	-5.692	2.24	-1.11	•707	7.64	1.04	•00	.00
8C	19.10	.528	16.23	-4.507	3.16	-2.84	.673	7.18	•91	.00	.00
90	19.50	.533	17.61	-6.732	1.77	10	•724	7.96	1.04	•00	.00
10C	19.70	.529	17.45	-5.798	2.16	79	.705	7.77	•91	•00	.00
15	19.10	.529	16.70	-5.287	2.48	-1.57	•697	7.45	1.04	•00	.00
2 S	19.70	.529	17.35	-5.633	2.25	76	•696	7.67	.91	•00	•00
35	18.80	.521	16.43	-5.445	2.34	81	•685	7.09	•65	•00	.00
4S	20.30	.534	18.20	-6.543	1.84	• 30	.705	8.08	1.04	•00	.00
5 S	19.90	• 5 3 2	17.64	-5.875	2.13	 57	.702	7.86	•91	•00	.00
6S	19.20	• 534	17.24	-6'•436	1.89	32	.719	7.79	1.04	•00	•00
1 T	19.30	• 5 2 7	16.54	-4.764	2.89	-2.08	.676	7.27	•78	•00	•00
2 T	19.20	• 5 2 5	16.65	-5.076	2.61	-1.68	•687	7.32	•65	.00	.00
3T	19.10	.528	16.91	-5.763	2.18	99	.708	7.55	•91	•00	•00
4 T	19.50	.517	16.34	-4.352	3.27	-2.33	.649	6.92	• 5 2	.00	.00
5T	19.60	.525	17.08	-5.198	2.51	-1.48	•691	7.52	•91	•00	.00
AVERAG	ES: 8030)1 B/	ASELINE	W097 00	000						
	21.70	• 5 4 6	19.57	-6.394	1.93	78	•734	9.20	4.16	•00	•00
STD	.30	.002	• 36	.218	•08	•12	.006	• 2 3	•26	*	*
	8030	D1 W1	127A001	(8.3E1))						
	19.41	• 5 2 8	16.99	-5.502	2.41	-1.15	.693	7.51	• 8 9	•00	.00
STD	• 3 3	.005	• 5 2	.712	• 4 4	•83	.020	• 3 3	.16	*	*
PERCEN	T OF BAS	SELIN	E,								
	89.4	96.6	86.8	114.0	125	51.8	94.3	81.6	21.4	****	*****
STD 🕉	2.8	1.2	4.3	14.4	29 1	145.2	3.5	5.7	5.4	****	****

. . .

LAY .. Sugar

- .'

101

. -

.

н**е** ч

805221 W113FZ/CR001 (8E14) W101 00 000 *SOL9 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2₽★	21.90	. 556	20.05	-7.171	1.69	71	.761	9.79	.00	.00	.00
	22.30	549	20.22	-6.634	1.84	76	.745	9.64	3.90	.00	.00
20	22.00	548	10.04	-6.617	1.85	73	.742	9.47	3.90	.00	.00
2 D 2 P	22.00	548	10.82	-6.050	2.08	-1.17	.733	9.39	3.90	.00	.00
ac ac	22.10	5/0	20 38	-6.324	1.96		.738	9.68	4.16	.00	.00
4.5	22.00	515	17 92	-5 9/5	2.03	- 88	.716	7.80	.91	.00	.00
	20.00	• 212	17 77	-5.945	2.00	- 0/	. 721	7.81	1.04	.00	.00
20	19.90	• 212	1/ • / /	-0.000	1 90	- 63	722	7 90	1.04	.00	.00
30	20.10	• 212	10.02	-0.244	1.07	05	67%	7 20		.00	.00
15	20.00	• 511	17.08	-4.044	2.90	-2.19	•0/4	7 77	1 04	.00	.00
25	20.00	• 514	17.73	-5.699	2.15	-1.22	•/14	7.07	1.04	.00	.00
3S	20.20	.516	17.96	-5.781	2.11	-1.20	•/18	7.92	1.04	.00	.00
4 S	20.30	.515	18.13	-5.983	2.00	-1.01	•723	7.99	1.1/	.00	.00
11	20.00	.515	17.82	-5.900	2.05	-1.08	•720	7.84	• 91	.00	•00
2T	20.00	.515	17.69	-5.646	2.18	-1.14	•709	7.73	•91	.00	.00
3T	20.20	.515	17.97	-5.957	2.02	64	.710	7.81	1.04	.00	•00
AVERAGE	s: 805	221 B	ASELIN	E W101 0	0 000						
	22.25	. 549	20.09	-6.406	1.93	89	.740	9.55	3.97	.00	.00
STD	. 23	.000	.22	.240	.10	.17	.004	.12	.11	*	*
510	805	221 1	113FZ/	CR001 (8)	E14)						
	20.07	. 515	17.80	-5.781	2.13	-1.09	.713	7.79	1.00	.00	.00
C TD	.12	. 001	.27	. 412	.27	. 42	.014	.18	.08	*	*
DEDCENT	OFRA	SELIN	F /								
FERCENT	00 0	03.8	88.6	109.8	110	77.2	96.4	81.6	25.2	****	****
C T D 7	1 5	7 3•0 2	20.0	10.0	20	79.5	2.4	2.9	2.9	****	****
2102	1.0	• • •	2•4	10.0	20	·	~ • •				
• • • • • •

۰. ۲

80317 W115N/CU002 (1E16) W079 00 00C *SOL8 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

، ۲۰۰۰ م. ۲۰۰۰ ۲۰۰۰ م. ۲۰۰۰ م. ۲۰۰۰ م. ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ م. ۲۰۰۰ م.

ε

۶.

د د. میرد برد ایند در ا

* ~ *

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1R *	22.50	.552	20.15	-6.261	2.00	27	.714	9.38	.00	.00	.00
18*	20.20	.526	15.72	-3.292	5.46	-5.95	.600	6.74	.00	.00	•00
2 B	20.60	.541	18.52	-6.317	1.95	72	.728	8.58	5.85	.00	.00
38	21.00	.544	19.16	-7.134	1.67	31	.745	9.01	4.94	.00	.00
4 B	21.20	.551	19.43	-7.315	1.63	48	.757	9.35	4.94	.00	.00
10	21.50	.545	19.14	-5.938	2.13	70	.712	8.82	3.90	.00	.00
20.*	20.70	.533	17.03	-3.859	4.09	-4.24	.650	7.59	1.43	.00	.00
30	20.90	. 534	17.71	-4.498	3.16	-2.17	.663	7.83	1.43	.00	.00
40	21.30	.540	18.27	-4.706	2.97	-2.10	.679	8.26	2.34	.00	.00
5C	20.40	.537	17.92	-5.349	2.45	-1.62	.706	8.18	2.21	.00	.00
6C	20.80	.536	18.06	-5.027	2.68	~1.75	.691	8.15	2.21	.00	.00
7C	21.00	.535	18.00	-4.753	2.91	-1.82	•674	8.01	1.56	.00	•00
8C	20.70	.537	18.25	-5.554	2.32	-1.14	.705	8.28	2.60	.00	.00
9C	20.40	.540	17.91	-5.359	2.46	-1.49	.703	8.19	2.21	.00	•00
100	20.20	.519	17.24	-4.873	2.73	91	•655	7.26	1.69	.00	•00
110	20.90	.537	17.71	-4.435	3.25	-2.57	.668	7.93	1.30	.00	•00
15	22.20	.555	19.29	-4.932	2.83	-2.12	.699	9.11	4.42	.00	.00
25	20.60	.525	16.88	-4.101	3.63	-1.90	.617	7.06	.78	.00	•00
35	20.80	.533	17.60	-4.475	3.19	-2.20	.661	7.75	1.30	.00	•00
4 S	20.00	.537	17.63	-5.499	2.36	-1.46	.709	8.05	2.08	.00	.00
5 S	21.70	.548	19.55	-6.429	1.92	53	.728	9.16	4.55	.00	•00
1T	20.80	.538	18.15	-5.197	2.56	-1.51	.695	8.22	1.95	.00	•00
2 T	20.90	.537	18.10	-4.993	2.71	-1.62	•685	8.13	1.95	.00	•00
3т	21.00	.543	18.41	-5.292	2.51	-1.55	•702	8.47	2.34	.00	.00
4 T	20.50	• 5 3 9	18.05	-5.479	2.38	-1.34	•706	8.25	2.34	.00	•00
AVERAGES	s: 803	17 B.	ASELIN	E W079 0	0 0 0 0						
	20.93	.545	19.03	-6.922	1.75	50	.743	8.98	5.24	.00	•00
STD	.25	.004	.38	.434	•14	•17	.012	.32	.43	*	*
	803	17 W1	15N/CU	002 (1E1	6)						
	20.87	.538	18.10	-5.099	2.69	-1.61	.687	8.16	2.27	.00	•00
STD	.51	.007	.64	.549	• 41	• 5 2	.025	.50	.99	*	*
PERCENT	OF BA	SELIN	E								
	99.7	98.6	95.1	126.3	154	****	92.5	90.9	43.3	****	****
STD 🕱	3.7	2.1	5.3	13.0	38	245.8	4.9	9.0	23.9	****	****

1

:

.

80321 W*116PH001 (1E17) LOW RESISTIVITY RUN W057 00 000 *SOL8 1 /14/80 AM1: P0=91.60MW/CM² NO AR COATING

٦

"M""" "

,

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	O C D	PCDa	PCDb
1R*	22.50	.556	20.03	-5.941	2.16	59	.710	9.39	.00	.00	.00
1B*.	21.20	.577	17.26	-3.692	4.77	-5.04	.643	8.31	1.04	.00	.00
2 B	21.40	.581	18.65	-5.084	2.84	-1.92	.698	9.18	1.69	.00	.00
3 B	21.40	.577	18.79	-5.374	2.60	-1.37	.701	9.15	1.30	.00	.00
4B★	21.40	.568	17.89	-4.274	3.64	-2.41	.648	8.32	.91	.00	.00
5 B	21.60	.5ú8	18.83	-5.299	2.61	- • 88	.683	8.87	1.04	.00	.00
10	21.30	.565	17.77	-4.366	3.50	-1.63	•635	8.09	.91	.00	.00
2 C	21.00	.584	18.57	-5.497	2.55	-1.81	.718	9.32	1.95	.00	.00
3C	21.30	• 5 7 9	18.73	-5.425	2.58	-1.37	•703	9.17	1.56	.00	•00
4C*	21.40	.560	17.82	-4.392	3.43	-1.23	•628	7.96	.91	•00	.00
5C	21.30	• 580	19.18	-6.315	2.09	93	•734	9.59	1.95	•00	.00
6C	21.40	.561	18.29	-4.899	2.90	78	•655	8.31	.91	•00	.00
7C*	20.90	.550	17.47	-4.707	3.03	•15	.615	7•4°	•91	•00	•00
8C	21.10	• 572	18.02	-4.707	3.15	-1.80	•667	8.5.	1.30	•00	.00
9C*	21.00	• 5 3 4	17.16	-4.312	3.39	25	• 5 9 5	7.05	• 5 2	•00	.00
10C*	21.00	.535	16.65	-4.163	3.59	•93	• 5 5 2	6.56	• 39	•00	.00
110	21.30	• 572	18.14	-4.653	3.20	-1.80	•664	8.55	1.04	•00	•00
12C	21.30	• 5 7 6	18.55	-5.048	2.85	-2.06	•699	9.07	1.69	•00	•00
1 3C	21.30	.580	18.99	-5.934	2.27	96	.718	9.38	1.56	•00	•00
15	20.30	• 5 7 9	18.15	-6.080	2.20	92	.721	8.96	1.56	.00	•00
2 S	20.70	• 565	17.49	-4.537	3.31	-1.84	•653	8.08	.91	•00	•00
3 S	20.80	• 577	18.32	-5.475	2.54	-1.40	•706	8.96	1.30	•00	•00
4S	21.00	.582	19.18	-7.200	1.76	35	•748	9.67	2.08	•00	•00
5 S	21.10	• 5 8 3	19.05	-6.471	2.03	78	•735	9.56	1.95	•00	•00
1T*	21.30	.529	17.55	-4.538	3.08	•40	• 5 9 6	7.10	•78	•00	•00
2 T	21.10	• 5 7 0	17.78	-4.384	3.51	-2.46	•658	8.36	1.30	•00	•00
3T*	21.00	• 5 6 9	17.13	-3.841	4.39	-3.75	.631	7.98	1.04	•00	•00
4 T	21.00	• 5 7 5	18.16	-4.935	2.95	-1.91	•686	8.76	.91	•00	.00
5T	20.80	.563	17.86	-4.915	2.91	-1.27	•667	8.27	1.17	•00	•00
6T*	21.30	.551	17.85	-4.509	3.24	-1.09	•634	7.87	•91	•00	•00
AVERAGES	5: 803	21 B.	ASELIN	E W057 0	0 000					~ ~	
	21.47	.5/5	18./6	-5.253	2.68	-1-39	• 6 9 4	9.06	1.34	.00	.00
STD	•09	.005	.08	•123	•11	• 4 3	.008	•14	• 27	*	*
	803	21 W*	116PH0	OI (IEI/) LOW	RESIS	LIVITY	RUN	• • •		~ ~ ~
	21.00	.5/4	10.37	-3.344	2.12	-1.42	• 6 9 2	8.80	1.41	• 00	•00
STU	• 78	•UU/	• 21	•/91	• 21	• > >	• • • • • •	• 5 2	•40	*	π
PERCENT	01° BA	OC O	с 07 0	00 0	101	00 /	00 7	07 7	105 2		*****
C T D ¥	70+1	33.0	9/.9	98.3	101	yð.4	99./	9/•/	102+2	*****	*****
STDA	1 • /	2.2	۲۰۲	1/+8	Z 4	02.2	2.9	/•4	20.3	****	

5

1

ŧ

.

80404 W119N/FF002 (3814) . W079 00 000 5065 4 /24/78 AN1: PO=91.604W/CM12 NO AF COATING

;

. .

у м.

F

i 1.	ISC	VOC	11-	LUGGIO	N	મ	FF	FFF	000	PCDA	UCDP
13.+	22.50	+ 552	20.21	-6.396	1.95	24	• 719	9.117	• • • •	. 00	
12.*	22.30	. 547	18.83	-4.459	3.25	-1.83	. 455	R. 115	2.12	.00	.r.n
215	22.00	.561	19.74	-6.140	2.09	95	. 729	9.52	5.95		.00
(44 a #	22.20	. 549	18.65	-4-305	3.06	-2.35	+ 655	8.40	2.25	. 00	.00
Li-*	22.20	+513	17.85	-4.096	3.52	30	. 580	6.98	.01	. 00	.00
\$ 5F.*	21.90	. 547	19.17	-5.257	2.54	-1.42	• 600	A.85	1.04	+00	.00
10	21+40	. 536	17.73	-4+100	3.67	-2.60	. 640	7.76	1.95	• nr	.00
26	21+30	• 525	17.32	-3.900	3.03	-2.64	. 619	7.31	1.17		
30	21.20	. 536	17.26	-4.051	3.28	-2.38		8. nn	1.60	.00	• ^ ^
40	21.20	. 528	17.29	-4.003	3.64	-2.40	. 623	7.29	1.00	.00	.00
51.	21.00	. 544	18.24	-4.956	2.77	-2.12	. 697	9.62	2.73		
5C	21.20	• 5,31	17.41	-4.277	2.40	-2.27	· 6/19	7.75	1.56		.00
71. *	21.10	+516	16.87	-3.320	5-21	-7.16	. 649	7.10	1.51		•••
SC.	21.50	• 525	17.57	-2. OSB	3 . 71	-2.00	.617	7.36	. 73	.00	
9C	21.40	. 534	18+11	-4.291	3-16	-2.00	.660	7.94	1.95	.00	.00
100	21.50	.532	17.07	-4.245	3.45	-2.38	. 649	7.95	1.00		, nn
115	21.50	.546	19+06	-5.709	2.26	-1+06	.712	9.44	3.25	.00	. 00
120	20.90	. 527	17+20	-4.041	3.73	-2.63	. 632	7.36	.91	.00	.00
130	21.20	. 524	17.41	-4.094	3-61	-1.99	. 622	7.31	.01	. nn	• ^ ^
- 15	81.60	• 547	18.94	-5.294	2.52	-1.47	. 702	8.77	3.00	.00	. 00
25	21.40	. 540	18+26	-4.571	3.11	-2.32	. 675	8.25	2.34	.00	.00
<u>.</u>	21.60	.531	17.91	-4.126	3.60	-2.49	. 640	7.77	1.69		.00
45	21.40	.534	17.85	-4.208	3.51	-2.50	. 648	7.93	1.60	• 00	.00
.,c	21.00	+535	17.97	-4-316	3.38	-2.37	. 650	7.92	1.95	. ^^	
65	21+10	• 520	16+99	-3.994	3.91	-1.97	. 599	6.96	1.04	• 00	• 00
11 - *	18+50	• 516	14.91	-3.738	4.29	-4.37	. 692	6.29	. 19	. 00	.00
2T	18+60	. 527	16.45	-5.725	2.20	-1.03	.705	7.31	.91	• 00	• • • •
31	18+60	+515	15+61	-4.429	3.19	-2.19	. 648	6.57	. 30	• ^ ^	. 00
47	18+50	.427	14.29	-4.105	3.00	1.60	. 522	4.36	. 65	. 00	. 00
51	18 • 70	• 507	15-43	-4.259	3+34	-1.76	. 623	6.94	. 65	• 00	• 00
AVERAGE	5: 804	04 P	ASFLIN	F 1079 0	000						
	55.00	+561	19.74	-6.144	2.09	+.95	. 729	9.52	5.85	.00	• 00
57 P	• 00	• 000	• 00	• 000	•00		.000	• 00	• 00	*	*
	804	04 w1	19N/FF	002 1011	LF MF	IALIZA	TION				
	20+83	• 526	17.43	-4.424	3+29	-1.95	. 646	7.52	1.59	. 00	.00
572	1.07	.024	1+10	• 518	• 48	89	.040	.92	.86	*	*
FFFCFive	UF HA	SELIN	E								
	94.7	93.8	88+3	128.0	157	-6.5	88.5	79.0	27.2	*****	*****
STD7	4.8	4.2	5+6	8+4	23	94.4	5+5	9.7	14.9	*****	****

210

.

و الورد و ال ال و ال

80405 W120N/CR002 (3E14) W079 00 000 *SOL8 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

· · · · · ·

4

الأراجي المراجع

Service and services
;

r.

5

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD		рсрр
1R*	22.50	.552	20.18	-6.307	1.98	30	.717	9.42	•00		.00
1 B	21.70	.549	19.57	-6.510	1.89	41	.728	9.17	5.20	.00	.00
2B•*	21.70	.531	18.11	-4.306	3.35	-1.81	.639	7.79	1.82	.00	.00
3B	21.60	.548	19.96	-8.212	1.40	• 3 2	•755	9.45	7.28	.00	•00
4 B	21.30	• 5 4 1	19.10	-6.442	1.89	.01	•711	8.66	4.94	.00	.00
1C•*	20.40	.546	17.37	-4.448	3.31	-3.20	.683	8.04	1.95	.00	.00
2 C	21.00	.555	18.62	-5.567	2.38	-1.73	.723	8.91	3.90	•00	.00
3C	20.70	• 547	18.28	-5.577	2.35	-1.23	•708	8.48	2.60	.00	.00
4C	21.50	.548	19.01	-5.698	2.27	81	•704	8.77	4.16	.00	.00
5C	21.70	.564	20.12	-8.301	1.42	05	•770	9.96	9.10	.00	.00
6C	21.90	• 556	19.97	-7.093	1.71	28	•744	9.58	6.50	.00	•00
7C	21.40	.563	19.18	-6.078	2.13	-1.06	•729	9.28	5.20	.00	.00
8C	21.00	.548	17.89	-4.535	3.20	-2.53	•675	8.21	2.34	.00	•00
9C	21.90	.556	18.94	-4.829	2.93	-2.21	.693	8.92	4.29	.00	•00
10C	20.30	.541	17.49	-4.867	2.85	-1.91	•682	7.92	1.56	.00	.00
11C	21.70	• 5 6 9	19.83	-7.156	1.73	48	.752	9.82	7.15	.00	.00
12C	21.60	.558	19.91	-8.035	1.46	• 30	•752	9.58	4.55	.00	•00
13C	21.80	.559	20.09	-8.078	1.46	-43	•748	9.65	7.15	.00	•00
15	21.70	• 563	19.54	-6.365	2.00	72	•731	9.45	5.20	.00	•00
25	22.10	.566	20.54	-8.680	1.35	•28	•768	10.15	9.10	.00	•00
4 S	21.50	• 532	17.87	-4.288	3.39	-1.63	•632	7.64	1.95	.00	•00
5S	22.20	. 558	19.49	-5.344	2.53	-1.34	•702	9.19	4.29	.00	.00
6S	21.70	52	18.88	-5.021	2.75	-1.89	.697	8.83	5.20	.00	.00
1 T	20.80	• 5 5 0	18.14	-5.045	2.73	-2.22	.704	8.52	2.34	.00	•00
2 T	20.60	• 5 4 3	17.72	-4.744	2.97	-2.33	.685	8.11	1.56	.00	.00
3T.*	20.80	•546	17.16	-3.804	4.29	-5.08	.663	7.96	1.95	.00	•00
4 T	20.70	• 5 4 8	18.16	-5.225	2.59	-2.03	.711	8.52	2.99	.00	•00
5T	20.60	.533	17.34	-4.398	3.28	-2.24	.655	7.60	1.30	•00	•00
AVERAGES	5: 804	05 в.	ASELIN	E W079 00	0 000						
	21.53	• 5 4 6	19.54	-7.054	1.73	03	.731	9.10	5.81	.00	•00
STD	.17	.004	• 35	.819	• 2 3	• 30	.018	• 3 3	1.05	*	*
	804	05 W1:	20N/CR	002 (3E14	4)						
	21.35	.553	18.91	-5.949	2.36	-1.22	.713	8.91	4.40	.00	•00
STD	• 5 5	.010	•95	1.359	•63	•94	.035	•74	2.30	*	*
PERCENT	OF BA	SELIN	Е								
	99.2	101.2	96.7	115.7	136	* * * * *	97.4	98.0	75.8	****	*****
STD %	3.3	2.5	6.7	31.3	60	****	7.4	11.9	60.5	****	****

211

ORIGINAL PROFESS OF PLAN TO SHITT

.

80403 W*118PH003 (1.4E17) LOW RESISTIVITY W057 00 000 *SOL8 1 /14/80 AM1: P0=91.60MW/CM² NO AR COATING

-

x

ż

÷.

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
1 R *	27.50	.550	20.06	-6.001	2.11	55	•712	9.32	.00	.00	.00
1B*	21.10	.559	17.97	-4.736	3.05	-1.32	.657	8.20	.65	.00	.00
2B*	21.90	.561	17.90	-4.751	3.05	-1.37	.659	8.21	1.69	.`0	.00
3 B	21.40	.579	18.85	-5.387	2.50	-1.72	.711	9.32	.91	.00	.00
1 C	21.60	• 5 7 3	18.42	-4.530	3.34	-2.60	•676	8.85	2.60	.00	.00
2 C	22.00	.581	19.94	-6.621	1.96	80	.743	10.05	6.50	.00	-00 /
3 C	21.50	• 5 7 9	19.62	-6.975	1.82	76	.754	9.93	5.85	.00	•00
4C	21.70	.561	18.95	-5.215	2.64	-1.38	.694	8.93	3.90	.00	.00
5C	21.90	• 5 7 0	18.94	-4.909	2.93	-1.86	•687	9.07	2.34	.00	.00
6C	21.60	• 5 6 6	18.66	-4.892	2.93	-1.86	.685	8.86	2.21	.00	.00
7C	21.60	• 5 7 6	19.49	-6.391	2.04	94	•738	9.71	5.20	.00	.00
1 S	21.20	• 5 6 4	18.18	-4.685	3.13	-2.33	.681	8.61	1.82	00	.00
2 S	21.60	.565	13.60	-4.841	2.97	-1.31	.680	8.77	2.34	.00	.00
3 S	21.50	• 5 5 8	18.40	-4.863	2.92	-1.05	.660	8.37	1.43	.00	.00
1T	22.70	• 5 5 2	20.12	-5.775	2.23	68	.706	9.35	21.00	.00	.00
2 T	22.20	•547	20.31	-7.394	1.59	• 0 2	•744	9.55	26.00	.00	•00
3T	22.00	• 5 5 4	18.23	-4.155	3.70	-2.24	•636	8.19	2.60	.00	.00
AVERAG	ES: 804	03 в.	ASELIN	E W057 0	0 000						
	21.40	.579	18.85	-5.387	2.60	-1.72	.711	9.32	.91	.00	.00
STD	.00	.000	.00	.000	.00	.00	.000	.00	.00	*	*
	804	03 W*	118PHO	03 (1.4E)	17) L(OW RESI	STIV	ITY			
	21.78	.565	19.07	-5.480	2.63	-1.41	.699	9.10	6.45	.00	.00
STD	• 37	.010	•72	.998	.62	•75	.035	.56	7.50	*	*
PERCEN	T OF BAS	SELIN	E								
	101.8	97.6	101.1	98.3	101	118.3	98.2	97.6	708.3	****	****
STD 🗶	1.7	1.8	3.8	18.5	24	43.4	4.9	6.0	823.7	****	****

A second s

80424 W121N/TI002 (3.9E13) W079 00 000 *SOL8 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

and the second
:

.

ø

_

. •...

4

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.558	19.95	-6.845	1.80	87	.755	9.75	.00	.00	.00
1B*	19.80	.530	17.26	-5.191	2.54	-1.55	.693	7.69	1.30	.00	.00
2 B	21.50	.553	19.79	-7.836	1.50	.07	.754	9.48	5.85	.00	.00
3B	21.40	.539	19.04	-6.212	1.98	.27	.694	8.46	3.90	.00	.00
4 B	21.40	.541	19.03	-6.122	2.03	.03	.697	8.54	3.90	.00	•00
5 B	21.20	.540	19.01	-6.535	1.86	.30	.705	8.54	4.29	.00	•00
10	19.70	.517	16.51	-4.463	3.13	-1.61	.641	6.90	1.17	.00	.00
2C	19.50	.524	16.68	-4-673	2.95	-2.33	.676	7.31	1.17	.00	•00
3C	19.70	• 5 2 4	17.09	-5.171	2.53	-1.12	•680	7.42	1.69	.00	.00
4C	19.70	• 512	16.39	-4.363	3.22	-1.57	.631	6.73	- 91	.00	.00
5C	19.60	• 5 2 6	17.24	-5.665	2.22	50	.690	7.52	1.95	.00	.00
6C	19.50	.523	17.00	-5.394	2.37	66	.679	7.33	1.30	.00	.00
7C	20.00	.521	16.95	-4.558	3.04	-2.00	.661	7.28	1.30	.00	•00
8C	19.60	.521	17.11	-5.507	2.29	35	•677	7.31	1.69	.00	.00
9C	2:.50	.538	18.76	-5.444	2.38	37	•677	8.28	3.25	.00	.00
100	19-90	.525	17.44	-5.535	2.29	59	.686	7.58	1.69	.00	.00
11C	19.70	.526	17.64	-6.356	1.89	19	.712	7.80	2.08	.00	.00
15	19.90	.530	17.81	-6.330	1.91	16	.711	7.93	2.60	•00	.00
25	19.90	.532	17.71	-5.925	2.10	87	.714	7.99	2.47	.00	.00
35	19.70	.526	17.23	-5.440	2.35	82	.687	7.53	1.95	.00	.00
4:	19.80	• 5 2 5	17.44	-5.653	2.22	71	.696	7.65	1.95	•00	•00
53	19.80	.521	16.63	-4.320	3.32	-2.72	.658	7.17	1.04	•00	.00
6S	20.00	• 525	17.50	-5.406	2.37	94	.689	7.65	2.08	.00	.00
1 T	19.80	.519	16.44	-4.260	3.39	-2.11	.636	6.91	1.04	.00	.00
2 T	20.30	.536	18.46	-6.954	1.70	41	.742	8.54	1.30	.00	.00
3T	19.90	• 5 2 6	17.41	-5.393	2 • 38	-1.01	.690	7.64	1.69	.00	•00
`4T	19.90	• 5 2 3	17.23	-5.106	2.57	-1.18	.678	7.46	1.30	.00	.00
5T	19.70	• 5 2 2	17.01	-5.051	2.61	-1.22	•675	7.34	1.56	.00	.00
AVERAGES	s: 804	24 B.	ASELIN	E W079 00	0 00						
	21,38	• 5 4 3	19.22	-6.676	1.84	.17	•713	8.76	4.49	.00	•00
STD	.11	•006	• 33	.687	•21	.12	.024	• 4 2	• 80	*	*
	804	24 W1:	21N/TI	002 (3.91	E13)						
	19.87	.525	17.26	-5.317	2.51	-1.07	.681	7.51	1.69	•00	.00
STD	.40	•006	• 5 8	•688	• 46	•70	.026	• 4 2	• 56	*	*
PERCENT	OF BAS	SELINI	E								
	93.0	96.6	89.8	120.4	136	****	95.6	85.8	37.7	*****	****
STD 🗶	2.3	2.1	4.6	19.6	44 1	****	7.0	9.1	21.6	*****	****

213

.

II Berthann Hings may be her tore a fair and a fair has a fair
80425 W122TI007 (8.4E13) W097 0 000 *SOL8 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

and the second
1

.

•

•

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
2R*	21.90	• 5 5 7	19.85	-6.482	1.93	-1.20	.752	9.70	.00	.00	.00
1 B	22.20	.551	20.12	-6.638	1.85	67	.742	9.59	5.20	.00	.00
2B.*	22.30	.546	19.91	-5.840	2.18	-1.28	.728	9.37	4.42	.00	.00
3B	22.20	.548	19.94	-6.150	2.04	97	.732	9.42	4.16	.00	.00
4B*	22.30	- 543	19.38	-4.995	2.71	-1.78	.695	8.90	2.99	.00	.00
5B.*	22.30	.549	19.89	-5.828	2.20	-1.25	.726	9.40	4.55	.00	.00
10	14.10	.468	12.09	-5.214	2.32	55	.654	4.56	.52	.00	.00
2C	13.90	.468	12.12	-5.730	2.02	.10	.669	4.60	.52	.00	.00
3C	13.90	.469	12.23	-6.018	1.88	.31	.678	4.68	• 6 5	.00	.00
4C	13.90	.470	12.25	-6.042	1.88	.11	.684	4.72	.78	.00	.00
5C	13.90	.467	12.26	-6.117	1.83	• 36	.681	4.68	.65	•0C	.00
6C	14.30	.469	12.63	-6.154	1.82	• 36	.684	4.85	• 91	•00	.00
7C	14.00	.462	12.07	-5.392	2.18	20	.657	4.49	.65	.00	.00
8C	13.80	•465	12.10	-5.934	1.91	• 37	.673	4.56	•65	.00	-00
9C	14.00	.469	12.20	-5.702	2.04	•02	.669	4.65	.78	.00	.00
10C	13.70	.468	12.09	-6.112	1.84	• 2 9	.683	4.63	•78	•00	.00
11C	13.90	.459	11.83	-5.086	2.37	46	.643	4.34	.39	•00	.00
15	14.20	•472	12.55	-6.145	1.83	• 2 4	.686	4.84	.78	.00	.00
25	14.20	•470	12.47	-5.935	1.92	•20	.677	4	• 78	.00	.00
35	14.10	.469	12.43	-6.063	1.86	•20	.683	4./8	• 78	.00	.00
4 S	14.10	.469	12.48	-6.309	1.76	.73	.681	4.77	•91	.00	.00
5S	14.20	.467	12.36	-5.603	2.08	26	.671	4.70	• 7 8	.00	.00
6S	14.20	•470	12.49	-6.020	1.88	• 32	.678	4.79	•91	.00	.00
1 T	13.90	•468	12.01	-5.391	2.21	49	.663	4.56	•91	•00	.00
2 T	14.00	• 464	12.00	-5.216	2.31	48	.652	4.48	.91	.00	.00
3T	13.80	.466	12.11	-5.892	1.93	•08	.677	4.61	.91	.00	.00
4 T	13.90	•457	11.69	-4.822	2.57	86	.633	4.25	.65	-00	•00
AVERAGE	S: 804	25 B.	ASELIN	E W097 0	000						
	22.20	• 5 5 0	20.03	-6.394	1.94	82	.737	9.50	4.68	.00	.00
STD	•00	.002	•09	• 2 4 4	.09	.15	.005	•09	.52	*	*
	804	25 W1	22T100	7 (8.4E1)	3)						
	14.00	.467	12.21	-5.757	2.02	• 0 2	.670	4.64	.74	.00	.00
STD	.16	.004	• 2 4	.406	• 2 2	.39	.014	.15	•15	*	*
PERCENT	OF BAS	SELIN	E								
	63.1	85.0	61.0	110.0	104	202.3	91.0	48.8	15.9	*****	*****
STD 🕱	• 7	.9	1.5	10.0	17	56.7	2.6	2.1	5.2	****	****

214

.

. ..

.

80427 W123T1008 (1.05E14) W097 00 000 *Sol8 1 /8 /30 AM1: P0=91.60MW/CM² NO AR COATING

•

-

m.,

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.555	19.76	-6.233	2.03	-1.39	.748	9.61	.00	.00	.00
18.	22.20	.549	19.46	-5.191	2.59	-1.79	.707	9.11	4.16	.00	.00
28.	22.10	• 546	19.76	-5.988	2.10	-1.01	.726	9.26	3.90	.00	-00
3B*	22.20	.536	18.84	-4.466	3.18	-2.21	.667	8.40	2.86	-00	.00
4B*	22.30	.536	19.19	-5.129	2.57	25	.657	8.30	4.16	.00	.00
5B*	22.30	.536	18.75	-4.221	3.48	-2.87	.664	8.40	3.25	.00	-00
2C	14.80	.468	12.99	-5.930	1.91	.33	.674	4.94	•78	.00	-00
3C	14.40	.469	12.65	-5.924	1.92	.12	.679	4.85	•91	.00	-00
4C	14.40	.464	12.42	-5.437	2.16	-04	•655	4.63	•65	.00	.00
5C	14.40	•470	12.69	-6.071	1.86	•31	.681	4.87	•78	- 00	00
6C	14.30	• 468	12.71	-6.478	1.69	•85	.685	4.85	•91	.00	.00
7C	14.50	•466	12.63	-5.764	1.98	.53	.661	4.72	•78	.00	.00
8C	14.60	.462	12.58	-5.454	2.13	.27	.651	4.64	.91	.00	-00 -
9C	14.10	•464	12.30	-5.837	1.94	• 5 5	.664	4.59	-91	.00	-00
10C	14.30	- 464	12.33	~5.505	2.12	.39	-651	4.56	•65	-00	.00
11C	14.40	•466	12.55	-5.722	2.01	.18	.667	4.73	•91	.00	.00
1 2 C	14.50	.468	12.72	-6.035	1.86	.78	.668	4.80	• 39	.00	.00
15	14.70	.479	13.07	-6-425	1.74	.63	•689	5.13	•39	.00	.00
25	14.10	.474	12.67	-7.013	1.53	1.19	•697	4.93	.65	.00	-00
35	14.30	.475	12.77	-6.716	1.63	1.03	.690	4.96	.78	.00	-00
4S	14.40	.474	12.79	-6.450	1.72	-83	.685	4.94	•65	.00	.00
53	14.40	.470	12.57	-5,780	1.99	• 32	.667	4.77	.78	.00	-00
6S	14.40	.473	12.64	-6.348	1.75	1.97	•654	4.71	.78	.00	.00
1T	14.20	.473	12.34	-5.699	2.05	.40	.661	4.69	-91	.00	-00
2 T	14.20	.470	12.29	-5.473	2.17	26	.663	4.68	-91	.00	.00
3 T	14.20	• 468	12.29	-5.421	2.19	53	•667	4.68	.78	.00	.00
4T	14.30	• 466	12.52	-5.937	1.90	.62	.667	4.70	.65	.00	.00
5T	14.30	.467	12.40	~5.548	2.11	.01	.662	4.67	•65	.00	.00
AVERAGES	s: 2042	.7 <i>L</i> ž	SEL 168	woy7 00	1171			10			60
	22.15	•242	19.01	-2.590	2.35	-1.40	• /15	. 19	4 . 11 . 3	• 0 0	•00 *
510	.05	.002	.15	.398	.24	• 39	•005	•07	•13		~
	5041	27 1612	23T1068	(1. 83E1	4)			· 7.0	7 5		3.0
	14.37	.469	12.59	-5.953	1.93	• 4 5	•670	4.15	•/3		+00
STD	.17	•60.F	.21	-430	-15	• 21	•013	•14	•12	**	-
PLAULAL	01 043	SELIN		-							
	64.9	05.7	υ4.2	93.5	32	234.3	93.5	52.0	13.6	****	*****
	. 7	1.0	1.0	16.0	17	56-3	3.1	1,9	4.5	*****	*****

THE ELESS THE FLORE COLLEGE

80531 V124M0003 (1.8E10) W097 00 000 *S019 1 /14/80 AM1: P0=91.60MW/CM² NO AR COATING

.

2

.

•

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
204	21 00	556	10 84	-6 698	1.92	-1.11	. 750	9.65	- 00	.00	.00
28~	21.70	540	10 67	-6.016	2 10	01	. 723	9.24	3.77	.00	.00
1.0	22.00	• J47 644	19.07	6 7/3	1 20	_ 30	736	9.22	3.64	- 00	-00
20 20#	21.70	. 540	18.88	-4.699	2.96	-1.57	-666	8.41	2.21	.00	.00
50 ···	20.40	- 544	18.05	-5.612	2.32	-1.34	.712	8.36	3.25	.00	.00
58	22 10	546	19.52	-5.483	2.38	-1.42	. 713	9.10	3.51	.00	.00
38	21 60	546	19.77	-7.303	1.62	32	.752	9.38	3.25	.00	.00
20	21.50	.538	18.46	-4.756	2.91	-1.87	.678	8.29	1.95	.00	.00
30	21 70	562	10.29	-5.774	2.20	-1.09	.717	8.92	2.21	.00	.00
50	21.00	546	19.72	-6.340	1.95	74	.732	9.25	2.86	.00	.00
40	21. 30	540	10 44	-5.752	2.20	95	. 712	8,91	2.86	.00	.00
30	21.50	567	10 66	-7 157	1.65	- 62	. 750	9.27	3, 38	.00	-00
	21.50	• 243	10 30	-5 588	2 31	_1.33	. 715	8.96	2.99	-00	.00
80	21.00	•) 4 2	18 00	-5 100	2.61	-1.57	. 694	8.61	2.86	-00	.00
90	21.00	528	10.33	-6 591	3.07	-1.89	. 666	8.27	1.95	.00	.00
	21.00	540	10.00	-5 502	2 35	-1.39	. 712	8.74	2.99	.00	- 00
110	21.50	5/1	10.56	-6.546	1.85	72	. 739	9.13	3.25	- 00	.00
120	21.00	5/41	10 07	-5 415	2 6 3	-1.65	716	8.79	3.25	.00	.00
12	21.40	+ 344	10.07	-5.010	2	-1.00	726	9 85	3.12	.00	.00
25	21.30	• 24 3	19.32	-5.930	1.97	-1.09	743	0.20	3.64	.00	.00
35	21.30	• 545	10 00	-5.011	2 60	_1 00	608	9 63	2.60	.00	. 00
45	21.70	• 237	10.00	- 5 409	2.03	-1.64	713	0.01	3.25	.00	- 00
22	21.00	• 342	19.00	-2.470	1 70	- 45	730	0.05	4.16	.00	- 00
11	21.00	• 547	19.19	-0.//0	1.13	- 74	726	9•2J	3 64	00	00
21	21.00	•)44 = 14	19.49	-0.427	1 56	/0	+/33	7.14	2 00	-00	
3T	21.70	• 340 510	19.90	-/.311	1+30	-1 16	•/31	2 · 4 1 9 77	2 86	.00	.00
41	21.40	• 340	19.00	~J./J/	2 • 1 7	-1 69	4710	0 • / / 9 · 0 /	1 60		. 00
51	21.70	• > > > > >	10+39	-4.555	3.07	-1.00	•010	0.04	1.07	•••	
AVERAGES	s: 805	31 B	ASELIN	E W097 0	0 000						
	21.93	.547	19.62	-6.081	2.09	91	.724	9.18	3.64	.00	.00
STD	.17	.001	.07	.517	.24	. 42	.009	.06	.11	*	*
010	805	31 W1	24M000	3 (1.8EI	0)						
	21.62	.542	19.21	-5.906	2.22	-1.10	.717	8.89	2.98	.00	.00
STD	.16	.003	.43	.856	.45	.54	.026	. 36	.62	*	*
FERCENT	OF BA	SELIN	E					•			
	98.6	99.0	 97.0	102.9	106	78.8	99.1	96.7	82.0	****	*****
S T D Z	1.5	.9	2.5	23.5	36	142.4	4.9	4.6	20.0	*****	****

. . .

۰.

- - -

· _

· · .

۰- ,

· . •

1.1.1

2

80601 W125M0004 (3E11) W097 00 000 *SOL9 1 /5 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	C CD	PCDa	РСДР
2R*	21.90	.558	20.18	-7.719	1.54	34	.765	9.88	.00	.00	.00
1B '	22.00	.549	20.00	-6.925	1.74	28	.739	9.43	3.25	00	.00
2 B	22.10	.549	20.11	-7.045	1.70	11	.737	9.46	3.90	.00	.00
3 B	21.90	.548	19.73	-6.501	1.89	31	.724	9.19	3.90	.00	.00
4B	22.10	• 5 4 8	20.09	-6.875	1.75	42	•742	9.50	3.77	.00	.00
5B	22.00	• 5 4 9	19.72	-6.199	2.02	59	.721	9.21	3.64	.00	.00
10	21.20	.535	18.49	-5.128	2.59	-1.66	.697	8.36	1.56	.00	•00
2C	20.80	.536	18.59	~5.965	2.09	-1.15	.726	8.56	1.95	•00	.00
3C	21.30	.535	19.02	-6.016	2.06	83	•720	8.67	1.82	•00	.00
4C	21.20	• 5 3 8	19.23	-6.742	1.77	57	.741	8.94	2.08	.00	.00
5C	21.20	• 5 38	18.82	-5.693	2.24	-1.30	.718	8.66	2.08	•00	.00
6C	21.00	• 5 3 4	17.97	-4.626	3.02	-2.37	.680	8.06	1.30	•00	•00
7C	21.00	• 5 3 6	18.48	-5.420	2.39	-1.42	.707	8.41	1.82	.00	.00
8C	21.10	• 5 3 5	18-85	-6.043	2.05	81	.720	8.59	1.56	•00	.00
9C	21.00	• 5 3 5	18.75	-5.972	2.08	99	.722	8.58	2.08	.00	•00
10C	21.10	.534	18.87	-6.071	2.03	84	.722	8.61	1.95	.00	.00
110	20.90	.533	18.40	-5.400	2.39	-1.53	.709	8.35	1.69	.00	.00
1 2 C	21.00	• 5 2 2	17.64	-4.611	2.97	71	.632	7.33	•91	.00	.00
15	21.10	• 5 3 6	18.97	-6.344	1.92	62	.727	8.69	2.21	.00	•00
25	21.20	• 5 3 5	18.80	-5.736	2.20	-1.01	•712	8.54	1.95	.00	.00
3S	21.10	• 5 3 5	18.95	-6.241	1.96	77	•727	8.68	1.95	.00	.00
4S	21.20	• 5 2 9	18.40	-5.060	2.61	-1.49	•688	8.16	1.30	.00	.00
5S	21.10	• 5 3 8	18.98	-6.306	1.94	80	.731	8.78	2.47	.00	•00
6S	21.00	• 5 36	18.73	-5.948	2.10	95	.720	8.57	1.95	•00	•00
1 T	20.80	.536	18.39	-5.554	2.31	-1.39	.713	8.40	1.95	.00	•00
2 T	20.70	• 5 3 5	18.18	-5.302	2.47	-1.78	• 709	8.31	1.69	.00	.00
3T	20.80	- 524	17.66	-4.612	2.99	-1.70	•660	7.61	.91	.00	.00
4T	20.90	• 5 2 3	18.26	-5.013	2.62	-2.42	•712	8.23	1.56	•00	•00
5T	20.80	• 5 3 5	18.57	-5.928	2.10	-1.16	•72 5	8.53	2.34	•00	•00
AVERAGE	5: 8060	01 B/	ASELINI	E W097 00	000						
	22.02	.549	19.93	-6.709	1.82	34	.732	9.36	3.69	.00	.00
STD	.07	.000	.17	.313	.12	.16	.008	.13	.24	*	*
	8060	01 WI:	2 5 MOO 0	4 (3E11)							
	21.02	.534	18.57	-5.640	2.30	-1.23	.709	8.42	1.79	.00	.00
STD	.16	.004	• 41	.581	.35	.50	.024	.36	.39	*	*
PERCENT	OF BAS	SELIN	E			-					
	95.5	97.3	93.2	115.9	126	* * * * *	96.9	90.0	48.4	****	*****
STDZ	1.1	. 9	2.9	13.0	29	387.9	4.4	5.1	14.5	*****	*****

~ '

.

.

وي مرد المرجع من المرجع المرجع من المرجع

80602 W126MULTIOO1 W097 00 000 *SOL9 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*.	21.90	.558	20.06	-7.244	1.67	55	.758	9.79	.00	.00	.00
18*	21.60	.545	19.29	-6.001	2.10	86	.720	8.96	3.64	.00	•00
2B	21.90	.548	19.90	-6.893	1.75	36	.740	9.39	4.68	.00	.00
3B*	21.70	.550	19.65	-7.019	1.72	.42	.719	9.07	4.55	.00	.00
4B	21.60	.550	19.85	-7.604	1.55	18	.756	9.50	4.94	.00	.00
10	19.30	.532	17.37	-6.566	1.83	14	.719	7.80	1.30	.00	.00
2C	19.90	.530	17.78	-6.217	1.96	34	.711	7.93	1.30	•00	-00
3C	19.70	• 5 2 8	17.43	-5.870	2.12	38	•697	7.66	1.04	-00	.00
4C	19.50	.530	17.63	-6.783	1.75	10	•726	7.93	1.30	.00	•00
5C	19.90	• 5 2 5	17.29	-5.220	2.49	-1.02	•680	7.52	•91	.00	•00
6C	19.90	.529	17.72	-6.028	2.04	59	•710	7.91	1.30	•00	•00
7C	19.70	.529	17.63	-6.135	1.99	87	.723	7.97	1.30	•00	•00
8C	19.70	.532	17.65	-6.217	1.97	67	.721	7.99	1.30	•00	.00
9C	19.60	• 5 2 9	17.47	-5.968	2.07	94	•717	7.86	1.30	•00	•00
10C	19.90	.529	17.75	-6.013	2.05	83	.717	7.98	1.17	•00	•00
11C	19.90	• 5 2 9	17.86	-6.387	1.89	33	•718	7.99	1.30	.00	•00
1 2 C	19.60	• 5 2 3	16.98	-5.089	2.58	-1.38	.681	7.38	•91	.00	•00
1 3C	19.50	.525	17.02	-5.340	2.42	~1.06	.687	7.44	.91	.00	•00
15	20.00	.533	17.59	-5.485	2.35	-1.21	.701	7.90	1.30	.00	•00
25	20.00	.532	17.91	-6.218	1.97	62	•720	8.10	1.56	•00	•00
3S	19.90	.532	17.76	-6.038	2.05	83	.718	8.04	1.56	.00	•00
4S	20.00	.530	17.63	-5.582	2.28	-1.06	.702	7.87	1.30	.00	•00
55	20.20	.530	17.93	-5.857	2.13	80	.709	8.03	1.30	.00	.00
1T	19.40	.532	17.53	-6.689	1.79	30	.728	7.95	1.43	•00	•00
2 T	19.50	.528	17.23	-5.679	2.22	-1.01	.705	7.67	1.04	•00	-00
3T	19.20	.530	16.95	-5.873	2.13	18	.690	7.43	1.17	.00	.00
4T	19.50	.526	17.10	-5.389	2.39	-1.38	.699	7.59	1.04	•00	•00
5 T	19.30	.525	16.89	-5.383	2.39	-1.18	.693	7.42	.91	.00	•00
AVERAGE	S: 806	02 B	ASELIN	E W097 0	0 000						
	21.75	.549	19.88	-7.249	1.65	27	.748	9.45	4.81	.00	.00
STD	.15	.001	.02	.356	.10	.09	.008	.05	.13	*	*
	806	02 W1	26MULT	1001							
	19.70	.529	17.48	-5.914	2.12	75	.708	7.80	1.22	-00	• 00
STD	.26	.003	.32	.456	• 2 3	. 39	.014	.23	.19	*	*
PERCENT	OF BA	SELIN	E								
	90.6	96.4	88.0	118.4	129	-75.8	94.6	82.6	25.3	****	*****
STD 🕱	1.8	• 7	1.7	10.6	22	276.9	2.9	2.9	4.7	****	****

.

·· · ·

. . . .

.

80530 W127FZ/TI001 (3.9E13) WITH CZ BASES ADDED CB W101 00 000 *SOL9 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

and the second
5

*

۰. .

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
2R*	21.90	.556	19.95	-6.826	1.80	87	.754	9.71	.00	.00	.00
18.*	22.30	.545	19.87	-5.844	2.17	-1.07	.721	9.27	3.64	.00	.00
2B*	22.30	.539	19.00	-4.465	3.20	-2.59	.679	8.63	2.4?	.00	•00
3B.*	22.30	.546	19.76	-5.580	2.32	-1.36	.717	9.23	3.64	•00	•00
4B*	21.70	.535	18.34	-4.358	3.32	-2.62	•667	8.19	2.08	.00	•00
5B*	22.30	• 541	19.40	-4.990	2.71	-1.91	.699	8.91	3.25	.00	.00
1CB.*	22.60	• 5 4 7	20.05	-5.722	2.24	97	.712	9.31	3.51	.00	.00
2 C B	22.60	• 547	20.53	-6.833	1.76	39	.740	9.67	4.42	.00	.00
3CB	22.80	.548	20.51	-6.300	1.97	65	.729	9.63	3.77	.00	.00
4CB.*	22.60	.546	20.11	-5.765	2.21	-1.12	.719	9.39	4.42	.00	•00
5CB*	22.90	• 5 4 3	19.67	-4.692	2.97	-2.01	.682	8.97	2.99	.00	•00
10	14.20	.466	12.40	-5.835	1.95	.43	.667	4.67	.65	.00	.00
2C	14.10	.463	12.29	-5.746	1.99	• 26	.666	4.60	. 39	.00	-00
3C	14.40	.464	12.57	-5.703	2.01	13	.673	4.76	.65	•00	.00
4C	14.30	.463	12.56	-5.949	1.88	.27	.676	4.73	• 52	.00	.00
5C	14.20	•462	12.46	-5.949	1.88	• 32	.675	4.68	.91	.00	.00
6C	14.30	.462	12.58	-6.032	1.84	.39	.677	4.73	• 78	.00	.00
7C	14.20	.459	12.38	-5.713	1.98	.12	.668	4.60	• 78	.00	.00
80	14.20	.460	12.46	-5.931	1.88	.32	.674	4.66	.78	.00	.00
15	14.30	.462	12.45	-5.702	2.00	.25	.664	4.64	.52	.00	.00
25	14.30	.463	12.48	-5.759	1.98	-22	.668	4.68	.65	.00	.00
35	14.20	.463	12.44	-5.941	1.89	• 51	.670	4.66	• 78	.00	.00
4S	14.20	.460	12.41	-5.800	1.94	.24	.669	4.62	.78	.00	.00
5S	14.50	.460	12.54	-5.520	2.09	•15	.657	4.64	•65	•00	.00
1 T	14.00	.460	12.23	-5.831	1.93	• 34	.668	4.55	2.21	.00	.00
2T	14.30	.462	12.45	-5.702	2.00	•25	.664	4.64	.78	.0C	.00
3T	14.40	.462	12.57	-5.789	1.95	• 35	.667	4.69	.65	.00	.00
4T	14.30	.459	12.41	-5.569	2.36	03	.664	4.61	• 78	.00	•00
•••== •						-					
AVERAG	SES: 80	530	PASELI	NE W101	00 00			0.05	2.64		.00
	22•3	0 • 54	6 19•8	1 -5+71	2 2.2	5 -1.2	· · /19	3+52	.1004	* (70)	*
STD	• 0	0.00	0.0	6 • 13	2 •0	K • 1	5 •002	- U2 DC	• 00	Ŧ	Ŧ
	80	530 W	127FZ/	TIOO1 WI	TH CZ	HASES	AUULD	7U 6 69	1.00	. 00	. 00
		1 17	0 12.0	5 -5-86	1 1.9	7 .0	5 6 19	- <u>-</u>	1 + 417	• 00	• 00

STD	15•86 •4 3•30 •0	78 13•95 34 3•08	-5-861 -272	1.97	•05 •45	• 679 • 023	5+58 1+90	1+40 1+33	•00 *	•00 *
PERCENT STDZ	OF BASEL 71•1 87 14•8 6	INE +6 70+4 +2 15+8	97•4 7•2	88 8	204.4 41.5	94•5 3•5	60•3 20•8	38 • 4 36 • 6	***** *****	***** *****

1

محمد كار وروب بالله المروكوات ورواديدو المعم

. . . .

80603 W128TA002 (1.7E11) W097 00 000 *SOL9 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

2.11.1

.

•

44° n - • • •

5

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.556	19.87	-6.535	i.90	-1.15	•752	9.69	.00	.00	•00
18	21.80	.550	19.93	-7.124	1.68	60	.755	9.58	4.16	.00	•00
28.*	21.90	• 547	19.37	-5.513	2.37	-1.49	.716	9.07	3.38	.00	.00
3B*	16.10	.185	11.02	-12.761	• 28	7.29	.356	1.12	.00	.00	•00
4B.*	21.90	.543	19.02	-4.924	2.78	-2.13	.699	8.79	2.86	.00	•00
5 B	22.10	.549	20.18	-6.960	1.73	80	•757	9.72	4.42	.00	.00
10	21.60	• 5 4 7	19.71	-7.122	1.67	37	•748	9.34	2.99	.00	•00
2C	21.10	.546	18.76	-5.704	2.26	-1.44	•722	8.80	3.12	.00	•00
3C	21.30	• 546	19.15	-6.292	1.97	78	.730	8.98	2.99	.00	.00
4C	21.50	.547	19.66	-7.277	1.63	23	.748	9.30	3.51	.00	•00
5C	21.40	.546	19.55	-7.163	1.66	39	•750	9.26	3.51	.00	•00
6C	21.30	.546	19.30	-6.711	1.81	51	.738	9.08	3.51	.00	•00
7C	21.30	• 546	19.33	-6.794	1.78	46	•739	9.09	3.51	.00	•00
8C	21.50	.544	19.39	-6.371	1.93	91	.738	9.12	3.25	.00	.00
9C	21.40	• 546	19.44	-6.894	1.75	36	.739	9.14	2.60	.00	•00
10C	21.40	• 5 3 7	18.21	-4.542	3.12	-2.21	•670	8.14	3.38	.00	•00
110	21.40	.540	19.18	-6.185	2.00	72	.724	8.85	1.82	.00	•00
1 2 C	21.50	.545	19.13	-5.802	2.20	-1.16	.720	8.92	2.60	.00	.00
15	21.30	.550	19.38	-6.917	1.75	47	•744	9.21	3.51	.00	.00
2 S	21.30	.544	18.42	-4.833	2.87	-2.25	.693	8.49	2.86	•00	•00
3S	21.40	.546	18.93	-5.554	2.35	-1.42	.715	8.83	2.99	.00	.00
4 S	21.40	• 548	19.36	-6.573	1.87	67	.738	9.15	3.12	.00	.00
55	21.50	• 5 4 6	19.42	-6.510	1.88	67	.736	9.13	3.12	.00	.00
1T	21.30	• 5 4 7	18.40	-5.093	2.67	86	.670	8.26	2.60	.00	•00
2 T	21.20	• 5 4 9	19.43	-7.394	1.60	33	•755	9.29	3.25	.00	.00
3т	21.30	• 546	18.88	-5.652	2.29	-1.28	.715	8.80	1.56	.00	.00
4T	21.60	.537	18.56	-4.834	2.83	-1.53	•674	8.26	3.25	.00	.00
5T	21.40	• 5 4 7	19.43	-6.781	1.79	54	.741	9.18	2.99	•00	.00
AVERAGE	S: 806	03 в.	ASELIN	E W097 0	0 0 0 0						
	21.95	.550	20.05	-7.042	1.71	70	.756	9.65	4.29	•00	.00
STD	.15	.001	•12	•082	•02	.10	.001	.07	•13	*	*
	806	03 W1	28TA00	2 (1.7E1	1)						
	21.38	.545	19.14	-6.227	2.08	89	.725	8.94	3.00	•00	•00
STD	•12	.003	• 4 2	•837	.43	• 5 7	.025	.35	.51	*	*
PERCENT	OF BA	SELINI	E								
	97.4	99.2	95.4	111.6	122	72.9	95.8	92.6	70.0	*****	****
STD 🕱	1.2	• 7	2.7	13.0	28	112.2	3.5	4.3	14.3	****	****

the second se

- - - - - - 🕶

1 5 5 N.

81026 W131MN008 (5.5E14) THREE INCH MATERIAL W117 00 000 *SOLIO 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

the two the general t

· • · ·

s. 5 - 5

3

.

.;

·

-

7

-

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
3 D +	21 00	560	10 7/	(200		1 00	7 2 0	0 67	0.0	0.0	
287	21.90	• J 0 U	19./4	-0.290	2.02	-1.02	•/30	9.3/	•00	.00	•00
128	21.30	• • • • • • • • • • • • • • • • • • • •	20.12	-/./04	1.00	•13	+/47	9.03	4.29	.00	.00
138 *	22+20	• 5 5 7	10 92	-0.109	1 • 4 2	•12	./01	J.J.Z 0 25	3.90	.00	•00
168	22.20	556	20 70	-3.940	2+13	~ • 90	• / 2 2	10 05	J•04 / 55	•00	•00
21B	22.30	.556	20.74	-8.664	1.32	.19	.770	10.10	4.03	.00	.00
22B	22.30	- 556	20.74	-8.664	1.32	.19	.770	10.10	4.55	.00	.00
23B	22 30	.556	20.61	-8.084	1.44	.04	.762	9.99	4.94	.00	.00
24B	22.30	.556	20.65	-8.209	1.42	.02	.766	10.04	5.20	.00	.00
31B.*	22.10	.560	20.05	-6.313	2.01	-1.84	.766	10.03	3.00	20	- 00
32B	22.30	.560	20.39	-7.334	1.65	06	.745	9.83	4.94	0	.00
33B	22.30	.560	20.61	-8.049	1.46	07	.765	10.10	5.20	10	.00
34B	22.30	.558	20.18	-6.670	1.86	38	.733	9.65	4.68	.00	.00
41B	22.30	-558	20.65	-8.233	1.42	.02	.766	10.08	4.68	.00	.00
42B	22.60	• 5 5 5	20.78	-7.673	1.54	07	•755	10.02	4.29	.00	.00
11	20.60	• 527	17.65	-4.800	2.83	-1.57	.670	7.69	1.56	.00	.00
12	20.70	• 534	18.45	-5.910	2.11	-1.01	.719	8.41	1.56	.00	.00
13	20.40	• 5 3 6	18.32	-6.331	1.93	55	.723	8.36	.78	•00	.00
14	20.40	• 5 2 5	17.30	-4.551	3.06	-2.03	.662	7.50	•46	•00	•00
15	20.30	• 5 3 9	18.53	-7.122	1.66	50	•750	8.68	1.30	•00	.00
16	20.30	• 534	17.84	-5.512	2.34	99	.697	7.99	.78	.00	•00
17	20.40	• 5 3 7	18.28	-6.099	2.03	-1.04	•728	8.43	•91	•00	•00
18	20.30	• 5 3 9	18.48	-6.920	1.72	64	•748	8.65	1.30	•00	•00
19	20.30	• 5 3 8	18.40	-6.704	1.79	64	•740	8.55	1.30	•00	•00
110	19.80	• 5 3 6	17.77	-6.146	2.02	-1.16	•732	8.22	1.04	.00	•00
111.*	19.40	• 5 3 6	16.10	-3.767	4.35	-6.73	•688	7.56	1.30	•00	•00
21	20.60	• 5 3 5	18.13	-5.433	2.38	-1.39	•705	8.22	1.04	•00	•00
22	20.60	• 531	17.93	-5.271	2.47	91	•682	7.89	.91	.00	•00
23	21.10	• 3 3 2	18.34	-5.0/8	2.61	-1.56	• 6 9 0	8.20	.91	.00	.00
24	20.00	• 2 3 0	10.44	-2./41	2.21	-1.02	•/11	8.38	1.04	•00	.00
25	20.50	•)))	1/•01	- 3 • 1 4 8	2.5/	-1.31	•000	1.92	•91	•00	•00
20	20.50	• J 30 5 2 7	10+40	-6.002	2 00	/0	• / 2 3	0.40	1.20	.00	•00
28	20.50	- 5 10	18.55	-6 619	1 93	-1.02	• 1 2 3	0+42	1.54	.00	.00
29	20.50	.536	18.12	-5.585	2.30	-1.33	.711	8.27	1.30	•00	•00
210	20.40	.537	18.25	-6.056	2.05	-1.01	.725	8.40	1.30	.00	.00
211	19.90	.536	17.79	-6.038	2.06	-1.01	.723	8.16	1.17	.00	.00
212	19.80	.535	17.63	-5.830	2.17	-1.35	.723	8.10	1.56	.00	.00
31	20.50	.534	17.82	-5.155	2.57	-1.31	.686	7.94	.65	.00	.00
32	20.30	.537	18.09	-5.935	2.11	95	.717	8.27	.78	.00	.00
33	20.70	.531	17.63	-4.701	2.94	-1.53	.661	7.68	.65	.00	.00
34	20.60	.535	18.18	-5.602	2.28	-1.03	.704	8.20	1.04	.00	.00
35	20.40	.537	18.09	-5.762	2.20	-1.02	.711	8.24	1.04	.00	.00
36	20.70	.539	18.50	-6.060	2.06	83	.720	8.50	1.43	.00	.00
37	20.50	• 5 3 5	17.93	-5.260	2.50	-1.53	.699	8.10	•91	•00	.00

• 2

29	20.70	. 5 3 6	18.11	-5.318	2.46	-1.22	.694	8.14	1.04	.00	.00
20	20.50	.535	18.17	-5.700	2.23	-1.18	.713	8.27	1.04	.00	.00
37	20.80	.538	18.70	-6.291	1.95	79	.730	8.63	1.56	.00	.00
311	20.10	.534	17.75	-5.608	2.28	-1.17	.707	8.03	1.17	.00	.00
312	19.70	.527	17.01	-4.910	2.75	-1.96	-685	7.52	.91	.00	.00
41	20.40	.540	18.48	-6.703	1.80	54	.737	8.59	1.43	.00	.00
41.	20.70	.540	18.75	-6.747	1.78	41	.735	8.69	1.69	.00	.00
42	20.80	.541	18.74	-6.413	1.91	71	.732	8.71	1.69	.00	.00
45	20.80	.540	18.88	-6.834	1.75	39	.738	8.76	1.69	.00	.00
44	20.90	.540	17.07	-2.854	7.50	*****	-816	9.74	1.95	.00	.00
45.*	21.00	.540	17.06	-2.805	7.79	****	.811	9.72	1.95	.00	.00
40.0	20.70	.538	18.61	-6.293	1.95	83	.731	8.60	1.56	.00	.00
48	20.80	.534	18.31	-5.531	2.32	-1.02	.700	8.23	1.04	.00	.00
40	20.50	.535	18.36	-6.199	1.98	67	.721	8.37	1.30	.00	.00
410	20.60	.532	18.25	-5.670	2.23	-1.22	.713	8.27	1.04	.00	.00
410	20.20	.534	18.17	-6.325	1.93	81	.730	8.33	1.56	.00	.00
412	20.00	.535	17.85	-5.994	2.08	-1.00	.721	8.16	1.56	.00	.00
51	20.60	.536	18.04	-5.321	2.46	-1.35	.697	8.14	1.04	.00	•00
52	20.50	.536	18.30	-6.020	2.07	87	.719	8.36	1.04	.00	.00
52	20.50	.538	18.15	-5-686	2.25	-1.10	.710	8.28	1.04	.00	.00
55	20.50	538	18.41	-6.306	1.95	60	.724	8.44	1.04	.00	.00
56	20.40	-537	18.39	-6.478	1.87	55	.729	8.45	1.30	.00	.00
55	20.40	576	18.14	- 5-705	2.22	95	.706	8.18	.91	.00	.00
57	20.50	537	18.57	-6.538	1.85	36	.726	8.49	1.43	.00	.00
50	20.00	.537	18.57	-6.776	1.76	36	.734	8.55	1.17	.00	.00
50	20.30	.535	18.26	-6-552	1.84	07	.717	8.24	1.30	.00	.00
510	20.30	.535	18,13	-6.247	1.96	74	.725	8.29	1.17	.00	.00
510	19.80	.534	17.87	-6.599	1.82	39	.728	8.14	.91	.00	.00
512	19.70	-533	17.79	-6.716	1.78	17	.725	8.05	1.17	•00	.00
512	1	• • • • • •		••••							
AVEDACE	c. 910	26 R	ASELTNE	V117 0	0 000						
AVERAGE	22.28	.557	20.56	-7.998	1.48	.03	.759	9.96	4.60	.00	.00
S TD	.15	.002	.21	.555	.15	.16	.011	.16	.41	*	*
310	810	26 41	31 MN 0 08	(5.5E1	4) TH	REE IN	CH MAT	ERIAL			
	20.63	535	18.17	-5.949	2.14	95	.715	8.27	1.18	.00	•00
C T D	20.43		. 36	.602	.32	.41	.020	.28	.29	*	*
DEBCENT	OF BA	SELTN	E								
FERGENI	91.7	96.2	- 88.4	125.6	145	****	94.2	83.1	25.5	*****	*****
S TD 7	1.9	.9	2.7	13.2	38	****	4.0	4.2	9.2	****	*****

١

;

.

*** *

80°22 W132TA003 (4.2E10) W097 00 000 *SOL9 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

1. **1** • •

----- ·- ·- ·^

.

',

.

، بر الا ا

*

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.557	19.23	-5.110	2.70	-2.46	.720	9.29	.00	.00	.00
18	22.30	.549	20.22	-6.634	1.84	76	.745	9.64	3.90	.00	.00
2B	22.00	.548	19.94	-6.617	1.85	73	.742	9.47	3.90	.00	.00
3B	22.10	.548	19.82	-6.050	2.08	-1.17	.733	9.39	3.90	.00	.00
4 B	22.60	.549	20.38	-6.324	1.96	90	.738	9.68	4.16	.00	.00
10*	22.00	.552	19.02	-4.731	3.00	-2.65	.699	8.98	3.51	.00	.00
20	21.90	.552	19.90	-6.717	1.82	80	•748	9.56	3.77	.00	.00
3C	22.00	.550	19.42	-5.398	2.46	-1.73	•717	9.18	3.38	.00	.00
4C	21.80	.549	19.24	-5.428	2.43	-1.63	.715	9.05	3.51	.00	•00
5C	22.10	.552	19.84	-6.122	2.06	-1.07	.733	9.46	3.90	.00	.00
6C*	22.20	.551	19.17	-5.136	2.64	51	.665	8.60	3.25	.00	.00
70	21.90	.548	19.28	-5.324	2.50	-1.79	•714	9.06	3.25	.00	.00
80	22.20	.551	20.07	-6.474	1.91	81	•740	9.57	3.90	.00	.00
90	21.90	.548	19.28	-5.324	2.50	-1.79	•714	9.06	3.25	.00	.00
10C	21.90	.549	19.31	-5.378	2.47	-1.72	.715	9.10	3.51	.00	.00
110	21.90	.550	19.67	-6.104	2.07	-1.21	.737	9.38	4.03	.00	•00
1 2 C	22.20	• 5 4 7	19.58	-5.363	2.46	-1.73	.716	9.20	3.25	.00	.00
15	22.00	.555	19.37	-5.284	2.56	-1.93	.716	9.24	3.90	.00	.00
25*	21.90	.546	18.60	-4.410	3.31	-2.78	.676	8.55	2.60	.00	.00
35	22.00	.551	19.43	-5.385	2.47	-1.82	.719	9.22	3.38	.00	•00
4S	22.10	.553	20.02	-6.569	1.88	85	•745	9.62	3.90	.00	.00
5S	22.10	.550	19.75	-5.917	2.16	-1.18	.727	9.35	3.51	.00	.00
6 S	22.20	.551	20.07	-6.438	1.92	90	.741	9.59	4.42	•00	.00
1 T	22.00	.552	19.29	-5.209	2.60	-1.82	.708	9.09	3.25	.00	.00
2T *	22.00	.548	18.26	-3.975	3.95	-3.68	.657	8.37	2.99	.00	.00
3T	22.20	.553	19.79	-5.775	2.24	-1.40	.728	9.45	3.64	•00	•00
4 T	22.10	.553	19.81	-6.075	2.09	-1.01	•729	9.42	4.29	.00	.00
5 T	21.90	.553	19.95	-6.911	1.76	67	.751	9.62	3.90	•00	•00
AVERAGE	s: 808	22 B	ASELIN	E W097 0	0 0 0 0						
	22.25	.549	20.09	-6.406	1.93	89	•740	9.55	3.97	.00	•00
STD	.23	.000	• 2 2	•240	.10	•17	•004	• 1 2	.11	*	*
	808	22 W1	32TA00	3 (4.2El	0)						
	22.02	• 5 5 1	19.64	-5.852	2.23	-1.36	.727	9.33	3.68	•00	•00
STD	•12	.002	• 2 9	• 5 4 6	• 2 7	• 4 2	.013	• 2 0	.35	*	*
PERCENT	OF BA	SELIN	Ε								
	99.0	100.4	97.7	108.6	115	47.2	98.3	97.7	92.8	*****	****
S T D X	1.6	.5	2.5	12.3	21	86.4	2.4	3.4	11.7	****	****

. . .

•

ì

۰. i

ι..

80926 W134T1009 (3E13) W117 00 000 *SOL10 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

21.1.1.8

٩

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.560	19.77	-6.383	1.98	94	.739	9.59	•00	.00	•00
1B.*	22.20	.557	19.72	-5.611	2.35	-1.59	.725	9.48	3.90	.00	.00
2B.*	22.60	.554	19.81	-5.208	2.60	-1.71	•707	9.35	3.64	.00	•00
3 B	22.60	.558	20.69	-7.288	1.65	32	.752	10.03	3.90	.00	.00
4B.*	22.20	.555	19.87	-5.942	2.16	-1.29	.732	9.54	3.90	.00	•00
5B*	22.30	.549	19.58	-5.333	2.49	-1.36	.703	9.10	2.60	•00	•00
1C	15.30	.492	13.60	-6.295	1.83	•24	•694	5.52	•52	•00	•00
2C*	15.40	.496	13.29	-6.901	1.63	5.46	.590	4.77	•65	.00	•00
3C	16.00	.495	14.28	-6.425	1.79	• 2 4	.699	5.86	•78	•00	.00
4C	15.50	.491	13.60	-5.757	2.08	30	.682	5.49	•65	.00	•00
5C	15.80	.495	14.14	-6.53	1.74	•27	.704	5.82	•65	.00	.00
6C	15.00	.490	13.43	-6.557	1.73	•16	.706	5.49	•65	.00	•00
7C	15.40	.489	13.55	-5.830	2.03	34	•687	5.47	•65	.00	•00
8C	15.50	•488	13.67	-6.033	1.93	•20	•683	5.47	•65	•00	•00
9C	15.70	•492	13.94	-6.167	1.88	06	•696	5.69	•65	•00	•00
100	15.40	•490	13.60	-6.045	1.93	•03	•688	5.49	•78	•00	•00
110	15.40	•490	13.74	-6.335	1.81	13	•705	5.62	•65	•00	•00
120	15.40	.489	13.60	-6.000	1.95	11	•689	5.49	•65	•00	•00
130	15.60	•490	13.87	-6.247	1.84	01	•698	5.64	•65	•00	•00
14C	15.30	•490	13.56	-6.112	1.90	15	• 6 9 5	5.51	•65	.00	•00
150	15.80	•492	14.06	-6,317	1.82	•16	•697	5.73	•78	•00	•00
15	15.30	•492	13.57	-6.165	1.89	01	•694	5.53	•65	.00	•00
25	15.40	•492	13.62	-6.174	1.88	•47	•683	5.47	•65	.00	•00
4S	15.40	•491	13.63	-6.071	1.93	15	•693	5.55	•65	•00	•00
5 S	15.10	• 491	13.49	-6.419	1.78	03	•705	5.53	•65	•00	•00
1 T	15.30	•488	13.38	-5.667	2.12	33	•678	5.35	•65	•00	•00
2T	15.30	.488	13.50	-5.991	1.95	-•08	•688	5.43	•65	•00	•00
3T	15.10	.488	13.45	-6.338	1.80	•01	•701	5.46	.65	.00	•00
4T	15.30	•490	13.69	476	1.76	04	•708	5.61	.65	.00	.00
AVERAGE	S: 809	26 B.	ASELIN	E W117 0	000						
	22.60	.558	20.69	-7.288	1.65	32	•752	10.03	3.90	.00	.00
STD	.00	.000	. 30	.000	.00	•00	.000	.00	.00	*	*
	809	26 W1	34TIO0	9 (3E13)							
	15.42	.491	13.68	-6.181	1.88	•00	•694	5.56	.66	.00	.00
STD	• 2 4	.002	.23	.240	.10	•20	•008	.12	.05	*	*
PERCENT	OF BA	SELIN	E								
	68.2	87.9	66.1	115.2	114	200.4	92.3	55.4	17.0	*****	****
STDZ	1.0	.3	1.1	3.3	6	63.2	1.1	1.2	1.4	****	*****

1997 - 19

80927 W135FE005 (7.8E7.8) W117 0 000 *SOL10 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

. . .

2

.... . -----

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.562	19.56	-5.793	2.27	-1.59	•733	9.54	.00	.00	.00
18	22.40	• 5 5 8	20.44	-7.216	1.67	08	•742	9.81	4.81	•00	.00
2 B	22.60	.557	20.57	-6.969	1.75	30	.741	9.87	5.60	.00	.00
3B	22.60	• 5 5 8	20.60	-7.085	1.71	24	.743	9.91	4.03	•00	.00
2C•*	20.00	.528	16.74	-4.225	3. 9	-3.04	.657	7.34	•91	•00	.00
3C.*	20.00	.525	16.44	-3.967	3.86	-3.41	.638	7.09	•91	•00	.00
4C.*	20.00	.5^3	16.65	-4.124	3.60	-3.28	•653	7.23	• 7 8	•00	.00
5C	20.00	.526	17.01	-4.583	3.05	-2.22	.668	7.44	1.04	.00	.00
6C.*	19.70	• 5 2 2	15.84	-3.545	4.73	-5.74	.636	6.91	1.04	•00	.00
7C•*	19.70	.522	16.21	-3.875	4.01	-4.44	•652	7.09	•91	•00	•00
8C	20.10	• 5 2 7	17.73	-5.688	2.21	72	.698	7.82	1.30	•00	.00
9C	20.40	• 5 2 8	17.77	-5.228	2.49	-1.19	•687	7.83	1.04	•00	.00
15	21.20	.533	17.62	-4.221	3.4.	-2.14	•638	7.63	1.04	.00	.00
2 S	20.50	• 5 2 9	17.85	-5.180	2.53	-1.37	•689	7.91	1.17	•00	•00
35.*	20.00	• 5 2 2	16.03	-3.520	4.77	-5.62	.632	6.97	•65	•00	.00
4 S	20.30	• 5 2 6	18.04	-6.004	2.04	35	.703	7.94	1.04	•00	.00
5s.*	20.10	.522	15.98	-3.436	4.99	-5.85	•624	6.92	•65	•00	.00
1T.*	18.60	•496	13.25	-2.911	6.86	-6.32	• 514	5.01	.26	.00	•00
2T•*	18.20	•483	12.54	-3.615	4.29	4.22	•428	3.98	1.04	.00	.00
3T•*	17.20	.435	10.65	-4.176	3.01	10.90	•346	2.74	•13	.00	•00
4T•*	16.70	•489	11.67	-3.502	4.71	2.45	•448	3.87	•13	•00	.00
5T.*	16.20	• 344	9.68	-15.520	•42	16.43	.304	1.79	13 ،	.00	.00
6T•*	19.00	.509	14.88	-3.504	4.75	-4.22	• 589	6.03	• 3 9	•00	.00
AVERAGES	s: 809:	27 В.	ASELIN	E W117 0	0 0 0 0						
	22.53	•558	20.54	-7.090	1.71	21	•742	9.86	4.81	•00	•00
SID	•09	•000	•07	.101	•03	•09	.001	•04	•64	*	*
	8093	27 🐨1	35FE00	5 (7.2E1	4)						
	20.42	• 5 2 8	17.67	-5.151	2.63	-1.33	•681	7.76	1.11	•00	• 20
STD	. 39	.002	• 7 2	.607	.50	•69	•022	.18	.10	*	*
PERCENT	OF BAS	SELIN	E								
	90.6	94.7	86.0	127.4	154	* * * * *	91.7	78.7	23.0	*****	****
STD 🕱	2.1	• 5	1.9	9.7	32	768.8	3.0	2.1	5.4	****	****

-

7 · 4

2

80928 W136FE006 (2.4E14) W117 00 000 *COL10 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

1

Ŕ

* *

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	000	PCDa	PCDb
2R*	21.90	.562	19.71	-6.235	2.06	-1.10	.737	9.59	.00	.00	.00
1 B	22.60	.560	20.73	-7.478	1.60	16	.753	10.07	4.55	.00	.00
2 B	22.40	.557	20.61	-7.707	1.54	08	.756	9.98	4.55	.00	.00
3 B	22.80	.559	20.95	-7.553	1.58	20	.756	10.19	4.68	.00	.00
4 B	22.40	.558	20.62	-7.819	1.51	.10	.753	9.95	5.46	.00	.00
5B	22.70	.560	20.51	-6.648	1.87	24	.728	9.79	5.46	.00	.00
10	21.40	.548	18.87	-5.413	2.45	-1.62	.712	8.84	1.69	.00	.00
2C	19.10	• 529	17.24	-6.635	1.80	36	•727	7.77	.78	.00	.00
3C	21.20	.548	19.09	-6.423	1.93	54	.727	8.94	1.56	. Ov	.00
4 C	19.70	.535	17.84	-6.791	1.76	29	732	8.17	.91	.00	.00
5C	20.00	• 5 3 8	18.05	-6.539	1.86	62	.733	8.34	•98	.00	.00
6C	19.50	• 5 3 2	17.54	-6.446	1.88	51	•725	7.95	•78	•00	.00
7C	19.70	• 5 3 6	17.84	-6.758	1.77	44	•735	8.21	- 51	.00	•00
8C	19.80	• 5 3 4	17.76	-6.257	1.96	67	•723	8.08	91	.00	.00
9C	19.60	.533	17.80	-6.937	1.70	27	.736	9 17	. 41	•00	•00
100	21.20	• 5 4 3	19.08	-6.444	1.90	-,42	.724	έ	2.3	.00	•00
15	19.60	.535	17.77	-6.842	1.74	35	.735	8.16	1.50	×00	•00
25	20.00	• 5 3 7	18.08	-6.602	1.83	64	• 736	8.36	•9ï	•00	•00
35	19.90	.534	17.81	-6.135	2.01	83	• 7 2 2	8.11	•91	•00	.00
4S	21.20	• 5 4 2	19.33	-7.162	1.65	17	•742	9.02	1.50	•00	•00
5 S	20.40	• 5 3 8	18.50	-5.774	1.77	46	•737	8.56	1.17	.00	.00
1T	19.90	.529	16.93	-4.631	3.02	-2.01	.666	7.41	• 39	.00	• 00
2 T	19.30	.531	17.29	-6.268	1.9.	54	•718	7.78	• 6 5	•00	.00
3T	19.50	.529	17.41	-6.140	1.99	56	.714	7.79	•65	•00	•00
4T	20.00	• 536	18.06	-6.663	1.80	28	.727	8.24	1.04	•00	•00
5T	19.90	.531	17.86	-6.267	1.94	76	•726	8.11	• 78	.00	.00
6T	19.90	.531	17.90	-6.371	1.90	67	•728	8.13	•98	•00	.00
AVERAGES	5: 8092	28 BA	ASELINI	E W117 0(000						
	22.58	.559	20.68	-7.441	1.62	12	.749	10.00	4.94	.00	.00
STD	.16	.001	.15	.414	.15	• : 2	.011	.13	.43	*	*
	8093	28 W13	36FE00	5 (2.4E14	4)	_	-		–		
	20.04	.536	18.00	-6.405	1.93	62	.725	8.23	1.02	.00	.00
STD	.65	.006	.62	.533	.29	.43	.015	.40	.34	*	*
PERCENT	OF BAS	SELINI	3			-	_	-			
	88.7	95.9	87.0	113.							
				9	119	****	96.8	82.4	20.7	****	****
STD 🕱	3.5	1.2	3.7	12.4	29	****	3.5	2.2	9.3	*****	*****

لا و مرجع الد و مربد ال بير الم الحد

. . . .

80929 W137TI010 (2.1E14) W117 00 000 *Sol10 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.561	19.44	-5.550	2.41	-1.80	.727	9.44	.00	.00	.00
18	22.50	.558	20.51	-6.938	1.76	62	•751	9.97	4.55	.00	.00
2 B	22.50	• 5 5 8	20.63	-7.364	1.63	37	•756	10.04	4.55	.00	•00
3B.*	22.60	.555	20.12	-5.744	2.26	-1.27	.723	9.59	3.64	.00	.00
4 B	22.10	.558	20.23	-7.241	1.67	48	.756	9.86	4.55	.00	.00
5 B	22.30	.555	20.36	-7.117	1.70	35	.748	9.78	3.90	•00	.00
10	12.30	•467	11.01	-6.753	1.61	•63	.701	4.26	1.04	.00	.00
2C	12.50	.465	11.12	-6.367	1.74	.10	.697	4.28	•91	.00	.00
3C	12.50	.463	11.03	-6.115	1.84	.16	•684	4.19	.91	.00	.00
4C	12.60	.466	11.24	-6.506	1.69	•21	.700	4.35	•78	.00	.00
5C	12.50	.464	11.14	-6.497	1.69	.27	.698	4.28	•91	.00	.00
6C	12.50	.464	11.12	-6.466	1.70	.49	.693	4.25	.91	.00	.00
7C	13.80	.463	11.75	-4.956	2.50	-1.44	•655	4.42	•91	.00	.00
8C	12.90	•467	11.38	-5.993	1.90	38	.691	4.40	.78	.00	.00
9C	12.80	.462	11.13	-5.483	2.15	-1.08	•678	4.24	•78	•00	.00
10C	13.00	-458	11.16	-5.107	2.38	-1.62	.666	4.19	.65	.00	.00
110	12.60	• 464	10.90	-5.311	2.27	-1.48	•675	4.17	- 78	.00	.00
15	12.70	•466	11.36	-6.566	1.67	.12	•705	4.41	-91	.00	.00
25	12.60	•467	10.85	-5.194	2.37	-1.70	•671	4.18	•65	•00	.00
3\$	12.6	•466	10.91	-5.295	2.29	-1.79	.680	4.22	.91	.00	.00
4 S	12.90	•467	11.34	-5.878	1.96	45	• 686	4.37	•78	.00	.00
1T	12.30	•460	10.89	-6.270	1.76	• 37	.687	4.11	•91	.00	.00
2T	12.50	•464	11.12	-6.411	1.72	•29	•694	4.26	.91	.00	.00
3т	11.90	•452	10.48	-6.052	1.83	•02	.683	3.89	•91	.00	.00
4T	12.30	.462	10.97	-6.565	1.66	•47	•697	4.19	•91	.00	•00
5 T	12.80	.460	11.15	-5.611	2.07	58	•675	4.20	•65	•00	•00
AVERAGES	S: 809	29 B.	ASELIN	E W117 0	0 000						
	22.35	• 5 5 7	20.43	-7.165	1.69	46	.753	9.91	4.39	.00	.00
STD	•17	.001	•15	.158	.05	.11	.004	.10	•28	*	*
	809	29 W1	37TI01	0 (2.1E1	4)						
	12.63	.463	11.10	-5.970	1.94	37	.686	4.24	.85	.00	.00
STD	.36	.004	•25	.559	• 2 8	.82	.013	.12	.10	*	*
PERCENT	OF BA	SELIN	E								
	56.5	83.1	54.3	116.7	115	119.0	91.1	42.8	19.3	*****	****
STD Z	2.1	. 8	1.6	9.8	20	240.1	2.1	1.6	3.8	****	****

.

s . . .

81002 W138M0005 (1E12) W117 00 000 *Sol10 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

. . .

1 - 1 - 1 - S

ч<u>г</u>

*

ID	130	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
				6 167	1 04	- 07	743	0.60	. 0.0	. 00	.00
2R*	21.90	. 563	19.01	-0.40/	1.90	97	• / 4 J	10 00	4 1 2	.00	.00
18	22.30	.561	20.51	-/./13	1.33	00	- 7 00	0 61	3.00	.00	.00
28.*	22.60	.555	19.98	-3.300	2.30	-1.13	-705	0 01	5.00	.00	.00
3B	22.50	.559	20.40	-0.831	1.00	56	-745	7.71	3 38	.00	.00
4B.*	22.60	• 556	20.06	-5.702	2.29	-1.12	- 110	7. 71	J + JO 1 4 0		.00
SE	22.60	.558	20.67	-7.312	1.00	~.11	• / 40	9.90	4.00	.00	.00
12	20.50	• 5 3 1	18.53	-0.699	1.//	23	• / 20	0.10	1.30	.00	••••
2C	20.60	• 5 2 9	18+65	-0.00)	1.//	57	•/3/	0.00	20	.00	.00
4C	20.50	• 5 2 7	18.28	-5.950	2.07	92	./18	8.20	• 3 9	.00	•00
5C	20.50	.527	18.36	-6.244	1.93	49	• / 18	8.20	1.04	.00	•00
6C	21.00	• 5 2 9	18.98	-6.510	1.83	78	.739	8.08	1.1/	.00	•00
7C	21.00	.527	18.51	-5.857	2.11	.06	.684	8.01	1.1/	.00	.00
8C	21.10	- 528	17.26	-4.932	2.71	2.66	.561	6.61	• 91	.00	.00
9C	20.80	• 5 2 7	18.50	-5.839	2.12	99	.716	8.30	• 78	.00	.00
100	20.90	.528	15.79	-3.895	3.98	2.00	.502	5.86	1.04	.00	.00
110.*	21.20	• 5 2 7	17.97	-5.789	2.14	3.16	.588	6.95	- 91	.00	.00
15	20.90	• 5 2 9	18.85	-6.693	1.76	.06	.719	8.40	1.30	.09	.00
25	21. 0	.529	18.92	-6.463	1.85	52	.729	8.56	1.30	•00	.00
35	20.90	.528	18.63	-6.175	1.96	12	•704	8.22	•91	.00	.00
45	21.40	.529	19.41	-6.876	1.70	19	.734	8.78	1.17	•00	.00
55.*	21.30	.529	18.20	-4.270	3.40	-4.41	.709	8.45	1.04	.00	.00
1T	20.70	.532	18.56	-6.223	1.96	70	.724	8.43	1.17	.00	.00
2 T	20.50	.529	18.37	-6.229	1.95	60	.721	8.26	1.04	•00	.00
3T	20.90	.532	18.78	~6.453	1.86	21	.718	8.45	1.17	•00	.00
4T	20.80	.529	18.51	-6.051	2.02	35	.706	8.21	1.17	.00	.00
5T	21.00	.531	'8.88	-6.570	1.81	.06	•714	8.42	1.10	.00	.00
AVERAGE	S: 810	02 B	ASELIN	E W117 0	0 000						
AVE KAO BI	22.47	559	20.55	-7.285	1.66	24	.749	9.95	4.51	.00	.00
670	12	.001	.00	. 361	.11	.23	.005	.03	.12	*	*
510	9.5	001	3880000	5 (1512)	•••	•••					
	20 22	520	18.43	-6.129	2.06	10	.698	8.14	1.08	.00	.00
STD	. 24	002	.77	.695	.51	.92	.061	.71	.22	*	*
PERCENT	0F BA	SFI IN	F	••••				•	·		
LENCENI	02 7	0/ 4	80.7	115.9	124	158-5	93.3	81.8	24-0	*****	****
C T D T	3601	74.0	6.1	14.2	4)	770.8	8.8	7.4	5.7	****	****
STDA	1.0	• 2	4•1	14+4	41	110.0	0.0		5.1		

a a fi Sharan shina a s

.

••

رونې مې د مې د مېمې لوم مې

····

. --

:

;

81003 W139M0006 (4.2E12) W117 00 000 *Solig 1 /8 /80 AM1: P0=91.60MW/CM^2 NO AR COATING

ان و در این بیش و بیش بیش این این این می بیش این در این بیشترو بوده این بیشتین اینده این در بیش می سرد. این و این و این بیش و این و در این این این این این این این در این در این این و این این و می این و میشود.

ID	ISC	VOC	IF	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.560	19.66	-6.042	2.13	-1.34	•737	9.56	.00	-00	.00
1B.	22.00	.550	19.99	-6.838	1.77	45	.741	9.49	5.20	•00	.00
2 B	22.00	.552	19.95	-6.710	1.83	56	.740	9.50	5.20	- 00	.00
3B	22.10	.548	19.79	-6.061	2.08	96	.727	9.31	4.55	.00	.00
4B*	21.80	.548	19-58	-6.220	2.01	79	.728	9.20	4.94	.00	.00
1C	18.80	.513	16.96	-6 690	1.73	17	.724	7.38	.78	•00	.00
2C.*	17.30	.488	12.88	-3.127	5.89	-6-48	• 5 5 3	4.94	1.43	-00	.00
3C	18.60	.505	16.25	-5.558	2.20	30	.677	6.72	.78	.00	.00
4C	18.50	.508	16.48	-6.204	1.90	11	.702	6.98	.13	.00	.00
5C.*	16.60	.474	11.46	-3.351	5.00	1.38	.445	3.70	.65	.00	.00
6C	18.80	.509	16.66	-5.945	2.02	38	.699	7.07	.65	- OC	.00
7C	18.60	.507	16.55	-6.088	1.94	40	.706	7.04	.65	.00	•00
8C	17.90	.500	14.89	-4.398	3.15	-1.74	.632	5.98	• 39	.00	.00
96.*	17.90	.498	14.16	-3.592	4.49	-4.51	•602	5.67	.33	•00	.00
10C	18.60	- 510	16.69	-6.479	1.79	11	.714	7.16	• 78	•00	.00
110	18.70	• 5 0 9	16.75	-6.509	1.78	• 2 2	.705	7.10	.65	.00	.00
15	18.60	.512	16.85	-7.034	1.61	- 28	•722	7.27	- 91	-00	.00
25	19.10	.512	17.00	-6.164	1.92	10	.701	7.25	.91	•00	.00
3S	18.90	.510	16.50	5.274	2.40	-1.44	.693	7.07	.65	•00	.00
4S	19.20	.511	17.09	-6.231	1.89	- 0 9	•698	7.24	.65	-00	.00
5S	18.50	• 5 0 7	16.20	-5.409	2.30	-1.21	•694	6.88	.65	•90	.00
6S	19.00	.512	17.06	-6.421	1.82	32	.718	7.39	- 91	•00	-00
1 T • *	17.60	•498	13.85	-3.644	4.39	-3.60	• 5 8 7	5.44	• 30	•00	.00
2T•*	17.60	• 4 9 9	14.21	-3.859	3.95	-3.53	.615	5.71	. 39	•00	-00
3T	15.60	.488	12.44	-4.002	3.71	-1.82	• 583	4.69	- 20	•00	.00
4T	17.80	•499	15.16	-4.958	2.60	59	.647	6.08	.40	-00	.00
5T	18.10	• 5 0 8	15.95	-5.896	2.04	•03	-684	6.65	• 6 5	•00	.00
6T.*	17.30	• 484	11.96	-2.729	7.99	-9.43	.504	4.46	• 20	.00	.00
AVERAGE	s: 810	03 вл	ASELIN	E W117 00	000						
	22.03	• 5 5 0	19.91	-6.536	1.89	65	•736	9.43	4 - 98	•00	-00
STD	•05	•002	•08	.340	•13	•22	.006	•09	• 31	*	×
	810	03 W1	39M000	6 (4.2E1)	2)						
	18.43	.507	16.20	-5.839	2.17	47	.688	6.82	.63	.00	•00
STD	.80	.006	1.12	•791	• 5 3	•65	.035	•66	• 2 2	*	*
PERCENT	OF BA	SELINI	E								
	83.6	92.2	81.4	110.7	114	127.6	93.5	72.3	12.7	****	*****
STDZ	3.8	1.4	6.0	17.4	38	155.3	5.7	7.7	5.3	*****	****

• .

n mari se i i

. .

. •

÷

ć

81031 W140T1011 (1.8E14) THREE INCH MATERIAL W097 00 000 *SOL10 1 /8 /80 AM1: P0=91.60HW/CH² NO AR COATING

, george en pr

24

war was

- - - -

÷

•

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.555	19.71	-6.213	2.04	-1.12	.738	9.49	.00	.00	.00
118	22.80	.553	21.07	-8.153	1.42	.18	.759	10.12	5.20	•00	.00
12B.*	22.30	.546	19.46	-5.145	2.61	-1.51	.696	8.96	2.60	.00	.00
13B	22.20	•221	20.42	-7.672	1.53	15	.757	9.80	5.85	.00	.00
14B	22.30	.551	20.46	-7.471	1.58	22	.754	9.80	5.60	.00	.00
218.*	22.40	.548	19.89	-5.751	2.23	98	.714	9.27	3.64	.00	.00
228.*	22.60	• 546	19.54	-4.878	2.82	-1.78	.687	8.97	3.00	.00	.00
23B	22.30	.553	20.43	-7.392	1.61	20	.751	9.80	3.90	.00	.00
24B	22.10	.553	20.35	-7.801	1.50	05	.757	9.79	3.90	•00	.00
31B	22.00	.550	20.27	~7.816	1.49	05	-758	9.70	3.64	-00	.00
32B	22.00	.550	20.21	-7.682	1.53	.10	.749	9.59	1.56	.00	.00
33B	22.20	.551	20.31	-7.310	1.63	19	.748	9.68	4.55	.00	-00
34B	22.40	.550	20.54	-7.440	1.59	21	.753	9.81	4.55	.00	.00
41B	22.00	-553	20.12	-7.308	1.63	15	.746	9.60	3.64	.00	.00
42B	22.20	.553	20.50	-8.081	1.44	.13	.759	9.85	4.42	.00	.00
43B	22.10	.555	20.47	-8.332	1.39	• 20	.762	9.89	4.68	•00	.00
44B	22.10	.555	20.50	-8.455	1.36	.18	.766	9.94	4.68	.00	.00
51B	22.20	.553	20.62	-8.541	1.34	.17	.768	9.97	5.20	.00	.00
52B	21.90	.556	20.20	-7.877	1.49	15	.763	9.82	4.81	.00	.00
11	12.50	.479	11.34	-7.444	1.44	.95	.718	4.55	.91	.00	.00
12	12.50	.477	11.30	-7.154	1.52	.58	.716	4.52	•91	.00	.00
13	12.60	.477	11.37	-7.058	1.54	.56	.714	4.54	.91	.00	.00
14	12.50	.476	11.30	-7.143	1.52	• 5 8	.716	4.51	•91	.00	.00
15	12.60	.476	11.37	-7.047	1.54	• 5 6	.713	4.52	-91	.00	.00
16	12.60	.473	11.30	-6.734	1.63	• 39	.705	4.45	•91	.00	.00
17	12.60	•476	11.40	-7.240	1.49	.74	.716	4.54	1.04	•00	.00
18	12.60	•476	11.37	-7.047	1.54	• 56	.713	4.52	1.04	•00	.00
19	12.50	.475	11.27	-7.024	1.55	.60	.711	4.47	1.17	.00	.00
110	12.50	• 477	11.27	-7.045	1.55	•60	.712	4.49	•91	.00	.00
111	12.10	•475	10.93	-7.191	1.50	.84	.712	4.33	1.04	•00	•00
112	12.10	.477	10.91	-7.071	1.55	•69	.711	4.34	•91	•00	-00
21	12.20	.468	10.77	-6.151	1.85	.25	• 684	4.13	.91	•00	-00
22	12.30	-474	10.98	-6.554	1.70	- 31	• 700	4.32	•91	•00	•00
23	12.30	.474	10.95	-6.477	1.73	•34	•696	4.29	•91	.00	.00
24	12.10	.474	10.97	-7.425	1.44	•94	.717	4.35	.91	.00	•00
25	12.30	• 474	11.11	-7.167	1.51	•73	.714	4.40	•91	.00	.00
26	12.10	.474	10.97	-7.425	1.44	•94	.717	4.35	1.04	.00	.00
27	12.30	-474	11.11	-7.167	1.51	.73	.714	4 • 40	1.04	•00	•00
28	12.30	• 473	11.08	-6.996	1.55	•57	.711	4.38	- 91	•00	.00
29	12.20	•472	11.02	-7.089	1.52	•47	•716	4.36	1.04	•00	•00
210	12.00	•472	10.89	-7.470	1.42	•93	.719	4.31	1.04	•00	•00
211	11.90	-471	10.78	-7.342	1.45	.87	.716	4.25	•91	•00	•00
212	11.90	-471	10.78	-7.342	1.45	.87	.716	4.25	1.04	•00	•00
31	12,70	.480	11.46	-7.089	1.54	.75	.711	4.58	.91	.00	.00

. - . - ·

-

··· ₹ _ .

. • - •

•

.

9

ø

.

							* • • •		~ `	~ ~ ~	00
32	12.80	.478	11.53	-7.010	1.56	•77	.708	4-58	•91	.00	.00
33	12.60	.478	11.45	-7.557	1.41	1.12	.717	4.57	•91	.00	.00
34	12.50	.475	11.27	-7.024	1.55	•60	.711	4.47	-91	.00	.00
35	12.60	.479	11.35	-7.040	1.56	.77	.708	4.52	• 7 8	•00	.00
36	12.80	.480	11.49	-6.764	1.65	.37	.707	4.60	•91	.00	.00
37	12.70	.478	11.37	-6.637	1.68	.18	.706	4.54	•91	.00	.00
38	12.50	.475	11.21	-6.758	1.63	.45	.705	4.43	1.04	.00	.00
39	12.60	.476	11.33	-6.868	1.60	.38	.711	4-51	1.04	.00	.00
310	12.80	.478	11.51	-6.856	1.61	.36	.711	4.60	•91	.00	.00
311	12.50	.477	11.24	-6.812	1.62	.23	.712	4.49	1.04	.00	.00
312	12.50	.475	11.21	-6.758	1.63	.45	.705	4.43	.78	.00	.00
41	12.00	.470	10.87	-7.356	1.44	.97	.714	4.26	•78	.00	.00
42	12.00	.470	10.82	-7.184	1.49	1.06	.707	4.22	•78	.00	.00
43	12.10	.472	10.87	-6.833	1.60	.36	.709	4.28	1.04	.00	.00
44	12.10	.471	10.92	-7.091	1.52	.65	.712	4.29	•91	.00	.00
45	12.10	.471	10.78	-6.445	1.74	.15	.698	4.21	.78	.00	.00
46	12.00	.471	10.84	-7.171	1.50	.65	.715	4.27	•91	.00	.00
47	12.00	.471	10.82	-7.089	1.52	.70	.712	4.25	•91	.00	.00
48	12.00	.471	10.87	-7.367	1.44	.97	.715	4.27	•91	.00	.00
49	12.00	.469	10.86	-7.232	1.47	.61	.718	4.27	1.04	.00	.00
410	11.90	.469	10.77	-7.319	1.45	.87	.716	4.22	•91	.00	.00
411	11.60	.471	10.47	-7.055	1.54	.42	.716	4.14	.91	.00	.00
412	11.40	.469	10.07	-5.965	1.95	-1.24	.702	3.97	1.04	.00	.00
51	12.10	.478	10.94	-7.224	1.50	.84	.713	4.36	•91	.00	.00
52	12.20	.475	11.01	-7.149	1.52	.87	.710	4.35	1.04	.00	.00
53	12.00	.469	10.62	-6.210	1.83	.00	.691	4.11	•65	.00	.00
54	12.10	.474	10.97	-7.363	1.45	.76	.719	4.36	1.04	.00	.00
55	12.10	.476	10.98	-7.51.2	1.42	1.13	.716	4.36	2.60	.00	.00
56	11.90	.474	10.83	-7.604	1.39	.95	.723	4.31	•91	.00	.00
57	12.20	.473	11.00	-7.010	1.55	.50	.713	4.35	.91	.00	.00
58	12.30	.473	11.08	-6.996	1.55	.57	.711	4.38	•91	.00	.00
59	12.10	.473	10.97	-7.352	1.45	.76	.719	4.35	•78	.00	.00
510	12.00	.469	10.73	-6.677	1.65	.51	.700	4.17	•78	.00	.00
511	11.80	.470	10.70	-7.517	1.40	1.34	.712	4.18	-78	.00	.00
512	11.80	.469	10.52	-6.451	1.73	11	.704	4.12	•78	.00	.00
AVERAGES	s: 810	31 B.	ASELINE	W097 0	0 000						
	22.19	.552	20.43	-7.822	1.50	03	.757	9.81	4.41	.00	.00
STD	.21	.002	• 2 2	.398	.09	.16	.006	•13	1.00	*	*
	810	31 W1	40T1011	(1.8E1	4) TH	REE IN	сн мат	TERIAL			
	12.25	.474	11.04	-7.036	1.55	.60	.711	4.37	•95	•00	.00
STD	.31	.003	.29	.348	.11	.37	.007	•14	•23	*	*
PERCENT	OF BA	SELIN	E								
	55.2	85.8	54.0	110.1	103	****	94.0	44.5	21.6	*****	*****
STD Z	1.9	. 8	2.0	9.3	14	****	1.7	2.1	11.4	*****	****

· . · · ·

· · · ·

. . . .

SOL10 1 /8 /80 AM1: F0=91.60HW/CM² NO AR CGATING VOC IP LOG(IO) N ID ISC R FF Eff 0 C D PCDa PCDb 2R 21.90 .561 19.58 -5.858 2.23 -1.54 .734 9.54 .00 .00 .00 22.00 .561 20.30 -7.844 1.51 -.27 .766 10.00 2 B .00 .00 5.20 3B* 22.00 .558 19.50 -6.340 1.99 1.05 .675 8.76 3.90 .00 .00 -7.458 1.61 4B 22.20 .560 20.33 -.01 .747 9.82 5.50 .00 .00 5B* 21.70 .550 19.48 -6.899 1.75 1.16 .691 8.72 .00 .00 3.12 .00 1C 18.60 .505 16.39 -5.713 2.12 -.65 .695 6.91 .78 .00 2 C 18.80 .507 16.81 -6.277 1.86 -.32 .712 7.18 .00 .91 .00 18.70 .507 16.81 3C -6.450 1.79 -.46 .723 7.25 .91 .00 .00 4C 18.90 .508 16.95 -6.429 1.80 -.16 .714 7.25 .91 .00 .00 18.90 .506 16.60 -5.738 2.11 -.16 .683 5 C 6.91 •78 .00 .00 6C 19.00 .508 17.00 -6.223 1.88 -.55 .717 .00 7.32 .78 .00 7 C 18.90 .505 16.73 -5.906 2.02 -.38 .697 7.04 .78 .00 .00 .00 8C 18.70 .505 16.65 -6.131 1.92 -.32 .706 .00 7.05 .78 9C 18.90 .506 16.93 -6.319 1.84 -.40 .716 .00 7.25 .91 .00 18.80 .507 16.88 -6.497 1.77 •78 10C -.13 .715 7.21 .00 .00 15 19.00 .510 17.05 -6.452 1.80 -.20 .716 .91 7.34 .00 .00 .91 ĽS 18.80 .508 16.70 -5.779 2.09 -1.34 .719 .00 .00 7.26 7.23 3S 18.80 .512 16.80 -6.260 1.89 -.30 .711 .00 .78 .00 4 S 18.90 .512 16.92 -6.263 1.88 -.50 .717 .00 .00 7.34 .91 •91 5 S 18.90 .511 16.97 -6.295 1.87 -.80 .727 7.43 .00 .00 7.47 6 S 19.10 .511 17.19 -6.503 1.78 -.38 .723 .91 .00 .00 1 T 17.80 .505 15.45 -5.128 2.50 -1.73 .688 .00 6.54 .78 .00 18.40 .505 16.26 2 T -5.770 2.09 -.76 .701 6.89 .00 .00 •65 3т 18.10 .505 16.17 -6.223 1.88 -.42 .711 6.88 .91 .00 .00 4T 18.30 .507 16.44 -6.537 1.76 -.14 .716 7.03 •91 .00 .00 5T.* 17.90 .499 14.79 -4.035 3.64 -3.94 .648 6.13 .50 .00 .00 6T.* 17.50 .480 12.68 -3.153 5.67 -3.90 .512 4.55 .91 .00 .00 AVERAGES: 81109 BASELINE W117 00 000 22.10 .561 20.32 -7.651 1.56 -.14 .756 9.91 5.35 .00

81109 W141M0/CU001 (4E12-4.4E15) W117 00 000

. *

. . . .

7

ø

٠.

.

.00 STD .10 .000 • 0 2 .193 .05 .13 .010 × .09 .15 × 81109 W141M0/CU001 (4E12-4.4E15) 18.72 .507 16.69 -6.145 1.93 -.51 .710 7.14 .85 .00 .00 STD .32 .002 • 38 .354 .17 .40 .012 .22 × × .08 PERCENT OF BASELINE 84.7 90.5 82.1 119.7 124 ***** 93.9 72.0 15.8 ***** ***** STDZ 1.8 .5 2.0 15 856.4 2.8 6.8 2.9 1.9 **** ****

81110 W*143TI002 (2E14) LOW RESISTIVITY W142 00 000 *SOL10 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

Ĩ.

ł,

7

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R *	21.90	. 561	19.70	-6.173	2.08	-1.20	.738	9.60	.00	.00	.00
581B*	20.19	.594	16.27	-4.729	3.27	2.84	.554	7.00	.91	.00	.00
582B*	20.10	.571	16.54	-4.218	3.78	-1.67	.617	7.49	.78	.00	.00
583B*	20.00	.565	14.55	-4.621	3.23	7.97	.438	5.23	.65	.00	.00
585B.*	20.30	. 598	18.26	-6.253	2.19	-1.13	.734	9.42	1.69	.00	.00
1421B	20.50	.600	18-96	-8.089	1.57	13	.766	9.97	1.95	.00	.00
1422B .*	20.30	.590	17.80	-5.390	2.67	-1.39	.698	8.84	1.04	.00	.00
1423B*	20.30	.546	16.54	-4.400	3.37	• 39	.585	6.86	.39	.00	.00
1424B.*	20.70	.589	18.22	-5.510	2.57	-1.22	.701	9.04	1.17	.00	.00
1425B	20.30	.595	18.34	-6.510	2.06	86	.737	9.42	1.69	.00	.00
10	10.90	.529	9.76	-6.482	1.96	-1.09	.719	4.39	.91	.00	.00
2C	11.00	.528	9.94	-6.955	1.77	47	.728	4.47	1.04	.00	.00
3C	10.70	.532	9.90	-8.413	1.38	11	.765	4.61	.78	.00	.00
4C	11.00	• 5 3 5	10.24	-8.993	1.27	-19	.774	4.82	•91	.00	.00
5C	10.90	.523	9.51	-5.538	2.44	-2.22	.689	4.16	.65	.00	.00
6C	11.10	• 5 3 3	10.13	-7.462	1.62	33	.743	4.65	1.17	•00	.00
7C	11.30	.531	10.27	-7.233	1.68	38	.737	4.67	1.17	.00	.00
80	10.80	• 484	8.85	-4.627	3.04	61	.600	3.32	• 7 8	.00	•00
9C	10.60	• 534	9.94	-10.010	1.11	• 82	.783	4.68	1.04	•00	.00
10C•*	10.90	• 508	8.60	-3.856	4.47	-6.21	.591	3.46	.65	.00	.00
15	10.80	• 5 3 5	9.99	-8.656	1.34	•75	.756	4.62	.91	.00	.00
25	10.80	•514	9.21	-5.118	2.72	-1.66	.653	3.83	.56	•00	•00
3S	10.90	• 5 3 8	10.25	-10:225	1.09	• 6 2	.790	4.90	1.30	.00	.00
4 S	11.10	• 5 3 8	10.42	-10.024	1.11	-64	.786	4.96	1.56	.00	•00
5S	11.20	• 5 3 5	10.37	-8.525	1.36	•17	.764	4.84	1.17	•00	.00
6 S	11.00	.532	10.10	-7.907	1.49	13	.753	4.66	1.69	•00	.00
1 T	10.60	• 5 3 1	9.78	-8.265	1.41	15	•762	4.54	1.43	•00	•00
2T•*	10.80	•516	8.95	-4.463	3.45	-4.31	•636	3.75	.91	.00	.00
31	10.80	• 5 2 7	9.63	-6.330	2.02	-1-11	•712	4.29	1.04	•00	•00
4T	10.80	.459	8.67	-4.456	3.08	.18	.573	3.00	•65	•00	.00
5T	10.90	• 535	10.08	-8.453	1.38	•05	•764	4.71	1.17	•00	.00
6T	10.80	• 5 2 6	9.59	-6.111	2.12	-1.64	.711	4.27	1.30	•00	•00
AVERAGES	5: 811	10 B.	ASELINI	E W142 00	000						
	20.40	.598	18.65	-7.299	1.81	50	.752	9.69	1.82	.00	.00
STD	.10	.002	.31	.790	.25	.37	.015	.28	.13	*	*
	811	10 W*1	143TI0)2 (2E14)) LOW	PESIST	TIVITY				
	10.90	• 5 2 5	9.83	-7.489	1.77	32	.728	4.42	1.06	.00	.00
STD	.18	•019	.47	1.717	•61	.83	.058	.50	.30	*	*
PERCENT	OF BAS	SELINE	5					- •			
	53.4	87.9	52.7	97.4	97	134.8	96.9	45.6	58.3	*****	****
STD Z	1.1	3.6	3.4	37.2	51	338.4	9.7	6.6	21.6	* * * * *	****

233

· ····

.

an the second
81130 W144M0001 (4.4E12) LOW RESISTIVITY W142 00 000 *SOL10 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

29 · 51-112

1

٠.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2 <u>R</u> *	21.90	.559	19.83	-6.532	1.92	89	•744	9.63	•00	.00	.00
1 B	20.40	.595	18.85	-8.047	1.56	15	•766	9.83	1.69	.00	.00
2 B	20.40	.595	18.96	-8.510	1.46	08	•775	9.95	1.69	.00	.00
3B.*	20.40	•583	17.95	-5.503	2.55	-1.26	•702	8.82	•91	•00	•00
4B•*	20.40	• 564	17.20	-4.688	3.14	78	•637	7.75	•65	•00	•00
5B.*	20.40	.576	17.43	-4.730	3.17	-1.87	•667	8.29	•85	.00	.00
10	17.40	• 5 7 5	15.83	-6.938	1.85	- 91	•749	7.92	1.17	•00	•00
2 C	16.60	• 5 3 8	12.75	-4.079	3.91	2.12	• 518	4.89	• 5 2	.00	•00
3C*	11.10	.165	7.74	-10.903	• 31	8.85	•367	.71	•00	•00	.00
4C	17.30	• 5 2 5	14.16	-4.380	3.35	58	.600	5.76	• 5 2	.00	.00
5C	17.60	.560	15.15	-4.916	2.96	-2.22	•679	7.08	.80	.00	.00
66.*	13.30	.186	9.67	-6.483	.67	6.02	.411	1.07	.00	.00	.00
7C•*	13.10	.176	9.66	-7.631	• 5 1	6.25	•410	1.00	•00	.00	•00
86.*	12.30	.154	9.49	-13.559	• 2 2	6.64	.413	• 83	.00	.00	.00
9C	17.60	• 5 5 8	15.18	-5.033	2.84	-1.76	.677	7.03	•65	.00	.00
100.*	16.70	.556	13.28	-3.510	5.34	-7.66	.626	6.15	•78	.00	•00
110.*	15.10	.246	10.95	-5.853	1.02	6.48	.415	1.63	•00	.00	.00
15	17.70	.531	15.10	-5.085	2.66	11	.643	6.39	• 52	.00	.00
25	17.40	.563	15.01	-5.069	2.84	-1.59	.675	6.99	•72	•00	•00
35	17.50	• 577	16.33	-9.088	1.31	.19	.779	8.31	1.04	.00	.00
45	17.60	• 577	16.25	-8:172	1.50	•23	•757	8.13	1.17	•00	.00
55	17.40	.563	14.74	-4.626	3.28	-2.34	•658	6.82	•65	.00	.00
65	17.30	.569	15.25	-5.794	2.36	58	•693	7.21	1.04	•00	.00
>ALL TA	NG SAM	PLES	TESTED	T00 P001	RLY TO	D MEASI	URE				
AVERAGE	S: 811	30 B.	ASELIN	E W142 0	0 0 0 0						_
	20.40	• 5 9 5	18.91	-8.278	1.51	12	•770	9.89	1.69	•00	•00
STD	•00	.000	• 0 5	• 2 3 2	•05	• 0 4	•005	•06	•00	*	*
	811	30 W1	44M000	1 (4.4E1	2) LO	W RESI	STIVII	Y			
	17.40	• 5 5 8	15.07	-5.744	2.62	69	•675	6.96	- 80	•00	•00
STD	. 28	.018	• 95	1.551	• 7 7	1.24	.071	•97	• 2 5	*	*
PERCENT	OF BA	SELIN	E								
	85.3	93.8	79.7	130.6	174	* * * * *	87.6	70.4	47.3	*****	****
STDZ	1.4	3.0	5.3	21.2	59 :	* * * * *	9.7	10.3	14.7	****	****

.

-

- , • •

• r

81201 W145W001 (8.5E11) W097 00 000 *SOL11 1 /8 /80 AM1: P0=91.60MW/CM² NO AR COATING

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
2R*	21.90	• 5 5 9	19.83	-6.532	1.92	89	.744	9.63	.00	.00	.00
1 B	22.10	.553	20.51	-8.505	1.35	.17	.767	9.92	5.20	.00	•00
2B	22.10	.558	19.91	-6.275	2.02	-1.02	.738	9.62	4.16	.00	.00
3B	22.10	.557	19.91	-6.267	2.02	-1.02	.738	9.60	5.20	.00	.00
4B	22.10	.558	19.88	-6.217	2.04	-1.00	.735	9.58	4.81	.00	.00
5B	22.00	.558	19.82	-6.287	2.01	98	.737	9.57	3.90	.00	•00
10	21.10	.536	19.03	-6.460	1.87	64	.732	8.76	1.69	•00	.00
2C	21.00	.537	18.01	-5.821	2.16	2.43	.612	7.30	1.56	.00	.00
3C	21.40	.531	18.55	-5.026	2.64	-1.47	.685	8.23	1.04	.00	.00
4C	21.10	.539	19.23	-7.056	1.67	33	•744	8.94	1.82	.00	.00
5C	21.20	.539	19.34	-7.315	1.60	.14	.737	8.90	2.21	.00	.00
6C	21.00	.534	18.73	-5.910	2.11	-1.04	.721	8.55	1.69	•00	.00
7C	21.40	.535	18.63	-5.066	2.63	-1.73	.695	8.42	1.43	•00	.00
8C	21.10	.530	18.22	-4.885	2.76	-1.84	.686	8.11	1.04	.00	.00
9C	21.10	.541	19.28	-7.262	1.62	21	•747	9.01	2.34	.00	.00
10C	21.10	• 5 4 1	19.16	-6.991	1.70	03	•732	8.84	2.21	.00	.00
1S*	17.20	• 5 4 0	10.86	-11.275	•95	21.77	.326	3.20	1.95	.00	.00
25	21.20	• 5 3 8	18.94	-6.002	2.08	95	•723	8.72	1.95	.00	.00
35	21.30	.539	19.23	-6.670	1.80	15	.725	8.80	2.34	.00	.00
4 S	21.30	.539	19.28	-6.637	1.81	59	•738	8.96	2.34	.00	.00
5S	21.30	• 5 3 8	19.07	-6.084	2.04	90	•725	8.79	2.21	.00	.00
6S	21.10	.536	18.75	-5,772	2.19	-1-14	•717	8.58	1.82	.00	.00
1T	21.00	.538	18.55	-5.930	2.11	•09	.687	8.21	1.82	.00	•00
2 T	21.00	.537	18.96	-6.577	1.83	45	•730	8.71	2.21	.00	•00
3T	21.10	• 5 3 7	18.96	-6.316	1.93	62	•726	8.70	2.34	.00	• 00
4T	21.00	• 5 36	18.89	-6.338	1.92	70	• - 29	8.68	2.34	.00	.00
5T	21.10	.536	19.10	-6.749	1.76	28	.732	8.75	1.95	•00	.00
6T	21.40	• 5 3 8	19.38	-6.805	1.75	15	•730	8 • 8 9	2.34	•00	•00
AVERAGES	5: 8120	01 ВА	ASELIN	E W097 00	000						
	22.08	.557	20.01	-6.710	1.89	- .77	.743	9.66	4.65	.00	.00
STD	• 0 4	.002	•26	.898	• 2 7	.47	.012	.13	• 5 4	*	*
	8120	01 W14	\$5W001	(8.5E11))						
	21.16	• 5 3 7	18.92	-6.270	2.00	50	.717	8.61	1.94	•00	.00
STD	-14	.003	.36	•686	• 3 3	• 86	.029	• 38	•40	*	*
PERCENT	OF BAS	SELINE	Ξ								
	95.8	96.4	94.6	106.6	106	134.7	96.5	89.2	41.6	****	*****
STD 🕱	• 8	• 8	3.0	24.1	35	219.3	5.6	5.2	14.5	****	****

. .

وربي بروانية ويهير فحر ورابي

· · · ·

.

Same and

••••

. . .

•

1

81204 W	146000	01 (31	E15) WI	17 00 0	00						
*SOL11	1 /9	/80	AM1: F	0=91.60	MW/CM	^2 NO	AR CO	ATING			
ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.556	15.64	-6.031	2.12	-1.25	.734	9.45	.00	.00	.00
1B ·	22.00	• 5 5 2	20.21	-7.563	1.56	17	.755	9.69	5.20	.00	.00
2 B	21.90	.549	19.94	-6.978	1.72	39	• 744	9.46	4.55	.00	.00
3B.*	22.10	• 5 4 9	19.75	-5.979	2.12	98	•724	9.29	4.16	.00	.00
4 B	22.30	.551	20.26	-6.874	1.76	34	.739	9.61	4.94	.00	.00
5 B	22.60	.550	20.66	-7.254	1.64	23	•748	9.83	5.20	.00	.00
10	20.60	.530	17.83	-5.052	2.63	-1.30	.679	7.85	1.30	.00	.00
20	20.50	• 528	18.34	-6.253	1.93	32	•713	8.16	1.60	.00	.00
3C	20.90	• 5 2 7	17.81	-4.668	2.95	-1.72	•665	7.74	1.17	•00	.00
4C•*	22.00	.540	17.71	-3.550	4.75	-4.87	•633	7.95	2.34	.00	.00
5C	21.00	• 5 3 1	18.25	-5.227	2.50	88	•679	8.01	1.69	.00	.00
6C	21.90	• 5 4 1	18.33	-4.178	3.59	-2.90	.658	8.24	2.60	.00	.00
7C	21.40	• 5 4 0	19.19	-6.272	1.96	48	.720	8.80	2.60	.00	.00
8C•*	21.90	.536	16.08	-2.769	7.84	-9.22	• 567	7.04	1.56	.00	.00
90	20.80	.531	17.48	-4.261	3.44	-2.96	•663	7.74	1.43	•00	.00
10C.*	18.40	.501	14.34	-3.383	5.05	-5.59	.596	5.81	•33	.00	.00
110.*	21.50	.538	17.85	-3.922	3.98	-4.29	•665	8.13	2.34	.00	.00
15.*	21.60	.538	17.70	-3.785	4.23	-4.22	•646	7.94	2.08	.00	.00
25.*	21.90	.543	18.00	-3.855	4.13	-3.82	.646	8.12	2.60	.00	.00
35.*	21.90	.543	17.74	-3.558	4.76	-5.39	•646	8.12	3.00	.00	.00
4S.*	22.20	.541	17.63	-3.306	5.44	-6.44	.633	8.04	2.34	• 00	.00
5S	21.80	• 5 3 8	18.73	-4.730	2.93	-2.04	.682	8.46	2.60	.00	.00
1T•*	19.40	.514	15.16	-3.358	5.19	-5.69	.601	6.34	• 5 2	.00	.00
2T•*	19.50	.508	14.28	-3.095	6.05	-4.53	.527	5.52	•26	.00	.00
3т	21.20	• 5 3 6	18.76	-5.756	2.19	66	.702	8.43	2.47	.00	.00
4T•*	21.60	.533	16.60	-3.126	6.04	-6.57	.595	7.24	1.30	•00	.00
5T	21.50	• 5 3 7	19.13	-5.984	2.08	50	.708	8.65	2.60	• 00	.00
6T	21.00	.531	12.06	-4.864	2.78	-1.55	•675	7.96	1.69	•00	•00
AVERAGE	s: 812	04 в.	ASELINE	E W117 O	0 000						
	22.20	.551	20.27	-7.167	1.67	28	•747	9.65	4.97	- 00	• 00
STD	• 2 7	.001	• 26	•267	• 0 8	.09	.006	.14	• 27	*	*
	812	04 W14	460001	(3E15)							
	21.15	• 5 3 4	18.36	-5.204	2.63	-1.39	•686	8.19	1.98	.00	.00
STD	• 4 4	.005	• 5 3	•723	• 5 4	• 90	.021	• 35	• 56	*	*
PERCENT	OF BA	SELINI	E								
	95.2	96.9	90.6	127.4	158	* * * * *	91.9	84.8	39.8	****	****
STD 🕱	3.2	1.0	3.8	13.2	41	575.6	3.5	4.8	14.1	****	****

الا الم المحمود التي الم المحمد الم المحمد الم المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ا

.

81206 W147N/NI002 (1.6E15) W097 00 C00 *SOL11 1 /9 /80 AM1: P0=91.60MW/CM² NO AR COATING

.

ID	ISC	Voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.560	19.83	-6.500	1.93	99	.746	9.67	.00	.00	•00
1B (22.10	• 5 5 2	20.27	-7.686	1.53	• 32	.742	9.57	7.15	.00	•00
2 B	22.00	• 5 5 4	20.27	-7.965	1.47	.28	•751	9.68	6.50	.00	.00
3B	21.80	.550	19.63	-6.538	1.88	16	.721	9.14	4.55	.00	.00
4 B	21.90	• 5 4 1	19.94	-7.315	1.60	• 4 2	•728	9.12	4.90	.00	.00
10	21.40	• 4 4 7	17.67	-4.984	2.25	1.92	• 574	5.81	•65	.00	.00
2 C	21.40	•441	17.69	-4.813	2.34	1.24	• 5 8 5	5.84	.91	.00	•00
3C	21.90	•463	18.57	-5.153	2.21	92	.618	6.63	.91	.00	.00
4C	21.40	•414	17.40	-4.380	2.55	• 41	.581	5.44	.91	.00	.00
5C	21.90	•457	18.69	-5.605	1.93	1.80	.610	6.46	.91	.00	.00
6C	21.50	.447	17.66	-4.803	2.38	1.56	• 5 7 5	5.84	•65	.00	•00
7C	22.10	• 489	18.24	-4.608	2.77	•64	.594	6.79	.78	.00	.00
8C	21.90	• 484	18.28	-4.923	2.48	1.18	• 5 9 8	6.70	1.04	.00	•00
9C	21.90	•435	17.91	-4.710	2.38	1.43	• 571	5.76	• 7 8	.00	.00
10C	22.20	.513	18.97	-5.047	2.53	• 01	•643	7.75	1.30	.00	•00
15	21.60	.435	17.88	-4.667	2.42	.61	• 596	5.93	.78	.00	.00
2 S	21.70	•454	18.13	-4.919	2.33	1.04	•600	6.25	•43	.00	.00
3S	22.10	• 5 3 8	19.29	-5.545	2.31	• 0 3	•671	8.44	3.25	.00	.00
4 S	21.90	•437	18.14	-4.933	2.23	1.51	• 587	5.90	1.04	.00	.00
5S .	21.70	.445	18.01	-4.958	2.26	1.53	• 58 5	5.97	•91	.00	.00
1 T	21.60	.421	17.96	-5.Q60	2.07	1.64	• 584	5.61	1.04	.00	.00
2T	21.90	.401	18.52	-5.184	1.90	1.01	.611	5.68	1.17	.00	.00
3T	21.70	.418	18.04	-4.897	2.16	1.15	.591	5.67	1.30	.00	.00
4 T	22.20	• 5 2 6	18.90	-4.937	2.63	14	•641	7.92	2.08	.00	.00
5T	22.00	• 4 2 3	18.56	-5.172	2.01	1.18	.606	5.97	•91	.00	.00
AVERAGES	s: 812	06 BA	ASELIN	E W097 00	000)					
	21.95	• 5 4 9	20.03	-7.376	1.62	• 2 2	•735	9.37	5.78	.00	.00
STD	.11	.005	• 26	• 5 3 6	.16	• 2 2	.012	• 2 5	1.08	*	*
	8120	06 W14	47N/NI()02 (1.6E	215)						
	21.80	• 4 5 4	18.23	-4.965	2.31	1.03	.601	6.32	1.09	•00	.00
STD	• 25	.037	- 48	.280	• 2 2	.59	•025	.81	• 5 9	*	*
PERCENT	OF BAS	SELINE	3								
	99.3	82.7	91.0	132.7	143	480.0	81.7	67.4	18.8	*****	*****
STD 🟅	1.7	7.5	3.6	9.0	29	* * * * *	4.8	10.7	15.7	* * * * *	****

;

90417 W148N/MN002 (6E14) W079 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

.`

, ,

1

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
2R.*	21.90	.557	19.72	-6.265	2.02	-1.02	.737	9.51	.00	.00	.00
1 B	21.50	.540	19.29	-6.561	1.84	• 32	.706	8.67	4.60	.00	.00
2B*	21.20	.535	18.77	-6.222	1.96	.82	.677	8.12	4.29	.00	.00
3B.*	21.20	.540	18.47	-5.706	2.24	•75	• - 57	7.95	3.00	.00	.00
4B	21.80	.543	19.48	-6.475	1.88	• 5 4	.696	8.71	4.68	.00	.00
5B*	21.40	.505	17.38	-4.304	3.20	.15	• 584	6.68	• 7 8	.00	.00
10	21.10	.524	17.70	-4.442	3.16	-1.55	•642	7.51	1.30	.00	•00
2C	20.90	.507	16.91	-4.253	3.29	.10	.580	6.50	•72	•00	.00
3C	21.10	.537	18.58	-5.432	2.39	-1.42	.707	8.48	3.25	.00	•00
4 C	20.90	.539	18.60	-5.849	2.16	-1.03	.717	8.54	1.56	.00	•00
50	21.40	.521	18.09	-5.107	2.53	1.08	.614	7.24	3.00	•00	•00
7C	21.50	.554	17.32	-3.922	4.10	-1.79	• 5 9 7	7.52	5.20	.00	.00
8C	21.20	.493	17.20	-4.418	3.00	.80	• 5 7 5	6.35	•78	.00	.00
90	21.00	.543	18.42	-5.297	2.51	-1.57	.703	8.48	3.51	•00	.00
100	21.30	.541	18.39	-4.870	2.83	-1.87	.685	8.35	3.25	.00	.00
15	21.00	.550	18.90	-6.381	1.95	63	.728	8.89	5.20	.00	.00
25	21.10	.534	18.28	-5.089	2.61	-1.18	.680	8.10	2.60	•00	.00
35	21.00	.538	18.69	-6.007	2.08	47	.707	8.45	4.16	.00	•00
45	21.00	.543	19.07	- 7.070	1.68	.14	.729	8.79	4.55	.00	.00
5 S	21.30	.546	18.90	- 3.707	2.26	-1.22	.716	8.81	4.16	.00	.00
1T.*	17.30	.532	11.22	-4.983	2.76	14.46	.359	3.50	1.69	•00	•00
21.*	17.00	.548	10.71	-5.697	2.33	17.96	.340	3.35	2.90	.00	•00
3T.*	16.50	.541	10.64	-4.835	2.96	15.10	.358	3.38	2.34	•00	.00
4T.*	16.50	.551	10.69	-5.468	2.50	17.02	.354	3.41	3.00	•00	•00
5 T	21.40	• 5 5 6	17.69	-4.527	3.25	.13	•603	7.59	3.00	.00	-00
AVERAGE	s: 904	17 B	ASELIN	E W079 0	0 000						
	21.65	.542	19.39	-0.518	1.86	.43	.701	8.69	4.64	•00	•00
STD	.15	.002	.10	.043	.02	.11	.005	• 0 2	•04	*	*
	904	17 W1	48N/MN	002 (6E1	4)						
	21.15	.535	18.18	-5.225	2.65	70	.666	7.97	3.08	.00	.00
STD	.19	.017	.65	.840	.61	•92	•055	• 7 9	1.42	*	*
PERCENT	OF BA	SELIN	Е								
	97.7	98.8	93.8	119.8	142	****	95.0	91.8	65.4	****	****
STDZ	1.5	3.4	3.8	13.5	35	310.3	8.6	9.3	31.5	* * * * *	****

238

e de la construcción de la constru

- 4 2 4

, • · · • ·

90418 W149N/FE003 (6E14) W079 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

÷

3-41

-

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2 R *	21.90	.559	19.50	-5.684	2.32	-1.64	•729	9.44	•00	•00	.00
1B*	16.70	.489	12.35	-4.289	3.25	5.46	.466	4.02	.00	.00	•00
2B*	19.90	.524	14.99	-3.207	5.76	-4.77	.555	6.12	.00	•00	-00
3 B	21.10	.543	18.89	-6.381	1.93	.05	.707	8.57	3.25	.00	•00
4B*	18.60	.400	12.48	-6.974	1.27	11.85	.361	2.84	• • • 0	•00	.00
5B	21.30	.558	19.26	-6.578	1.90	62	•736	9.25	5.20	.00	.00
10	20.90	• 5 4 3	18.05	-5.024	2.71	-1.24	•676	8.11	1.56	•00	.00
2 C	20.90	• 5 3 5	18.09	-5.352	2.43	.00	.660	7.81	1.69	.00	•00
3C	20.50	.531	17.65	-5.137	2.57	43	•659	7.59	1.56	.00	.00
4 C	20.80	• 5 2 6	17.90	-5.246	2.47	.14	•650	7.52	1.56	.00	•00
5C	20.70	.521	17.64	-5.026	2.60	.06	.639	7.28	1.69	.00	.00
6C	20.80	.532	17.87	-5.046	2.64	60	.659	7.71	1.56	.00	.00
7C	20.70	.531	17.81	-5.195	2.53	10	.654	7.60	1.56	.00	•00
8C	20.70	.535	18.07	-5.490	2.35	30	.676	7.92	2.21	.00	.00
9C	20.80	.517	17.09	-4.318	3.28	65	.606	6.89	1.04	.00	.00
10C	21.00	.516	18.16	-5.352	2.35	.13	•656	7.52	1.82	.00	.00
110	21.10	.541	18.73	-5.897	2.14	54	.705	8.51	2.34	.00	.00
15	20.60	.495	16.39	-4.069	3.47	.02	• 565	6.09	• 7 8	.00	.00
2 S	20.80	• 5 2 7	17.77	-5.033	2.63	16	•646	7.49	2.08	.00	.00
3 S	20.70	.517	17.16	-4.524	3.04	17	.610	6.90	1.30	.00	.00
4 S	21.20	.542	18.20	-4.759	2.93	-1.90	•677	8.23	1.82	.00	.00
5 S	ି ≎.70	.531	17.91	-5.348	2.42	.04	.658	7.65	2.08	.00	.00
1 T	20.50	• 5 3 7	17.50	-4.861	2.83	96	•656	7.63	2.21	.00	.00
21	21.20	.556	19.11	-6.449	1.94	61	•730	9.10	4.42	.00	.00
3T	20.50	.521	17.00	-4.491	3.10	42	.614	6.93	1.04	.00	.00
4 T	20.60	.536	17.91	-5.370	2.43	39	.672	7.85	2.34	.00	.00
5T	20.60	• 5 2 7	17.54	-4.967	°.68	17	•641	7.36	1.69	.00	.00
AVERAGES	5: 904	18 BA	ASELIN	E W079 00	000						
	21.20	.551	19.07	-6.480	1.91	28	.722	8.91	4.23	.00	.00
STD	.10	.007	•18	.098	.01	.33	.014	• 34	•97	*	*
	904	18 W14	49N/FE	003 (6E14	4)						
	20.78	.529	17.79	-5.093	2.64	39	.653	7.60	1.83	.00	.00
STD	•21	.012	• 5 7	.511	• 36	.49	.034	.61	•71	*	*
PERCENT	OF BAS	SELINI	E								
	98.0	96.2	93.3	121.4	138	61.7	90.5	85.4	43.2	*****	****
STD 🕱	1.4	3.6	3.9	9.2	20	536.4	6.6	10.4	30.8	****	****

+

...

90109 W150-N/V-003 (3E13) W079 00 000 *SH2 1 /28/80 AM1: P0=91.60MW/CM² NO AR COATING

2 × • • •

ः *स्*

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2D #	21 00	561	10 91	- 6 / 60	1 05	0.6	7/2	0 4 4	00	• • •	
>079 N	BASE		17.01	-0.492	1.93		• / 4 3	2.00	.00	•00	•00
18	22.20	. 556	19.98	-5.443	1.94	32	.722	9.43	4.68	.00	.00
2B.*	22.40	.553	19.72	-5.512	2.39	91	.699	9.15	5.72	.00	.00
3B.*	22.40	.556	19.64	-5.381	2.49	-1.03	.695	9.15	4.42	.00	.00
4 B	22.40	.557	20.37	-7.070	1.72	• 0 2	.734	9.68	8.58	.00	.00
5B*	22.40	.551	19-22	-4.782	2.94	-1.54	.672	8.77	2.99	.00	.00
6 B	22.70	• 565	20.72	-7.071	1.74	42	.749	10.15	9.10	.00	.00
>150 N/V	V 003 S	S									
1	20.30	• 5 4 4	18.71	-7.943	1.45	.05	.757	8.84	3.90	•00	•00
2	20.20	• * 37	18.31	-6.928	1.71	01	•729	8.36	3.90	.00	.00
3	20.40	• 5 39	18.29	-6.241	1.98	65	• 7 2 2	8.40	3.90	.00	.00
4	20.00	• 5 3 7	18.31	-7.560	1.53	• 2 4	•740	8.41	4.16	.00	.00
5	20.30	• 5 4 1	18.68	-7.880	1.46	.18	.751	8.72	4.16	•00	.00
6 - 1 5 0 - 12 / 1	20.20	•541	18.40	-7.027	1.69	42	•744	8.60	2.34	•00	•00
>1.20 N/	20 EO	1 533	10 01	5 5/6	2 2 2		602	1 0.0	2 00	0.0	
1	20.00	+ 2 3 4	10.02	-3.300	2.29	/3	.073	/•99	2.00	.00	.00
2	20.00	+ 342	17 2 2 2	-6 576	2.02	~1.02	•/30	8.30	2.34	•00	.00
5	19.00	• 5 . 5	18 23	-7 383	1.04	- 35	•/30	0.37	2 1 2	•00	•00
7 5	20.50	. 536	18.17	-5 811	2 1 7	- 77	•733	0.03	3+14	.00	••••
6	20.30	.542	18.7/	-8.063	1 4 2	-•//	• 7 00	0.21	7.20	.00	•00
2R*	21.90	.560	19.72	-6.246	2.04	-1 07	•/33	0.03	2.50	.00	•00
>150 N	V 003 (CTR		-01240	2.04	-1.07	• / 50	3.21	•00	• • • •	.00
1	20.30	.516	17.37	-4.936	2.66	78	•656	7.27	1.82	.00	.00
2	20.20	.535	17.95	-5.890	2.13	79	.710	8.12	2.34	.00	.00
3	20.20	• 5 3 8	18.40	-7.185	1.64	• 0 2	•73 >	8.46	3.12	.00	.00
4	20.30	• 5 3 7	18.78	-8.428	1.33	• 54	•753	8.68	0.96	.00	•00
5	20.20	• 5 4 0	18.25	-6.597	1.84	55	•733	8.46	3.12	.00	.00
6	19.80	.521	17.68	-6.550	1.80	•75	•691	7.54	2.34	.00	.00
7	20.20	.542	18.62	-7.960	1.44	•12	.755	8.74	3.38	.00	• 00
8	20.20	-541	18.12	-6.447	1.90	-•08	•713	8.24	3.12	.00	•00
9	20.40	.532	18.11	-5.918	2.10	58	•706	8.10	2.34	.00	•00
10	20.30	• 5 3 8	18.28	-6.765	1.77	• 37	.711	8.21	2.08	.00	•00
AVEDACE	e. 0010	00 0	ACELTN	F 11070 01							
ATERACE	22.43	. 5 5 0	20.36	-6 862	1 20	- 24	726	0 75	7 / 5	00	~~
S T D	. 21	.004	. 30	-0.002	.10	-+24	011	9.75	1 0 7	•00	.00
~~~	9010	09 11	יי/ א_05	-003 (351	131	• 1 7	+011	• 30	1 • 7 /	~	~
	20.22	.537	18.26	-6.811	1.81	22	. 726	8.34	2.01	. 0.0	. 0 0
STD	.17	.007	.34	.898	.32	. 48	.026	. 7.8	. 80	*	*
PERCENT	OF BAS	SELINI	E					• • • •			
. –	90.1	96.0	89.7	100.7	101	107.4	98.8	85.5	39.0	*****	*****
s td 🗶	1.6	1.9	3.0	17.9	25	433.3	5.0	6.6	23.9	****	****

÷

ŗ

90125 W	152TI0	01 2.	5E14				W151	00 00	0		
*SH3 1	/28/8	0 A	M1: PO	-91.60MW	/CM^2	NO AR	CUAT	ING			
	• • -										
ID	ISC	VOC	IP	LOG(~0)	N	R	FF	Eff	OCD	rCDa	рсрр
			10 70	<i>( )</i> <b>) 1</b>		04	740	0 67	00	00	. 0.0
28*	21.90	. 201	19.78	-0.41/	1.9/	94	-740	9.02	5 2 2	.00	.00
IB	21.80	. 504	20.09	-0.124	1.50	•40	- 140	0.01	3.33	.00	••••
28	21.70	. 307	19.90	-/.91/	1 72	• 30	• / 40	0.00	4.16	.00	
3B	21.60	.510	19.48	-0.394	1.73	19	• 124	0.43	5 0 9	.00	.00
48	22.00	• 211	19.07	-0.033	1.12	-•21	• 7 2 0	0.04 / 2/	1 04		.00
10	15.00	-44/	12.00	-4.931	2.39	• 0 0	• 012	4.34	1.04	.00	•••
20	15.10	.440	12.02	-4.85/	2.43	• 31	• • • • • •	4.3/	1.04	.00	•00
30	15+20	-443	12.00	-4.782	2.51	• 2 2	.009	4.30	• 71	.00	••••
4C	15.30	•441	12.76	-4.830	2.40	• 4 2	.010	4.41		.00	.00
SC	15.40	.447	12.84	-4.883	2.43	•6/	.606	4.41	4.32	.00	•00
6C	15.20	• 4 3 9	12.50	-4./10	2.54	. / /	- 391	4.17	• 5 4	.00	•00
70	15.10	.444	12.51	-4.773	2.51	• 5 5	-601	4.20	1.04	.00	.00
8C	15.00	.433	12.51	-4.627	2.58	98	• 626	4.30	1.04	.00	•00
9C	14.90	• 4 4 2	12.41	-4.907	2.40	• 82	.604	4.20	• 52	.00	•00
15	15.00	• 4 4 7	12.82	-5.392	2.09	• 84	.633	4.49	•45	.00	.00
25	15.40	• 4 4 9	12.84	-4.838	2.48	• 37	.610	4.46	. 65	.00	.00
35	15.10	.445	12.60	-4.831	2.47	• 26	.612	4.35	.65	.00	.00
4 S	14.80	.446	12.23	-4.678	2.61	.16	.602	4.20	4.52	.00	.00
55	15.00	•448	12.48	-5.146	2.25	2.17	• 588	4.18	•78	.00	•00
1T	14.80	. 444	12.38	-4.985	2.35	• 84	.608	4.23	4.68	•00	•00
2T	22.10	• 502	20.02	-6.840	1.62	07	•729	8.55	.91	•00	-00
3T	14.80	.443	12.46	-5.076	2.28	•73	.617	4.28	.78	.00	•00
4 T	14.80	.433	12.49	-4.913	2.35	39	.633	4.29	.91	•00	•00
	c. 001	25 2	ACEL TN		• • • •						
AVERAGE	3: 701	2.7 P	10 0C	-7 220	1 52	11	726	8 60	5.01	. 0.0	.00
	21.78	.500	19.03	~/.320	1.52	• 1 1	•/30	10	3.01	+	••••
STD	•10	.003	• 2 3	.710	• 20	• 21	•010	•10	•/0		
	901	25 WI	521100	1 2.5814			(17		1	00	00
	15.44	-44/	12.98	~5.003	2.38	• 4 0	• 01/	4.33	1.44	•00	••••
STD	1.63	+014	1./2	•478	• 2 2	• 0 2	•030	• 7 8	1.4	~	-
PERCENT	UF BA	SELIN	۲. ۲. ۲. ۲.	121 7	156	415 0	<b>8</b> 3 0	52 B	28.7	*****	*****
C T D Y	/0.9	00.0	03.4	12 0	27	*****	5 2	12.1	36.3	*****	*****
3104	0.0		7.3	13.0							

and the second 
90129 W153-N/TI-003(1.7E13) W079 00 000 *SH4 1 /28/80 AM1: P0=91.60MW/CH⁻² NO AR COATING

· - 1

₹

ŗ

ID	ISC	voc	1 P	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R *	21.90	.562	19.74	-6.286	2.03	-1.05	.739	9.61	.00	.00	.00
18.*	22.20	.502	19.55	-5.503	2.44	-1.04	.701	9.25	5.46	.00	.00
2 B	21.70	.557	19.92	-7.605	1.57	02	.751	9.60	5.46	.00	.00
3 B	21.30	.553	19.51	-7.524	1.58	-06	.:46	9.29	4.55	.00	.00
4 B	21.40	• 552	19.30	-6.571	1.88	30	.726	9.07	4.81	.00	.00
10	21.30	• 5 38	18.31	-4.918	2.77	-1.20	.669	8.11	2.08	.00	.00
2C	21.20	.537	18.71	-5.713	2.22	56	.697	8.39	2.24	.00	.00
3C	21.30	- 515	17.53	-4.124	3.51	-1.91	.624	7.24	1.04	.00	.00
4C	21.40	.514	17.61	-4.326	3.23	60	.607	7.06	1.04	.00	.00
5C	21.70	• 558	19.25	-6.050	2.13	•07	.693	8.88	6.50	.00	•00
6C	21.30	• 5 2 6	18.58	-5.620	2.22	.34	.664	7.87	1.56	.00	.00
7C	21.20	- 517	18.47	-5.956	2.02	1.47	.644	7.47	3.25	.00	.00
SC	21.20	• 552	19.04	-6.296	1.99	60	.724	8.95	4.68	.00	00
90	20.90	• 524	17.15	-4.276	3.37	~.81	.607	7.02	2.08	.00	.00
15	20.90	.537	18.16	-5.234	2.52	84	.678	8.04	2.08	-00	.00
25	21.30	.549	19.25	-6.685	1.83	-+21	.727	8.99	4.03	.00	.00
35	21.30	.548	18.71	-5-404	2.45	-1.23	.700	8.64	2.99	.00	.00
4 S	21.20	. 550	19.14	-6.580	1.87	40	.729	8.99	4.29	.00	.00
5S	20.70	. 544	18.42	-5.966	2.12	66	.711	8.46	2.99	.00	.00
6S	20.90	- 548	18-81	-6-463	1.91	37	.723	8.76	3.90	.00	.00
1 T	20.90	- 547	18.68	-6.213	2.02	29	.711	8.59	3.38	.00	.00
2T	21.9	• 524	18.90	-5.059	2.57	80	.669	8.12	2.99	.00	.00
3T*	21.00	• 540	15.92	-3.346	5.38	-3.04	• 548	6.57	1.95	.00	-00
4T	21.20	• 547	18.30	-4.914	2.82	-1.66	.681	8.35	2.73	.00	-00
AVERAGES	s: 901	29 B	ASELIN	E W079 00	000						
	21.47	• 554	19.58	-7.233	1.68	08	.741	9.32	4.94	.00	•00
STD	.17	.002	• 26	.469	•15	-16	.011	.22	- 38	*	*
	901:	29 W1	53-N/T	1-003(1.7	7E13)						
	21.21	• 538	18.50	-5.541	2.42	57	.681	8.22	2.99	.00	•00
STD	.28	.014	• 5 8	.786	• 5 1	.73	.039	- 64	1.33	*	*
PERCENT	OF BAS	SELINI	E								
	98.8	97.0	94.5	123.4	145	****	91.9	88.2	60.6	****	*****
STD Z	2.1	2.8	4.2	16.5	46	****	6.6	9.1	33.7	****	*****

242

......

----

> .30 W154+1/CR-003 (5E14) W079 00 000 > 1 4 /18/79 AN1: P0-91.6CWW/CM^2 NO AK CONTINUE

-.

Ę

C

1

72	isc	VOC	IP	LOG(IC)	Ħ	R	<b>F</b> F	<b></b> 1	OCD	PCDa	РСДЪ
つぶま	21.90	. 562	19.86	-6.69)	• .87	64	. 741	6.65	. 00	00	00
> 079 X	EASE			-01071	1.0.		• / ~ •	,	•••	• • • •	•••
15*	12.20	. 550	18.98	-4.777	2.94	-1.29	. 064	8.57	3.38	. 00	. 00
28*	21.50	.546	18.78	-5.714	2.25	58	.697	1.00	4.29	.00	. 00
3". *	22.10	.536	19.5.	-1.043	2.64	~.56	.660		2.54	.00	.00
41:	22.50	.561	19.95	-2.043	2.23	51	.703		4-81	.00	. 00
55	22.40	. 5 50	19.70	-5.540	2.36	72	.694	4.05	4.55	-00	.00
> 154 N	/CR 00	3 5				•••					
1	23.10	.537	17.57	-5.330	2.47	-1.16	.691	7.88	1.95	.00	- 00
2	22.10	.531	17.20	-4.847	2.82	-1.30	.663	7.49	1.56	- 00	.00
-	19.60	.487	15.67	-4.122	3.37	08	.576	5.76	. 65	.00	. 00
	19.50	.519	.16.41	-4.552	3.05	-1.46	.644	6.89	1.43	.00	. 00
3	19.60	.513	16.42	-4.537	3.03	-1.12	. 634	ó.74	1.04	.00	. 00
6	19.90	. 529	17.06	-4.884	2.78	-1.34	.667	7.42	1.56	.00	.00
>154 N/(	CR 003	T									
1	18.90	.536	16.90	-6.188	2.01	66	.717	7.69	1.82	- 00	. 00
2	19.50	.519	16.24	-4.431	3.19	-1.31	.629	6.73	1.04	.00	.00
3	18.80	.523	16.36	-5.295	2.45	99	.681	7.08	1.56	.00	.00
4	19.10	.497	14.92	-3.470	4.72	-4.27	.588	5.90	.65	.00	.00
2	19.70	.522	16.76	-4.878	2.75	63	.646	7.03	1.30	.00	.00
ó	19.20	.529	16.98	-5.840	2.14	50	.698	7.49	3.90	.00	.00
23 -	11.90	.561	19.58	-5-864	2.23	-1.51	.734	9.53	.00	.00	.00
2 20130	154 N.	/CR 00	03-CTR								
•	19.23	.523	16.72	-5.354	2.40	76	.679	7.21	1.56	.00	.00
2	19.40	.531	17.00	-5.543	2.32	63	. 686	7.48	1.95	.00	.00
3	18.40	.530	16.69	-7.071	1.66	•23	.725	7.48	2.36	.00	.00
<b></b>	20.10	.529	16.88	-4.407	3.26	-2.09	.650	7.30	1.43	.00	.00
5	10.70	.532	16.71	-6.260	1.96	30	.710	7.47	1.95	.00	.00
ć	<b>0 • 90</b>	.529	16.90	-6.299	1.93	23	.710	7.5.	2.34	.00	.00
7	19.30	.534	17.44	-ó.ð99	1.72	.26	.719	7.84	2.86	.00	.00
8	19.80	.538	17.93	-6.850	1.75	12	.729	8.21	2.86	.00	.00
9	18.70	.533	17.02	-7.172	1.64	02	.736	7.76	2.86	.00	.00
10	19.10	.527	16.91	-5.846	2.13	62	.701	7.46	2.34	.00	.00
11	19.40	.529	16.87	-5.261	2.49	-1.01	.681	7.39	2.08	.00	.00
AVERAGES	<b>5:</b> 901:	30 B.	ASELIN	E W079 00	000						
	22.45	.556	19.83	-5.691	2.30	62	. 699	9.22	4.68	.00	.00
STD	.05	.005	.12	.151	.06	.10	.004	•17	.13	*	*
•	901.	30 WIS	54-N/C	R-003 (5)	E14)	•					
	19.35	.525	16.76	-5.449	2.52	87	.676	7.27	1.89	.00	.00
STD	.47	.012	.60	.988	.70	.93	.043	• 56	. 78	*	*
PERCENT	OF BAS	SELINI	B								
	<b>&amp;6.2</b>	94.5	84.5	104.3	110	58.0	96.8	78.9	40.5	*****	*****
STDX	2.3	3.1	3.6	20.4	34	199.5	6.7	7.7	18.3	*****	****

243

- ----

이에 도 **있고**, 티디 티. 이 이름, 남아, 아, 그는 모아까지
90206 W155-W/NO-001 (1E12) W379 00 000 SE3 4 /18/79 AH1: P0=91.60xW/CM² NU AR COATING ID ISC VOC IP LOG(IO) N R FF E

÷

ŢD	ISC	voc	IP	LOG(10)	N	R	PP	Bff	OCD	PCDa	PCDb
22*	21.90	.562	19.72	-6.221	2.06	-1.18	.740	9.63	.00	- 00	. 60
>90206	079 BA	SE								,	
: S	21.90	.567	i9.99	-1.173	1.72	24	.745	9.78	4.29	- 00	. 00
2°2*	21.70	• 5 5 0	18.63	-4.339	2.85	-1.43	.674	8.51	2.86	.00	. 00
ЗF	21.70	• 5 5 8	19.29	-5.877	2.21	72	.710	9.09	3.64	.00	. 00
4B=	21.70	- 548	18.13	-4.299	3.47	-2.04	.644	8.09	1.69	.00	. 00
55*	21.60	.534	18.48	-4.915	2.74	72	.656	3.00	1.82		.00
>90206	•• •••										
2	21.10	- 548	18.76	-5.850	2.19	91	.714	8.73	2.73	. 00	. 20
` <b>3</b>	21.30	.537	18.85	-5.855	2.14	32	.696	8.42	2.34	.00	00 00
` <b>4</b>	21.40	.541	18.58	-5.358	2.16	1.55	.639	7.83	2.21	.00	00
5	21.00	- 5 5 0	18.88	-6.336	1.97	64	.727	8.88	3.38	. 10	- 00
>90206	-									. ••••	• • •
1	20.90	.544	18.50	-3.760	2.23	73	.703	8.46	2.86	. 00	.00
2	20.90	.520	17.47	-4.467	3.12	-1.12	.632	7.26	1.04	.00	.00
۔	21.00	.535	18.10	-4.983	2.70	-1.18	.672	7.98	1.82	.00	.00
4	21.10	.539	18.38	-5.223	2.54	-1.16	.687	8.26	1.95	- 00	.00
5	21.20	.540	18.74	-5.829	2.17	32	.695	8.41	2.86	.00	.00
2F.*	21.90	.562	19.75	-6.275	2.03	-1.20	.743	9.67	-00	.00	.00
>90206	•			•							
-	21.30	.534	18.42	-5.051	2.64	-1.17	.677	3.15	1.56	.00	. 06
2	21.10	.535	17.93	-4.S04	2.80	70	.646	7.72	1.95	.00	.00
4*	21.00	•543	15.46	-3.568	4.78	.96	.491	5.92	1.95	.00	.00
ó *	21.20	.526	14.56	-2.633	8.75	-8.14	.497	5.86	1.04	.00	.00
7	21.40	.539	18.69	-5.611	2.28	.15	.670	8.17	2.21	.00	.00
8	21.60	.539	18.93	-5.478	2.36	63	.687	8.46	2.08	.00	.00
9	21.50	• 5 4 3	19.51	-6.439	1.90	12	.715	8.83	3.38	.00	.00
AVERAG	ES: 902	06 B/	SELINI	s w079 00	000						
	21.80	.563	19.64	~6.526	1.96	48	. 727	0 . 4 4	3 67	00	. 00
STD	.10	.005	.35	.649	. 25	. 24	.018	2.44	3.7/	•	•
	902	06 11	55-3/M		(12)	• • •		• 3 3	• 34	-	
	21.20	.539	18.54	-5.539	2.38	52	. 683	8 25	2 21	00	. 00
STD	.21	.007	.45	.549	. 34	.70	.028	0.23	2 • J L £ /.	*	*
PERCENT	UF BA	SELINE				• • •		**3	•04	~	
	97.2	95.8	94.4	115.1	121	91.1	93.9	87.5	58.3	*****	*****
STDZ	1.4	2.0	4.0	17.7	34 2	274.8	6.2	8.0	22.4	*****	*****

A second states

· · · · ·

-----

90202 W156-N/NO-002 (4E12) W079 00 000 *SH2 1 /28/80 AM1: P0=91.60HW/CM² NO AR COATING OCD ID ISC VOC IP LOG(10) N R FF Eff PCDa PCDb .00 .00 21.90 .560 19.70 -6.119 2.10 -1.36 .741 28* 9.62 .00 >90202 079 N-BASE .00 .00 22.40 .544 18.89 -4.526 3.16 -1.33 .646 8.33 2.86 18.* .00 .00 28.* 22.40 .528 18.17 -4.134 3.55 -.60 .592 7.40 1.17 3B.* 21.70 .685 17.97 -10.938 1.23 13.18 .474 7.44 1.82 .00 .00 22.10 .563 19.95 -6.580 1.91 -.34 .728 9.58 6.50 .00 .00 4 R >90202 156 N/MO 002 S 1.* 19.90 .540 16.30 -5.078 2.67 3.26 .558 1.56 .00 .00 6.35 19.80 .497 15.88 -4.087 3.48 -.51 .579 6.02 1.04 .00 .00 2 .00 3 20.40 .533 17.49 -4.845 2.82 -1.46 .669 7.69 1.43 .00 20.00 .526 17.27 1.56 4 -5.121 2.57 ~.83 .669 7.44 .00 .00 .00 20.30 .530 17.55 -5.127 2.58 -.91 .672 7.65 1.82 .00 5 -4.801 2.86 -1.14 .657 20.70 .533 17.66 7.67 1.69 .00 .00 6 >90202 156 N/MO 002 T 19.60 .531 17.00 -5.215 2.53 -.96 .677 7.45 1.56 .00 .00 1 -.57 .646 2 19.90 .530 16.93 -4.889 2.78 7.20 1.56 .00 .00 -5.293 2.52 -.85 .680 2.08 .00 3 20.20 .543 17.58 7.88 .00 2 R * 21.90 .561 19.81 -6.504 1.93 -.87 .742 9.64 .00 .00 .00 >90202 156 N/MO 002 CTR -4.959 2.70 -.38 .646 .00 20.40 .529 17.40 7.38 1.30 .00 1 20.10 .535 17.28 -4.870 2.82 -1.67 .675 2 7.68 1.69 .00 .00 -5.475 2.36 20.20 .533 17.70 -.78 .689 7.84 2.08 .00 .00 3 20.40 .526 17.38 7.42 .00 -4.823 2.80 -.97 .654 1.56 .00 4 .00 5 20.20 .535 18.01 -6.251 1.96 .05 .701 8.01 2.34 .00 6 20.00 .488 16.61 -4.539 2.87 -.29 .613 6.33 1.04 .00 .00 -4.080 3.62 -1.61 .605 19.90 .516 16.19 6.58 7 i.04 .00 .00 -.85 .544 20.20 .511 17.11 -4.737 2.81 7.03 .00 .00 8 1.69 -4.105 3.58 -1.88 .619 9 20.80 .519 17.06 7.06 1.04 .00 .00 20.50 .517 17.57 -4.986 2.62 -.67 .657 10 7.36 1.69 .00 .00 20.30 .517 16.54 -4.086 3.61 -1.63 .608 11 6.75 1.04 .00 .00 AVERAGES: 90202 BASELINE W079 00 000 -.34 .728 22.10 .563 19.95 -6.580 1.91 .00 9.58 6.50 .00 .00 STD .000 .00 .00 .000 .00 .000 .00 * × .00 90202 W156-N/MO-002 (4E12) 20.21 .524 17.17 -4.857 2.83 -.94 .650 7.29 1.54 .00 .00 STD .29 .013 • 5 3 • 528 د 4 • .50 .032 .53 • 38 ± PERCENT OF BASELINE 91.4 93.0 86.1 126.2 148 -79.0 89.4 76.1 23.7 ***** **** STDZ 1.3 2.4 2.7 8.0 23 149.2 4.3 5.5 5.8 ***** ****

245

50201 WIS7-N/TI/V-001 (TT-1E14,V-1E14) W079 30 000 (Sh 4 /19/79 AN1: PO-91.60MW/CH²2 NO AR COATING

Ę

ł,

19	ISC	VOC	IP	LOG (1 v)	N	P.	FF	Eff	000	PCDa	PCDB
<b>?たま</b>	21.90	. 561	19.78		1.98	-1.03	762	9.64	. Ē.	. 00	00
>50201	079 N-	BASE		-01504					• • •	• • • •	
13	22.40	.562	20.39	-7.238	1.68	. 32	.729	9.71	6.50	.00	.00
2B	22.90	.553	20.18	-5.703	2.27	30	- 690	9.24	4.55	.00	.00
38	22.80	.559	20.00	-5.528	2.40	43	.685	9.24	4.55	.00	.00
4B*	22.60	.557	19.37	-4.887	2.87	90	.661	8.79	3.25	.00	.00
58	22.60	.554	20.05	-6.104	2.08	.31	.689	9.12	5.20	.00	.00
>90201	157 8/	TI/V (	001 SE	ED			•				
- 1	18.90	.515	16.32	-5.033	2.60	-1.44	.677	6.97	- 1.04	.00	.00
2	18.90	.521	15.76	-5.872	2.10	72	.705	7.34	1.95	.00	.00
3	18.90	.513	16.44	-5.390	2.34	51	.674	6.91	. 91	.00	.00
-4	19.00	.515	16.27	-4.942	2.67	-1.02	.660	6.53.	i.30	.00	.00
5	18.70	.516	16.55	-5.957	2.04	18	.694	7.08	1.56	.00	.00
· 6	19.30	.510	16.50	-4.961	2.62	73	.654	6.01	.91	.00	.00
>90201	א 157 א/	TI/V	001 TA	NG							
1	18.60	.521	16.08	-5.051	2.62	-1.53	.679	6.96-	1.17	.00	.00
2	18.70	.520	16.25	-5.243	2.47	-1.13	.681	7.01-	1.69	.00	.00
3	18.70	• 523	16.73	-6.315	1.90	25	.711	7.36-	1.95	.00	.00
4	18.50	• 5 2 4	16.48	-6.110	2.00	47	.708	7.26.	2.60	.00	.00
5	18.70	• 23	16.81	-6.564	1.81	03	.715	7.39-	2.08	•00	.00
6	18.80	.525	16.80	-6.164	1.98	61	.715	7.47-	1.69	•00	.00
• 7	18.50	.504	15.19	-4.185	3.43	-1+91	.618	6.10	•78	.00	.00
2R*	21.90	• 565	19.79	-6.417	1.98	-1.03	.743	9.73	•00	.00	•00
>90201	157 N/	TI/V (	001 CE	NTER		<i>•</i>					
I	19.00	• 529	12.82	-3.987	3.90	->.11	• 6 / 3	7.17	1.95	.00	.00
2	18.30	+ 5 2 8	10./0	-/.023	1.50	• 2 3	- /42	7.58%	4.22	.00	.00
3	18.00	• 517	10.33	-0.083	1-98	21	•/02	7.14	2.34	.00	.00
4	18.80	• 222	10.91	-0.333	1.02	֥15	•/18	1.49	3.25	.00	.00
2	18.70	• 5 2 3	10.88	-0.//9	1./3	•01	• 122	7.40"	3.38	.00	.00
0	1/.90	• 520	10.1/	-0-373	1.0/	• 35	•/1/	7.01-	3.23	.00	-00
/	10.00	• 322	10.02	-0.040	2.02	30	•/02	7.21	2.00	.00	.00
8	18.30	+3:3	10.3/	-0.300	1.69	20	•/13	7.25	3.90	.00	.00
. 9	18.70	• ] . 4	10.02	-0.348	1.01	10	•/10	/+41	1 00	.00	.00
10	18.70	. 207	10.13	-2.103	2.4/	51	.000	<u>9.70</u>	1.82	.00	- 00
AVERAGI	ES: 902	01 B.	ASELIN	E W079 0	0 000						
	22.68	.557	20.15	-6.143	2.11	03	.698	9.33	5.20	.00	.00
STD	.19	.004	.15	.665	.27	.35	.018	. 22	.80	*	*
÷	902	01 W1	57-N/T	I/V-001	(TI-1)	E14.V-	1E14)				
	18.70	.519	16.45	-5.820	2.23	74	.694	7.13	2.16	.00	.00
STD	.27	.006	. 39	-875	.56	1.08	.027	. 32	1.00	*	*
PERCENT	C OF BA	SELIN	E								
	82.5	93.2	81.6	105.3	106	****	99.4	76.5	41.6	*****	*****
STD 🟅	1.9	1.7	2.6	26.1	43	****	6.6	5.4	28.5	*****	****

ι ^ε

.

ι. **τ** 

90214 W158N-TI-V-CR001 (5E13-5E13-5.5E14) W079 00 000 *SOL11 1 /9 /80 AM1: P0=91.60MW/CM² NO AR COATING

and and a second se

۰. ۲

····

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.564	19.46	-5.596	2.39	-1.79	•728	9.51	.00	.00	.00
18.*	21.50	.560	19.24	-6.087	2.12	88	.724	9.22	4.52	.00	.00
2 B	21.60	.561	19.52	-6.582	1.91	50	.733	9.39	5.05	•00	.00
3B*	21.70	.552	18.82	-5.005	2.76	-1.64	•688	8.72	4.40	•00	.00
4B	21.50	.561	19.72	-7-479	1.61	23	.754	9.62	6.38	•00	.00
5B*	22.30	.550	19.23	-4.911	2.82	-1.42	.677	8.79	6.38	.00	.00
10	19.20	.525	16.73	-5.134	2.57	-1.89	.697	7.43	• 91	•00	.00
2C	18.60	.536	16.88	-6.870	1.74	53	•740	7.80	1.30	•00	.00
3C	19.00	.534	17.22	-6.786	1.76	49	.737	7.90	1.17	•00	• 00
4C	18.70	• 5 3 0	16.62	-5.822	2.16	-1.32	•718	7.53	1.04	•00	•00
5C	19.00	.524	16.26	-4.699	2.94	-2.39	.678	7.13	•78	•00	•00
6C	19.30	.531	17.07	-5.616	2.27	-1.41	•712	7.72	1.17	•00	.00
7C	19.40	.529	17.26	-5.879	2.12	-1.11	•717	7.79	1.17	.00	•00
8C	19.20	• 5 2 9	17.25	-6.317	1.92	75	.726	7.80	1.43	•00	.00
9C	18.50	• 5 3 0	16.34	-5.705	2.23	-1.03	704	7.30	1.04	•00	.00
10C	19.00	.537	17.39	-7.435	1.57	11	• • *	8.06	1.56	•00	.00
15	19.10	• 5 3 2	17.30	-6.781	1.76	40	•734	7.89	1.56	•00	.00
2S	19.20	• 5 34	17.65	-7.738	1.48	03	.753	8.17	1.82	•00	.00
3S	19.10	.531	17.40	-7.095	1.65	34	.743	7.97	1.82	•00	.00
4S	19.20	• 512	16.01	-4.391	3.20	-1.71	•635	6.61	•65	• 00	.00
5S	19.10	• 5 2 3	16.84	-5.660	2.22	90	.700	7.39	1.04	• 00	•00
1 T	18.70	.527	16.98	-6.999	1.67	18	•735	7.66	1.69	•00	•00
2T	19.00	• 527	17.07	-6.391	1.88	55	.723	7.66	1.43	•00	.00
3т	18.80	• 5 2 7	16.96	-7.024	1.66	•86	•705	7.39	1.43	•00	.00
4T	18.90	• 517	16.13	-4.719	2.88	-1.95	• 6 6 8	6.90	• 91	.00	.00
5T	18.50	• 5 2 0	16.23	-5.467	2.33	-1.17	•695	7.07	1.17	•00	•00
6T	18.70	• 5 2 5	17.01	-7.167	1.61	•03	•734	7.62	1.30	•00	.00
AVERAGES	s: 902	14 BA	ASELIN	E W079 00	000						
	21.55	.561	19.62	-7.030	1.76	37	.743	9.50	5.72	.00	.00
STD	• 0 5	.000	.10	.448	.15	•13	.011	.11	• 6 7	*	*
	902	14 W1	58N-TI	-V-CR001	(5E1)	3-5E13-	-5.5El	4)			
	18.96	.528	16.89	-6.176	2.08	83	•714	7.56	1.26	.00	.00
STD	.26	.006	.45	.942	.48	, 77	.028	• 39	• 32	*	*
PERCENT	OF BAS	SELINI	E								
	88.0	94.0	86.1	112.2	118 ·	-26.4	96.1	79.6	22.0	****	****
S TD Z	1.4	1.1	2.8	19.9	39	369.2	5.2	5.1	8.7	****	****

247

and the second 
90216 W159N-CR-MN-TI-V001 (3.5E14-3.2E14-2E13-2E13) W079 00 000 *SOL11 1 /9 /80 AM1: PO=91.60MW/CM² NO AR COATING

.

-

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.565	19.88	-6.689	1.88	81	.747	9.77	.00	.00	.00
1B*	21.40	.562	18.04	-5.718	2.32	3.53	.580	7.38	4.55	.00	.00
2B•*	21.90	.554	19.41	-5.812	2.23	58	.703	9.02	3.40	.00	.00
3B	21.90	.557	19.78	-6.637	1.87	24	.727	9.38	4.81	.00	.00
4B.*	21.70	.547	19.19	-5.784	2.22	49	.699	8.77	3.00	.00	.00
5B*	21.50	.547	18.57	-4.937	2.79	-1.57	.681	8.47	3.38	.00	.00
10	19.50	.531	17.24	-5.727	2.21	88	.703	7.70	.91	.00	.00
2C	19.50	.531	17.71	-6.861	1.72	53	.741	8.12	1.56	.00	.00
3C	19.30	.531	17.42	-6.720	1.77	12	.724	7.84	1.17	.00	.00
4C	19.60	.526	17.21	-5.539	2.29	85	.693	7.56	1.04	.00	.00
5C	19.20	.526	16.67	-5.177	2.54	-1.30	.683	7.29	.91	.00	.00
6C	19.50	.527	17.31	-5.953	2.07	52	.704	7.65	1.04	.00	.00
7C	19.50	.531	17.71	-7.037	1.66	•00	.731	8.01	1.43	.00	.00
8C	19.20	.523	17.58	-7.479	1.52	07	•747	7.93	1.17	.00	.00
90	20.00	.528	17.78	-5.971	2.06	59	.708	7.91	1.17	.00	.00
10C	19.40	• 529	17.56	-6.759	1.75	37	•733	7.95	1.56	.00	.00
11C	19.40	.521	16.75	-5.002	2.65	-1.49	.678	7.25	.91	.00	.00
15	19.30	• 5 3 0	17.41	-6.575	1.82	49	.729	7.89	1.69	.00	.00
25	19.80	.487	15.75	-3.939	3.63	98	• 576	5.87	.39	.00	.00
3S	19.40	.512	16.18	-4.385	3.20	-1.70	.636	6.68	.52	.00	.00
4 S	19.50	.516	16.47	-4.523	3.06	-1.96	.655	6.97	•78	.00	.00
5S	18.70	•466	13.74	-3.822	3.71	2.55	•478	4.40	.31	.00	.00
6 S	19.50	.521	17.20	-5.753	2.15	53	•695	7.47	1.30	.00	.00
1 T	18.90	.469	14.63	-3.888	3.61	• 24	• 5 3 7	5.04	• 30	.00	.00
2T <b>.</b> *	19.00	.507	14.75	-3.436	4.9i	-4.33	.581	5.92	.39	.00	.00
3r	19.10	.478	14.94	-3.880	3.69	44	• 5 5 4	5.35	• 37	.00	.00
4 T	19.20	.528	17.15	-6.186	1.97	50	.714	7.65	1.04	•00	.00
5T	18.80	•450	13.97	-3.697	3.80	1.07	•496	4.44	.26	.00	.00
AVERAGES	5: 902	16 BA	ASELIN	E W079 00	000						
	21.90	.557	19.78	-6.637	1.87	24	.727	9.38	4.81	.00	.00
STD	.00	.000	•00	.000	.00	•00	.000	.00	.00	*	*
	902	16 W1	59N-CR	-MN - T I - V (	001 (:	3.5E14-	-3.2El	4-2E13	-2E1J)	1	
	19.35	.512	16.59	-5.470	2.52	45	•663	7.00	•94	.00	.00
STD	• 30	.025	1.23	1.188	• 8	.94	•082	1.19	• 4 4	*	*
PERCENT	OF BAS	SELINI	E								
	88.3	92.0	83.9	117.6	135	12.9	91.2	74.6	19.6	****	*****
STD 🕱	1.4	4.5	6.2	17.9	42	392.0	11.2	12.7	9.1	****	****

248

65

3 res and a service survey as

and the second 
----

and a set water and a set of a

÷

90219 W160TI001 (1.7E14) W117 00 000 *SOL11 1 /9 /80 AM1: P0=91.60MW/CM² NO AR COATING

AND AND A DAMA IN

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.564	20.04	-7.297	1.67	31	.751	9.81	.00	.00	.00
2B*	21.00	• 5 5 2	15.26	-3.109	6.37	-3.36	.511	6.27	3.00	.00	.00
3B.*	21.70	•547	19.06	-5.682	2.27	13	•682	8.56	2.34	.00	.00
4B	21.60	• 5 4 5	19.52	-7.165	1.66	1.05	.703	8.75	3.25	.00	.00
5 B	21.90	• 5 4 6	19.90	-7.406	1.59	.91	.714	9.03	3.51	.00	.00
10	11.90	.484	10.42	-5.845	2.06	24	.678	4.13	.78	.00	.00
2C	11.90	.491	10.84	-7.551	1.46	.65	.728	4.50	1.04	.00	.00
3C	12.00	•491	10.97	-7.850	1.38	.96	.730	4.55	1.04	.00	.00
4 C	12.00	.491	11.03	-8.242	1.30	.96	.741	4.61	1.17	.00	.00
5C	11.80	•489	10.82	-8.105	1.32	1.04	.736	4.69	1.04	.00	.00
6C	12.00	.489	10.73	-6.850	1.66	.48	•708	4.39	.91	.00	.00
7C	11.70	• 488	10.60	-7.298	1.52	• 5 8	.721	4.35	.91	.00	.00
8C	11.80	.489	10.71	-7.556	1.45	1.30	•7 ÷	4.36	.91	•00	.00
9C	11.60	•487	10.57	-7.677	1.42	1.00	•724	4.33	1.04	.00	.00
100	11.90	•487	10.88	-7.904	1.36	1.11	.728	4.46	1.04	.00	.00
15	11.60	.484	10.49	-7.421	1.47	1.51	.707	4.20	1.04	.00	.00
2 S	11.70	.484	10.52	-7.052	1.58	1.08	.703	4.21	• 91	•00	.00
35	11.90	-482	10.68	-7.028	1.58	1.37	•696	4.22	.91	.00	.00
4 S	11.80	.431	10.54	-6.809	1.65	1.35	.689	4.14	.78	•00	.00
5 S	11.90	.474	10.47	-6.102	1.90	• 46	•677	4.04	• 78	•00	.00
6 S	11,70	•479	10.55	-7.208	1.52	1.30	.704	4.17	•91	.00	.00
1 T	11 90	.492	10.75	-7.580	1.45	• 5 9	•730	4.48	• 7 8	•00	.00
2T	11.80	.492	10.83	-8.143	1.32	1.04	•737	4.52	• 91	•00	.00
3т	11.30	•475	9.47	-4.762	2.82	-2.05	.637	3.62	- 78	•00	.00
4T	11.70	.482	10.29	-5.974	1.99	19	•683	4.07	1.04	•00	•00
5T	11.40	- 486	10.41	-8.103	1.32	1.91	.718	4.21	1.04	•00	.00
6T	11.90	.487	10.91	-8.090	1.32	1.11	•734	4.50	1.04	•00	•00
AVERAGES	5: 902	19 B <i>i</i>	ASELINE	s w117 OC	000						
	21.75	-546	19.71	-7.285	1.62	• 98	•709	8.89	3.38	.00	.00
STD	•15	.000	•19	.121	•03	•07	.006	•14	.13	*	*
	902	19 W1(	50T1001	l (1.7E14	÷)						
	11.78	•486	10.61	-7.234	1.58	•79	.710	4.30	• 9 5	.00	•00
STD	,18	.005	• 3 2	• 874	• 34	• 7 9	•025	• 2 2	.11	*	*
PERCENT	OF BAS	SELINE	Ξ								
	54.1	89.0	53.9	100.7	98	80.6	100.2	48.3	28.0	****	*****
STD 🗶	1.2	1.0	2.1	13.9	24	92.9	4.4	3.3	4.5	****	****

. . .

,

۰,

- ...

Z,

:

90403 W**161TI002 21-31 OHM-CM (3E13) W117 00 000 *SOL12 l /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
2R*	21.90	.560	19.79	-6.461	1.95	84	.739	9.59	.00	.00	.00
1B*	22.00	.548	19.16	-5.225	2.57	-1.00	.684	8.72	2.60	.00	:00
2 B	22.40	.553	20.66	-8.106	1.43	•40	.750	9.83	5.20	.00	.00
3B	22.20	.552	20.12	-6.812	1.79	17	.731	9.48	4.42	•00	.00
4B*	22.10	.548	19.40	-5.562	2.34	47	.687	8.80	3.25	.00	•00
1151	23.30	.493	21.18	-7.610	1.38	1.15	.706	8.57	8.30	.00	•00
1512	23.30	.488	20.25	-5.721	1.99	.93	.648	7.79	10.40	.00	•00
10	18.80	.480	15.92	-4.978	2.47	•15	.630	6.02	• 5 2	.00	•00
20	18.40	.478	15.64	-5.028	2.42	•04	.636	5.92	.39	.00	.00
30	18.60	.476	15.59	-4.660	2.71	59	.628	5.88	.50	•00	•00
4C	18.80	.477	15.77	-4.623	2.75	81	.632	5.99	.39	•00	•00
5C	18.80	.476	15.89	-4.729	2.65	91	.643	6.08	• 5 2	•00	•00
6C	18.70	.477	15.73	-4.779	2.61	22	.627	5.92	• 5 2	.00	•00
7C	17.90	.479	15.24	-5.222	2.30	•71	.629	5.71	• 39	•00	.00
8C	18.50	.480	15.68	-5.088	2.39	.58	.625	5.87	.52	.00	.00
90	19.10	.480	16.18	-4.886	2.53	25	.636	6.17	.52	.00	•00
100	18.50	.477	15.70	-4.866	2.54	59	•643	6.00	.52	.00	.00
15	18.70	• 477	15.54	-4.734	2.65	.51	.604	5.69	• 39	.00	•00
2 S	18,50	.477	15.51	-4.879	2.53	• 5 1	.614	5.73	• 39	•00	.00
3S	18.40	• 476	15.40	-4.858	2.55	• 5 0	.612	5.67	•46	•00	.00
4 S	18.10	• 474	15.37	-5.334	2.20	1.38	.617	5.60	• 3 9	•00	•00
5 S	18.70	• 476	15.67	-4.843	2.55	.40	.614	5.78	• 3 9	•00	.00
6 S	14.80	.468	11.96	-4.447	2.99	.52	• 576	4.22	• 3 9	.00	•00
1 T	17.80	•475	15.13	-5.313	2.23	1.21	.621	5.55	• 3 9	•00	•00
2 T	18.30	• 474	16.26	-7.041	1.49	2.47	.654	6.00	• 5 2	•00	•00
3T	18.50	• 4 7 4	15.58	-4.957	2.46	•51	.619	5.74	.39	.00	•00
4T	18.50	•472	15.57	-5.007	2.41	•79	.614	5.67	• 39	•00	.00
5T	18.60	.472	15.53	-4.912	2.48	•95	.603	5.60	• 39	•00	.00
6T	18.60	.472	15.72	-5.219	2.26	1.34	•611	5.68	• 39	-00	.00
AVERAGE	s: 904	03 в	ASELIN	IE W117 0	0 000						
	22.30	.553	20.39	-7.459	1.61	.11	•741	9.65	4.81	.00	.00
STD	.10	.001	.27	.647	.18	.28	.009	•17	• 39	*	*
	904	03 W*	*161TI	002 21-3	1 OHM	-CM (3	E13)				
	18.76	.477	15.92	-5.155	2.40	.47	•627	5.95	1.18	.00	.00
STD	1.58	.005	1.65	.710	.35	• 7 7	.023	.77	2.48	*	*
PERCENT	OF BA	SELIN	E								
	84.1	86.3	78.1	130.9	149	418.7	84.6	61.7	24.6	*****	*****
STD %	7.5	1.0	9.2	16.3	41	****	4.3	9.2	57.8	****	*****

*SOL11	1 /9 /80	AM1: P0=91	.60MW/CM^2	IO AR COATING		
ID	ISC VOC	IP LOG(	IO)NR	FF Eff	OCD PCD	a PCDb
2R* .	21.90 .561	20.00 -7.	189 1.69:	9.747 9.71	.00 .00	0.00
1 B	22.20 .552	20.02 -6.	694 1.83 .	0.718 9.31	3.90 .0	.00
2 B	22.50 .555	20.80 -8.	271 1.40	0.754 9.96	6.24 .0	0,00
3B	22.50 .555	20.69 -7.	761 1.52 .	2.71 9.92	5.20 .00	.00
4 B	22.40 .549	20.02 -6.	188 2.02:	7.711 9.24	4.16 .00	.00
5B	22.30 .549	20.19 -6.	846 1.77 .0	4 .726 9.40	3.64 .0	.00
10.*	10.30 .471	9.74 -14.	947 .61 7.	0.703 3.61	1.04 .00	.00
2C	12.60 .467	11.01 -6.	126 1.85 1.0	6 .654 4.07	.91 .0	.00
30	12.40 .464	10.95 -6.	335 1.75	8.677 4.12	.91 .00	
4C	12.80 .467	11.46 -6.	935 1.55 1.4	3 .690 4.36	.78 .0	.00
5C	12.70 .466	11.27 -6.4	491 1.69	7 .683 4.28	.78 .0	.00
6C	12.50 .464	11.12 -6.	544 1.67 .	7 .690 4.23	.91 .00	.00
7C	12.80 .466	11.37 -6.	441 1.71 .0	4 .688 4.34	.91 .00	.00
8C	12.60 .459	10.92 -5.0	645 2.05	6 .659 4.03	.91 .00	.00
9C	12.70 .462	11.23 -6.2	239 1.78 .4	5 .684 4.24	.91 .00	
10C	12.80 .462	11.40 -6.	589 1.64 .9	1.688 4.31	.91 .00	.00
110	12.80 .462	11.40 -6.	589 1.64 .9	1.688 4.31	.91 .00	.00
15	13.10 .465	11.55 -6.0	067 1.86 .0	4 .685 4.42	.78 .00	.00
25	13.10 .433	10.48 -4.	305 2.98(	8.571 3.42	.30 .00	
3S	13.00 .462	11.37 -5.	726 2.014	6 .679 4.31	.72 .00	.00
4 S	13.00 .462	11.45 -5.4	894 1.936	4 .692 4.39	.91 .00	.00
5S	13.00 .463	11.41 -5.	773 1.990	9.686 4.37	.91 .00	.00
6 S	13.10 .460	11.55 -6.2	127 1.81 .3	2 .682 4.35	.91 .00	.00
1T	12.30 .466	10.89 -6.2	292 1.78 .4	6.686 4.16	.91 .00	.00
2 T	12.50 .463	11.02 -6.2	193 1.80 .6	6 .677 4.15	.91 .00	.00
3т	12.50 .465	11.00 -6.0	043 1.88 .1	5.681 4.19	.91 .00	.00
4 T	12.50 .465	11.10 -6.3	385 1.73 .4	5.690 4.24	.91 .00	.00
5T	12.70 .463	11.17 -6.0	022 1.87 .1	5.680 4.23	.78 .00	.00
6T	12.60 .462	11.08 -6.0	052 1.86 .2	7 .679 4.18	1.69 .00	•00
AVEDACE	c. 00/00 n					
AVERAGES	5; 90402 BA	ASELINE WIL		0 700 0 57		
C TD	12 002	20.34 -/.1		8 • / 32 9 • 50	4.63 .00	.00
510	90402 W1	• J J • . 6 2 N T = T T O O I • .	/ JO + 4 4 ( 4 F 1 5 - 1 4 F 1 4 Y		• 90 *	*
	12.73 ./62	11.10 - 4	(9819-1•0814)	1 677 1 21	80 04	
STD	.23 .007	.26	503 .28 4	4 • 0 / / 4 • 2 I	•07 •01	J ∙00 ♦
PERCENT	OF BASELIN	•20 •. F	/UJ +20 +2	· · · · · · · · · · · · · · · · · · ·	• 4 4 4 *	~
	56.9 83.7	55.0 114	3 100 557 0	92.5 44 1	10 1 4444	
STDZ	1.3 1.6	2.2 16	8 32 ****	5.7 3 6	Q.7 ****	* *****
		10		0.11 0.10	2.1	

90402 W162NI-TI001 (4E15-1.6E14) W117 00 000 *SOL11 1 /9 /80 AM1: P0=91.60MW/CM² NO AR COATING

C.96.N.

n geboord. R

•.

「「「「「「「」」」」

90405 W163NI/V001 (4E15-4.4E14) W117 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

. .

•. •

....

1. 1. 1.

4

. حما

a law

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.553	19.87	-6.754	1.81	51	.740	9.48	.00	•00	.00
1 B	21.56	• 544	19.56	-6.970	1.71	33	.741	9.17	4.29	.00	.00
2B.*	22.20	.546	19.65	-5.662	2.28	99	.709	9.09	3.90	.00	.00
3 B	21.90	.545	19.86	-6.794	1.77	34	.736	9.29	4.16	•00	.00
4B.*	22.00	.544	19.57	-5.766	2.21	-1.15	.719	9.10	3.90	.00	.00
5 B	21.90	.547	20.11	-7.526	1.56	20	.755	9.56	4.94	.00	.00
10	14.90	.475	13.27	-6.470	1.71	• 5 8	.692	5.18	•65	.00	.00
3C	14.90	.480	13.44	-6.932	1.57	.30	.716	5.42	.91	.00	.00
4C	14.90	.479	13.41	-6.819	1.60	• 32	.712	5.37	1.04	•00	.00
5C	15.20	.478	13.56	-6.424	1.73	-14	.701	5.39	.91	.00	.00
6C	15.10	.476	13.36	-6.044	1.88	<b>-</b> .20	.693	5.27	1.00	•00	.00
7C	15.20	.478	13.56	-6.424	1.73	•14	.701	5.39	•91	•00	.00
8C	14.80	.476	13.23	-6.546	1.69	• 2 8	.702	5.23	•65	•00	.00
90	15.00	.476	13.29	-6.090	1.86	20	•695	5.25	•65	•00	.00
10C	15.10	.477	13.51	-6.473	1.71	07	.708	5.40	•78	•00	.00
11C	14.80	.473	13.12	-6.160	1.82	•00	.693	5.13	.72	.00	.00
15	15.40	.478	14.04	-7.532	1.40	• 5 8	•728	5.67	• 78	•00	.00
25	15.20	.478	13.68	-6.825	1.59	.30	.713	5.48	• 78	•00	.00
35	15.40	.480	13.80	-6.502	1.71	13	•711	5.56	•91	•00	.00
4 S	15.10	.478	13.41	-6.203	1.82	04	.696	5.31	•83	•00	.00
5 S	15.50	• 4 7 7	13.71	-6.061	1.87	07	.691	5.40	•65	•00	.00
6 S	15.40	•478	13.92	-6.933	1.56	• 0 5	.723	5.63	• 7 8	•00	.00
1 T	14.70	•478	13.20	-6.731	1.63	• 2 8	.709	5.27	• 6 5	•00	.00
2 T	14.80	•475	13.09	-6.056	1.88	14	.692	5.14	• 78	•00	.00
3т	15.20	.478	13.55	-6.294	1.78	20	•705	5.41	• 7 8	•00	•00
4T	14.80	• 474	13.12	-6.170	1.82	.00	.693	5.14	• 91	.00	.00
5т	15.00	•476	13.58	-7.073	1.51	• 20	.723	5.46	• 6 5	•00	.00
6T	15.00	•476	13.33	-6.284	1.78	.12	.696	5.25	• 78	.00	.00
AVERAGE	s: 904	05 B	ASELIN	E W117 0	0 000						
	21.77	• 5 4 5	19.84	-7.097	1.68	29	•744	9.34	4.46	.00	.00
STD	.19	.001	• 2 2	.312	•09	.06	.008	.16	• 34	*	*
	904	05 W1	63NI/V	001 (4E1	5-4.4	E14)					
	15.06	• 4 7 7	13.46	-6.50?	1.71	.10	.704	5.35	.80	•00	•00
STD	• 2 2	.002	• 2 5	• 382	.13	.23	.011	•15	.12	*	*
PERCENT	OF BA	SELIN	Е								
	69.2	87.5	67.9	108.4	102	235.6	94.7	57.3	17.8	****	*****
STD 🔏	1.6	• 5	2.0	9.6	14	103.8	2.5	2.6	4.2	****	****

252

. .....

.

.

,

.

÷ .

90409 W164NI-M0001 (4E15-4E12) W117 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

.

÷

7

Ę

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.553	19.86	-6.709	1.83	61	.742	9.50	.00	.00	.00
1 B	21.60	.546	20.05	-8.553	1.32	• 2 2	.767	9.56	4.29	.00	.00
2 B	21.80	.544	19.82	-6.961	1.71	21	.737	9.25	3.90	.00	.00
3 B	21.80	.545	20.24	-8.558	1.32	• 2 7	.765	9.61	4.42	.00	• .`0
4 B	22.00	• 547	20.33	-8.238	1.39	.52	.756	9.62	4.55	.00	.00
5 B	21.70	• 5 4 6	20.21	-8.935	1.25	•45	.767	9.61	4.55	.00	.00
10	18.10	.503	16.09	-5.996	1.98	64	.708	6.81	.56	.00	•00
2 C	18.30	.502	16.34	-6.195	1.88	49	.713	6.93	.91	.00	.00
3C	13.10	.500	16.22	-6.343	1.82	42	.717	6.86	.91	.00	-00
4C	18.50	.503	16.66	-6.520	1.75	45	.725	7.14	.91	.00	• 0 ·
5 C	18.70	.503	16.80	-6.501	1.76	22	.718	7.14	•65	•00	.00
6C	18.20	• 49 9	16.30	-6.322	1.82	39	.715	6.87	.65	•00	.00
7C	18.30	• 495	15.98	-5.424	2.24	84	•684	6.56	• 5 2	•00	.CÚ
8 C	18.30	.500	16.34	-6.244	1.85	26	.708	6 - 8 5	•65	•00	.00
9C	18.10	.500	16.17	-6.222	1.86	46	•713	6-82	•65	.00	•00
100	18.50	•498	16.29	-5.693	2.10	66	• 694	6.77	• 5 2	•00	•00
110	18.20	.498	16.14	-5.925	1.99	62	•704	6.75	• 6 5	.00	.00
15	18.00	.500	16.33	-6.952	1.60	21	.733	6.98	• 7 8	•00	•00
2 S	18.70	.500	16.54	-5.790	2.06	72	.701	6.94	•65	.00	•00
3 S	18.70	• 500	16.51	-5.742	2.08	69	.698	6.90	•65	.00	•00
4 S	18.70	.501	16.73	-6.312	1.83	28	.712	7.06	•65	.00	.00
5 S	18.80	.501	16.72	-5.987	1.96	63	•709	7.06	•91	•00	•00
6 S	18.70	.501	16.70	-6.251	1.85	26	•709	7.02	•91	.00	•00
lT•*	17.20	• 493	13.76	-3.591	4.49	-5.87	•626	5.61	3.00	.00	•00
2 T	17.80	• 492	15.05	-4.615	2.87	-1.87	•654	6.06	• 4 4	•00	•00
3T	18.00	.500	16.04	-6.156	1.89	38	•708	6.73	•60	•00	.00
4 T	17.60	• 496	15.60	-5.905	2.00	71	•705	6.50	• 6 5	.00	.00
5T	17.70	• 496	15.62	-5.325	2.03	49	•695	6.45	• 7 8	.00	•00
AVERAGES	S: 904	09 B.	ASELIN	E W117 0	000						
	21.78	• 5 4 6	20.13	-8.249	1.40	.21	•758	9.53	4.34	.00	.00
STD	•13	.001	.18	.681	•16	• 2 2	•011	•14	• 24	*	*
	904	09 W1(	64NI-M(	0001 (4E)	l5-4E	12;					
	18.29	• 499	16.25	-6.044	1.96	56	•706	6.82	.70	•00	•00
STD	• 35	.003	• 4 2	•450	• 2 5	• 34	.016	• 2 5	•14	*	*
PERCENT	OF BAS	SELINI	Е								
	84.0	91.5	80.7	126.7	140	****	93.1	71.6	16.0	****	****
S T D X	2.1	.7	2.8	12.1	36	620.3	3.5	3.7	4.3	****	****

253

and the second 
, s ,

90515 W165C0002 (6E14) W133 00 000 *SOL12 1 /10/80 AM1: PO=91.60MW/CM^2 NO AR COATING

-

•

٠

Ĩ,

÷

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	РСДа	PCDI
2R*	21.90	.559	19.80	-6.511	1.92	77	.739	9.57	30	.00	.00
18 .	21.90	.551	19.84	-6.692	1.83	51	.738	9.42	64	.00	.00
2 B	22.00	.551	19.90	-6.530	1.89	74	.739	9.48	3.25	.00	.00
38	22.10	.549	19.78	-6.069	2.08	86	.724	9.29	3.90	.00	.00
10	22.00	.553	19.80	-6.209	2.03	-1.00	.737	9.48	3.90	.00	.00
20	21.60	.551	19.79	-7.305	1.63	42	• " 5 -	9.50	3.90	•00	.00
30	22.00	.552	19.97	-6.716	1.82	68	•744	9.36	3.90	.00	.00
4 C	21.70	.546	19.45	-6.056	2.08	-1.12	.731	916	3.12	.00	.00
5 C	22.00	.553	20.37	-8.176	1.42	-,12	.769	9.90	4.29	.00	.00
6C	21.90	.550	19.97	-ú.961	73	61	.751	9.56	3.12	.00	.00
7C	22.00	.551	20.00	-6.824	1.28	60	•746	9.56	3.90	•00	.00
8C	22.10	.549	20.25	-7.306	1.62	42	•756	9.70	4.42	.00	.00
9C	22.10	.536	18.96	-4.732	2.91	-1.80	•676	8.47	2.08	.00	.00
10C	22.20	.546	20.38	-7.652	1.52	•08	•749	9.60	4.42	•00	•00
11C	22.10	• 5 4 9	20.25	-7.366	1.61	31	•754	9.68	4.29	.00	.00
12C	22.20	.545	19.72	-5.751	2.22	-1.03	.715	9.15	3.00	.00	.00
1.3C	22.00	• 5 4 6	19.48	-5.618	2.30	-1.18	•712	9.05	3.38	.00	.00
14C	21.90	• 5 5 0	19.80	-6.493	1.90	79	•739	9.42	3.64	.00	•00
15	21.80	• 5 4 5	19.05	-5.095	2.65	-2.00	•706	8.87	2.60	•00	.00
25	21.90	• 5 4 4	19.08	-5.047	2.68	-1.88	.700	8.81	2.60	.00	• 20
3S	21.90	• 5 4 4	19.26	-5.331	2.48	-1.62	.710	8.94	3.00	•00	•00
4 S	22.30	• 5 4 8	20.53	-7.722	1.5	15	•759	9.81	4.29	•00	.00
5S	22.00	• 5 4 6	20.22	-7.671	1.52	03	.753	9.57	3.90	•00	.00
6 S	22.30	• 5 4 4	20.04	-6.270	1.97	66	.727	9.33	3.90	.00	.00
1T	21.90	• 5 4 8	20.16	-7.887	1.47	.18	•752	9.54	4.29	.00	.00
2 T	22.40	• 5 4 1	20.15	-6.453	1.88	26	.721	9.25	3.64	•00	•00
3T	22.20	.547	19.90	-6.104	2.05	92	.728	9.35	2.60	.00	.00
4 T	22.00	• 546	20.10	-7.216	1.64	26	.748	9.50	3.90	.00	.00
5 T	22.10	.547	19.14	-4.852	2.86	-2.20	.696	8.90	3.00	.00	.00
6 T	22.10	.549	19.92	-6.381	1.94	74	•734	9.41	3.64	•00	.00
AVERAGE	s: 905	15 B	ASELIN	E W133 O	0 000						
	22.00	.550	19.84	-6.430	1.93	70	.734	9.39	3.60	.00	.00
STD	.08	.001	.05	.264	.11	.14	.007	• 0 8	• 27	*	*
	905	15 W1	65000	2 (6E14)							
	22.03	.547	19.84	-6.507	1.97	79	.733	9.35	3.57	.00	•00
STD	.18	.004	.44	.980	.43	.65	.023	• 34	• 6 4	*	*
PERCENT	OF BA	SELIN	E								
	100.1	99.4	100.0	98.8	102	87.2	100.0	99.5	99.2	*****	*****
STDZ	1.2	. 8	2.5	20.0	29	134.6	4.0	4.4	26.6	****	****

~

* :

90516 W166FE007 (1.06E15) W133 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

3

e en la construcción de la construc

ţ

7

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	0 C D	PCDa	PCDb
2R*	21.90	• 5 5 5	19.84	-6.620	1.87	69	.741	9.52	.00	.00	.00
LB	22.00	.553	20.17	-7.433	1.60	19	•752	9.67	4.55	.00	.00
2 B	22.30	• 556	20.68	-8.340	1.39	00	.769	10.09	4.94	.00	.00
3B	22.10	.554	20.30	-7.674	1.54	.10	.749	9.70	4.68	.90	.00
4B	21.90	.555	19.99	-7.109	1.70	41	•749	9.62	4.42	.00	.00
5B	22.00	.552	20.12	-7.277	1.64	26	.750	9.63	4-29	.00	.00
10	21.20	• 5 2 9	18.01	-4.558	3.06	-1.99	•665	7.88	1.04	•00	.00
20	19.60	• 5 2 0	17.22	-5.461	2.31	-1.21	•699	7.54	.9i	.00	.00
3C	21.40	.539	19.36	-6.714	1.78	30	.731	8.92	2.34	.00	.00
4C	21.40	- 540	19.18	-6.193	1.99	69	•723	8.84	2.08	•00	.00
5C	20.20	.530	18.05	-6.063	2.03	82	.720	8.15	1.43	.00	•00
6C	20.50	.531	18.13	-5.639	2.24	-1.16	.710	8.17	1.56	•00	-00
7C.*	18.00	• 500	13.76	-3.136	5.93	-8.10	.594	5.65	• 3 3	•00	-00
8C	21.20	• 5 3 8	19.09	-6.320	1.93	87	• 734	8.85	2.21	•00	.00
9C	21.30	• 525	18.04	-4.519	3.08	-1.90	.650	7.80	1.00	•00	•00
10C	21.40	.532	1c 57	-4.994	2.67	-1.73	.691	8.32	1.69	.00	•00
15	21.40	.532	18.57	-4.994	2.67	-1.73	•691	8.32	1.69	.00	.00
25	21.50	.537	18.71	-5.051	2.65	-1.78	.696	8.50	1.95	•00	•00
3S	21.20	.524	16.98	-4.397	3.21	1.55	.554	6.51	•91	.00	.00
4 S	21.50	• 238	19.03	-5.578	2.30	-1.35	.715	8.74	2.21	•00	.00
55	20.90	• 5 3 0	18.00	-4.751	2.88	-2.33	.689	8.07	1.30	•00	.00
6S	21.40	• 534	18.48	-4.881	2.78	-1.79	.685	8.27	1.56	•00	.00
11	20.00	.526	17.61	-5.599	2.25	83	•697	7.75	1.04	.00	.00
2T.*	19.00	.515	15.25	-3.541	4.71	-5.98	.635	6.57	• 50	.00	•00
3T	20.90	• 534	18.97	-6.905	1.71	20	.734	8.67	1.69	•00	•00
4T	20.10	• 5 2 5	17.51	-5.184	2.51	-1.48	.692	7.72	1.00	•00	•00
5T	21.10	• 5 3 5	18.94	-6.287	1.94	59	•724	8.64	1.82	•00	.00
6T	20.70	• 5 3 0	18.44	-5.953	2.07	~.82	.716	8.30	1.56	.00	.00
AVERAGE	s: 905	16 B.	ASELINI	E W133 00	000						
	22.06	• 5 5 4	20.25	-7.567	1.57	15	•754	9.74	4.58	.00	.00
STD	.14	.001	• 2 4	• 4 2 9	.11	•18	•008	.18	• 2 2	*	*
	905	16 W1	66FE00	7 (1.06E)	15)						
	20.95	.531	18.35	-5.502	2.40	-1.10	•696	8.20	÷ 55	•00	.00
STD	• 56	.005	.66	.728	. 4.	• 84	•039	• 5 6	.45	*	*
PERCENT	OF BAS	SELIN	Е								
	94.9	95.9	90.6	127.3	11	****	92.4	84.2	33.9	*****	*****
STDZ	3.1	1.2	4.3	14.3	40	****	6.1	7.3	12.0	*****	****

90517 W167NB001 (1.5E13) W133 00 000 *SOL12 1 /10/80 AM1: P0-91.60MW/CM^2 NO AR COATING

5

۲

-----

,

ID	ISC	Voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	рсрь
2R*	21.90	.557	19.78	-6.435	1.95	84	.738	9.53	.00	.00	.00
1 B	21.50	.552	19.29	-0.181	2.04	87	.728	9.14	4.16	.00	.00
2 B	22.00	.548	20.07	-7.175	1.66	12	.742	9.46	3.51	.00	.00
3 B	21.90	.552	19.85	-6.863	1.77	08	.730	9.33	4.29	.00	.00
4 B	22.00	.553	20.13	-7.049	1.54	.59	.732	9.41	4.42	.00	.00
10	19.00	.513	16.75	-5.650	2.18	86	• • 98	7.20	• 5 2	.00	.00
20	19.80	.513	17.07	-4.965	2.63	-1.45	•676	7.26	.52	.00	.00
30	19.10	.513	16.94	-5.912	2.04	61	.704	7.30	.60	.00	•00
40	18.90	.502	16.07	-4.755	2.77	-1.36	.656	6.58	4.00	.00	.00
5C	18 60	.515	16.49	-5.852	2.09	83	.707	7.16	.65	.00	.00
60	18.70	.512	16.53	-5.791	2.11	66	.699	7.08	.65	.00	.00
70	18.60	.515	10.67	-6.339	1.87	42	.717	7.26	.65	.00	.00
80	19.10	.521	17.16	-6.445	1.84	34	.720	7.57	.65	.00	.00
90	18.70	.513	16.65	-6.070	1.97	53	.709	7.19	.65	.00	• ເ າ
100	18.60	.510	16.62	-6.200	1.91	50	.714	7.16	.65	.00	.00
15	18.70	.519	16.86	-6.653	1.76	22	.724	7.43	.65	.00	.00
25	19.40	.517	16.92	-5.026	2.21	.24	.566	7.07	.52	.00	.00
35	18.90	.509	10.17	-4.944	2.64	92	.657	5.69	.52	.00	.00
45	19.00	.515	16.37	-0.054	1.99	19	•699	7.23	.65	.00	.00
55	18.90	.513	16.54	-5.613	2.20	21	.678	6.95	.65	.00	.00
1T	18.50	.509	16.37	-5.917	2.03	34	.096	6.93	.52	.00	.00
2 T	18.10	.508	16.22	-6.601	1.75	.40	.703	6.84	.65	.00	.00
3T	18.30	.502	15.80	-5.203	2.42	67	.666	6.47	• 5 2	.00	.00
4 T	18.30	.502	15.93	-5.399	2.29	62	. 670	6.57	• 5 2	.00	.00
5T	18.20	.501	15.72	-5.168	2.44	80	.609	6.45	• 5 2	.00	•00
6 T	18.20	.507	16.22	-6.268	1.87	01	.70?	6.85	.60	.00	.00
AVERAGE	s: 905	17 B.	ASELIN	E W133 0	0 000						
	21.85	: 551	19.83	-0.907	1.75	12	•733	9.33	4.10	.00	.00
STD	.21	.002	.33	.533	.19	.52	.005	.12	.35	*	*
	905	17 WI	67N B 0 0	1 (1.5E1	3.						
	18.74	.511	10.50	-5.782	2.14	52	.692	7.01	.76	.00	.00
STD	.41	.000	.40	.541	. 29	.45	.021	• 31	.73	*	*
PERCENT	OF BA	SELIN	Е								
	85.8	92.7	83.2	117.0	122	****	94.5	75.1	18.4	****	****
STDZ	2.1	1.3	3.4	14.7	31	*****	3.5	4.3	20.9	****	****

250

.....

-----

* . · .

• • • •

90518 w*168PH002 (1.10E17) LOW RESISTIVITY W133 00 000 *SOL12 1 /10/80 AN1: P0=91.60MW/CM²2 NO AR COATING

. . .

. 1.

,

-

5. I.

ŕ

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	• 5 5 7	19.81	-6.534	1.91	77	.740	9.54	•00	.00	.00
1 B	22.00	• 5 5 6	20.32	-8.079	1.45	.14	.758	9.81	4.29	.00	.00
2B.*	22.10	.548	19.53	-5.556	2.35	-1.18	.709	9.08	3.00	.00	.00
3 B	21.90	.552	20.23	-8.163	1.42	• 2 4	.757	9.67	4.16	.00	.00
4 B	22.20	• 552	20.50	-8.069	1.44	.13	.758	9.83	4.29	.00	.00
10	21.70	.562	17.80	-4.261	3.61	76	.605	7.80	• 5 2	.00	.00
20	21.10	• 587	19.47	-7.819	1.60	38	.767	10.05	2.34	.00	.00
3C	21.40	.569	18.12	-4.628	3.21	-1.34	.650	8.37	.00	.00	.00
4 C	21.60	.567	18.30	-4.875	2.95	08	.634	8.21	.65	.00	.00
6C	21.50	• 594	20.02	-8.665	1.42	06	.778	10.51	2.60	.00	.00
7C	21.40	• 590	19.22	-6.097	2.23	-1.34	.736	9.83	2.86	.00	.00
8C	21.30	• 582	18.86	-5.590	2.48	-1.47	.715	9.37	1.56	.00	.00
9C	21.10	•567	17.86	-4.589	3.25	-1.58	.652	8.25	- 91	.00	.00
100	21.40	.582	18.60	-5.036	2.89	-1.89	.694	9.13	1.56	.00	.00
110	21.20	• 582	18.99	-6.069	2.21	-1.11	.728	9.50	1.69	.00	.00
15	21.60	• 5 7 9	18.49	-4.606	3.29	-2.58	.681	9.01	1.17	.00	.00
2 S	21.50	• 590	19.95	-8.365	1.47	09	.773	10.36	2.60	•00	.00
35	22.00	• 5 5 4	19.76	-6.220	2.03	82	.729	9.40	4.16	.00	•00
4 S	21.50	• 590	19.33	-6.193	2.18	-1.14	•735	9.86	2.34	.00	•00
1 T	20.80	• 594	19.21	-7.811	1.62	56	•772	10.09	2.86	.00	.00
2 <b>T</b>	21.30	• 576	17.79	-4-194	3.81	-2.96	.652	8.46	1.04	.00	.00
3T	21.30	• 5 8 1	18.49	-4.962	2.95	-2.12	.695	9.09	1.17	.00	.00
4T	21.20	• 5 7 0	18.14	-4.805	3.04	-1.45	.665	8.50	• 91	•00	•00
ST	21.40	• 5 8 5	19.31	-6.394	2.07	93	•737	9.76	2.08	.00	•00
6T	21.30	• 5 8 5	19.03	-5.936	2.29	-1.28	.727	9.58	1.82	.00	•00
AVERAGES	S: 905	18 BA	SELINI	E W133 OC	000						
	22.03	• 5 5 3	20.35	-8.104	1.43	.17	•758	9.77	4.25	.00	•00
STD	.13	.002	.11	.042	.01	.05	.001	•07	•06	*	*
	905	[8 W*]	689400	02 (1.108)	E17) I	LOW RES	SISTIV	ΙΤΥ			
	21.38	• 5 7 9	18.84	-5.856	2.53	-1.20	.706	9.26	1.74	.00	•00
STD	• 25	•011	•69	1.343	.71	•77	•049	•76	•97	*	*
PERCENT	OF BAS	SELINE	3								
	97.0	104.7	92.6	127.7	176 1	*****	93.2	94.8	41.0	*****	****
STD 🕱	1.7	2.3	3.9	17.0	51 7	787.4	6.6	8.5	23.9	****	****

257

ا المالية المعادية المالية المرتبعة الم

Same Selection Pro-

المار المعلم بالمار الم

ne p

~

- -

90430 W*169PH004 (1.36E17) LOW RESISTIVITY W133 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

- - -

.

÷

Ŧ.

.

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
2R*	21.90	• 562	19.47	-5.622	2.37	-1.74	.728	9.48	.00	.00	.00
1B.*	21.40	.553	18.92	-5.661	2.31	95	.706	8.83	2.60	.00	•00
2B*	22.00	.550	19.29	-5.430	2.44	89	.693	8.87	2.34	.00	•00
3B	22.00	• 5 5 6	19.92	-6.685	1.85	41	•734	9.50	4.29	.00	.00
4 B	21.90	.554	19.94	-6.946	1.75	46	.745	9.56	3.64	.00	•00
SB	21.90	.554	19.74	-6.432	1.94	61	.731	9.38	3.38	.00	•00
10	21.30	.576	18.51	-5.109	2.80	-1.48	.687	8.91	1.69	.00	.00
2C	21.10	• 5 8 7	19.24	-6,905	1.87	95	•756	9.91	3.90	.00	•00
3C	21.00	.570	17.97	-4.758	3.09	-1.73	.669	8.47	1.69	.00	•00
4C	21.10	.584	18.38	-5.116	2.84	-1.79	•695	9.05	2.60	-00	•00
5C	21.30	.570	18.15	-4,660	3.19	-1.83	•665	8.54	1.56	•00	•00
6C	21.00	.571	17.89	-4,542	3.33	-2.58	•674	8.55	1.56	.00	•00
70	20.90	.573	17.96	-4.737	3.13	-2.32	• 683	8.64	1.56	.00	•00
8C	21.10	.583	19.08	-6.535	2.00	80	• 7 3 8	9.61	2.34	.00	•00
9C	21.20	.552	17.91	-4.743	3.00	52	•636	7.88	.78	.00	• 00
100	21.00	• 5 7 3	18.27	-5,167	2.74	-1.35	•687	8.74	1.56	.00	•00
110	21.40	• 584	19.27	-6.308	2.10	95	•734	9.71	2.86	.00	•00
15	20.90	• 582	18.39	-5,277	2.70	-2.25	•717	9.23	3.00	.00	•00
25	21.20	.563	17.87	-4.588	3.23	-1.19	•642	8.11	•91	.00	•00
35	21.30	• 5 7 7	18.63	-5.247	2.70	-1.55	.698	9.07	1.82	.00	•00
4S	21.40	• 582	19.19	-6.116	2.19	-1.05	.729	9.60	2.73	.00	•00
55	21.10	• 5 7 5	18.52	-5,343	2.02	-1.56	•703	9.02	] °2	.00	•00
6S	21.20	•260	18.07	-4.812	2.98	98	•654	8.21		.00	•00
1 T	21.50	• 589	19.89	-8,061	154	23	.769	10.30	5	.00	•00
2 <b>T</b>	21.20	• 5 8 0	18.66	-5.411	2.59	-1.53	•706	9.19	د.2	.00	•00
3T*	21.40	• 5 4 1	17.72	-4.575	3.11	.28	.603	7.38	• 5 2	•00	•00
4 T	21.40	• 567	18.22	-4.849	2.98	66	• 6 4 8	8.31	• 5 2	.00	•00
5T	21.40	.571	18.64	-5.327	2.61	69	•679	8.77	1.43	.00	•00
6T	21.40	-588	19.81	-8.171	1.51	06	•767	10.20	4.94	•00	•00
AVERAGES	5: 904	30 BA	ASELIN	E W133 00	000						
	21.93	• 5 5 5	19.87	-6.688	1.85	49	.737	9.48	3.77	.00	.00
STD	.05	.001	•09	.210	•08	•09	.006	.08	• 38	*	*
	904	30 W*1	169PHO	04 (1.36)	E17) J	LOW RES	SISTI	VITY			
	21.20	.575	18.57	-5.536	2.62	-1.28	.697	9.00	2.17	.00	.00
STD	.17	.009	.59	1.031	• 5 2	•65	.038	.65	1.21	*	*
PERCENT	OF BA:	SELINE	E 93.5	117.2	142 .	-57.7	94.6	94.0	57.5	*****	** * * *
STD 2	1.0	1.8	3.4	18.5	25	198.8	6.0	7.1	41.2	*****	****
	<b>1</b> • •	<b>I</b> • 0		× U • J			0.0	<b>/ •</b>	41+4		

258

• •

. .

-----

90503 W*170PH005 (1.5E17) LOW RESISTIVITY W133 00 000 *SOL12 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

• .

.

----

. +

1

?

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
2R*	21.90	.560	19.74	-6.252	2.04	-1.14	.740	9.60	.00	.00	.00
18*	22.70	.542	18.97	-4.315	3.39	-1.73	.641	8.34	1.82	.00	.00
2 B	22.40	.547	20.38	-7.107	1.67	.09	.733	9.49	3.64	.00	.00
3 B	22.60	.553	20.65	-7.336	1.62	.09	.740	9.78	5.20	.00	.00
4 B	22.90	.551	20.93	-7.438	1.59	.29	.736	9.82	4.42	.00	.00
56.*	22.10	.547	19.04	-4.827	2.88	-1.76	.681	8.71	2.60	.00	.00
10	22.10	.563	18.94	-4.722	3.07	-1.83	.674	8.87	3.64	.00	•00
2C	22.50	• 576	19.73	-5.321	2.62	-1.33	.700	9.59	7.15	.00	.00
3C	22.30	• 579	20.28	-6.908	1.84	38	.741	10.12	11.00	.00	.00
40*	21.60	.563	18.48	-4.751	3.05	-1.61	.668	8.59	2.34	.00	.00
5C	22.10	.571	18.89	-4.658	3.18	-1.97	.672	8.97	3.64	.00	.00
6C	22.20	.564	18.71	-4.395	3.44	-2.13	.655	8.68	3.00	.00	•00
7C	22.10	.569	19.43	-5.408	2.53	-1.25	.702	9.33	4.81	.00	.00
8C	21.90	.573	19.32	-5.477	2.51	-1.42	.710	9.42	4.55	.00	.00
90	22.10	.582	19.87	-6.264	2.11	80	.729	9.92	5.85	.00	.00
100	22.20	.562	18.92	-4.770	3.01	-1.05	•655	8.65	2.34	.00	.00
11C	22.10	.571	19.19	-4.996	2.86	-1.79	.692	9.23	4.81	.00	.00
15	21.80	.574	19.58	-6.256	2.09	72	.726	9.61	4.55	.00	.00
2 S	21.90	.580	19.93	-6.934	1.84	49	.745	10.01	4.94	.00	.00
35	22.10	• 583	20.22	-7.264	1.74	31	.750	10.22	8.45	.00	.00
4 S	22.40	• 577	19.61	-5.274	2.66	-1.37	.698	9.54	5.20	.00	.00
55	21.60	.574	19.15	-5.677	2.39	-1.24	.714	9.37	5.20	.00	•00
6 S	21.70	• 577	19.78	-7.077	1.78	29	.743	9.84	5.60	.00	.00
1 T	21.80	.565	18.60	-4.544	3.27	-2.51	.677	8.82	3.00	.00	•00
2 <b>T</b>	21.50	• 574	19.17	-5.838	2.30	-1.31	.724	9.45	8.71	.00	•00
3T	21.80	• 5 7 7	19.47	-5.936	2.25	-1.11	•724	9.63	6.50	.00	.00
4 T	21.50	.577	19.05	-5.618	2.44	-1.45	.717	9.40	6.11	.00	.00
5T	21.52	.577	19.05	-5,618	2.44	-1.45	.717	9.40	6.50	.00	.00
6 T	21.70	• 5 7 3	19.08	-5.367	2.58	-1.51	•705	9.28	7.28	.00	.0ú
AVERAGES	s: 905	03 B.	ASELIN	E W133 0(	000						
	22.63	.550	20.65	-7.293	1.63	•15	.736	9.70	4.42	.00	.00
STD	.21	.002	• 2 2	.139	•04	•09	.003	.15	.64	*	*
	905	03 W*.	170PH0	05 (1.5E)	17) L	OW RES	STIV	ΙΤΥ			
	21.95	• 574	19.36	-5.651	2.50	-1.26	.708	9.42	5.58	.00	.00
STD	. 29	.006	.46	.826	• 48	• 5 8	.027	.43	2.02	*	*
PERCENT	OF BAS	SELIN	Ξ								
	97.0	104.2	93.8	122.5	153	****	96.1	97.2	126.3	****	****
STD 🕱	2.2	1.5	3.3	13.0	34	****	4.1	6.0	70.6	****	****

259

**1**....

and the second secon

90628 W171W002 (1.5E12) W133 00 000 *SOL12 1 /10/80 AM1: P0≈91.60MW/CM² NO AR COATING

.

and the second 
~

.

Ļ

۴

-^

٠

r ...

The second s

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
28*	21.90	.561	19.80	-6.449	1.96	97	.743	9.65	.00	.00	.00
IB	21.80	.558	20.19	-8.284	1.41	.14	.763	9.82	4.55	.00	.00
2 B	21.90	.561	20.34	-8.660	1.34	.40	.763	9.92	4.94	- 00	.00
3B*	21.90	.557	17.65	-4.798	2.96	3.13	.543	7.01	3.38	.00	.00
4 B	21.80	.555	19.70	-6.608	1.87	38	.730	9.34	3.64	.00	.00
ic	20.90	.544	19.03	-7.023	1.70	30	.742	8.92	2.21	.00	.00
20	21.10	.544	19.19	-6.931	1.73	44	.743	9.02	2.21	.00	.00
30	21.30	.541	19.33	-6.817	1.76	43	.739	9.01	2.21	.00	.00
4C	21.10	.541	19.06	-6.602	1.83	44	.731	8.83	2.21	.00	.00
5C	21.10	.541	19.21	-6.987	1.70	38	.743	8.97	2.21	.00	.00
6C	21.30	.544	19.37	-5.538	1.73	37	.741	9.08	2.21	.00	.00
70	21.40	.541	19.43	-6.856	1.74	38	.739	9.05	2.08	.00	.00
80	21.00	.540	18.99	-6.555	1.85	72	.738	8.85	1.69	.00	.00
90	21.90	.544	19.94	-7.022	1.69	29	.742	9.35	2.21	.00	.00
100	21.60	.544	19.64	-6.981	1.71	18	.737	9.16	2.34	.00	.00
110	21.80	.544	19.81	-6.913	1.73	31	.739	9.27	2.08	.00	.00
15	21.20	.545	19.06	-6.263	1.98	86	.731	8.93	2.21	.00	.00
25	21.40	.548	19.59	-7.318	1.62	34	.753	9.34	2.73	.00	.00
35	21.90	.547	19.89	-6.906	1.74	23	.736	9.33	2.60	.00	.00
45	21.50	.546	19.59	-7.077	1.69	24	.742	9.21	2.60	.00	.00
55	21.60	.546	18.95	-5.976	2.12	.99	.662	8.25	2.60	.00	.00
6S	21.50	.545	19.58	~7.023	1.70	33	.743	9.21	2.73	.00	.00
1 T	21.00	.538	18.67	-5.737	2.21	-1.31	.720	8.61	1.69	.00	.00
2 <b>T</b>	21.00	.540	18.63	-5.657	2.27	-1.42	.719	8.63	1.69	.00	.00
3T	20.90	.540	18.61	-5.800	2.19	-1.30	.723	8.63	1.69	.00	.00
4T	21.00	.540	19.02	-6.663	1.81	61	.739	8.86	1.95	.00	.00
5T	21.20	.540	19.17	-6.561	1.85	69	.738	8.93	2.08	.00	.00
6T	20.90	.540	18.79	-6.273	1.96	83	.730	8.71	1.95	.00	.00
AVERAGE	s: 906	28 B	ASELIN	E W133 0	0 000						
	21.83	.558	20.07	-7.851	1.54	.05	•752	9.69	4.38	.00	.00
STD	.05	.002	. 27	.892	• 2 4	• 32	.016	.25	• 5 4	*	*
	906	28 W1	71W002	(1.5E12	)						
	21.29	.543	19.24	-6.647	1.84	50	•734	8.96	2.18	.00	.00
STD	.31	.003	• 39	.464	•19	• 47	.017	• 27	.31	*	*
PERCENT	OF BA	SELIN	E								
	97.5	97.3	95.9	115.3	119	****	97.5	92.5	49.8	****	** ***
STD Z	1.6	. 9	3.3	16.2	32	****	4.4	5.2	14.3	****	*****

260

-----

90713 W172CU006 (24E15) THREE INCH MATERIAL W133 00 000 *SOL14 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

.

יי די

.

. جور

۴

4

े. र

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	• 562	20.03	-7.170	1.70	51	-754	9.81	.00	.00	•00
118.*	22.90	• 5 5 9	20.33	-5.642	2.33	-1.32	• 720	9.74	3.00	•00	•00
128	22.90	• 560	20.51	-6.423	1.96	- 20	•705	9.57	3.12	•00	.00
13B	22.90	.560	20.99	-7.363	1.63	29	•754	10.22	4.42	•00	•00
148	22.60	• 5 5 9	20.76	-7.572	1.58	18	•756	10.10	4.29	•00	•00
2 <u>1</u> B	22.70	- 554	20.35	-6.146	2.06	74	.725	9.64	3.51	•00	•00
22B	22.90	•557	20.99	-7.411	1.61	18	.751	10.14	4.29	•00	•00
23B*	20.30	• 5 4 8	16.10	-3.289	5.69	-7-83	.638	7.51	2.08	•00	•00
24B	22.60	.555	20.55	-6.881	1.77	43	.743	9.85	3.90	•00	•00
31B.*	23.50	• 5 5 3	20.66	-5.349	2.48	-1.30	.705	9.69	.13	•00	•00
32B.*	23.10	• 5 5 0	20.34	-5.684	2.27	28	•689	9.25	2.34	•00	•00
3 3 B	23.30	• 5 5 7	21.28	-7.093	1.70	43	•751	10.30	1.30	•00	•00
34B	23.20	• 5 5 7	21.31	-7.541	1.58	16	•755	10.31	2.21	•00	•00
>THIS	IS THE S	SEED V	<b>IAFER</b>								
15	20.70	• 5 5 6	18.77	-6.704	1.85	70	•742	9.03	2.86	.00	.00
25.*	20.80	• 5 4 3	15.31	-2.707	8.52	****	.586	7.00	1.04	.00	.00
35	21.50	.554	18.96	-5.386	2.49	-1.75	.715	9.00	3.00	.00	.00
4S.*	19.80	.511	13.81	-3.693	4.28	4.40	.433	4.63	.00	.00	.00
5 S	22.40	.539	18.80	-4.356	3.33	-1.87	.648	8.27	1.20	.00	.00
6 S	21.20	.525	16.89	-3.842	4.04	-1-59	• 584	6.87	• 5 2	.00	.00
7 S	22.60	.556	20.56	-6.837	1.79	58	.746	9.92	3.00	.00	•00
8 S	23.40	.560	21.54	-7.722	1.54	09	.758	10.50	3.51	.00	.00
95	22.30	.560	20.47	-7.369	1.64	57	.763	10.07	3.64	.00	.00
105	22.50	.556	20.28	-6.264	2.01	-1.03	.739	9.77	2.86	.00	.00
115	22.50	.559	20.60	-7.131	1.70	71	.760	10.11	3.90	.00	.00
135.*	16.30	.379	11.81	-17.086	.41	14.25	. 576	2.46	3.90	.00	.00
145	22.90	.558	21.34	-8.805	1.30	.13	.775	10.48	3.90	.00	.00
155	22.30	.556	20.07	-6.179	2.05	-1.17	.739	9.69	3.25	.00	.00
165	22.90	.558	21.05	-7.664	1.55	05	.754	10.19	3.90	.00	.00
175	22.90	.558	21.15	-7.947	1.48	13	.764	10.33	3.64	.00	.00
185	22.80	- 560	21.19	-8.497	1.36	00	. 773	10.44	3.64	.00	.00
195	22.40	.560	20.09	-6.059	2.12	-1.14	. 7 3 3	9.72	3.64	00	.00
205	22.80	.560	21.19	-8.497	1.36	00	.773	10.44	3.54	. 00	.00
215	22.40	. 558	20.69	-7.897	1.49	26	.768	10 15	3 00	00	
225	22.50	.556	20.68	-7.485	1.59	43	.762	10.08	3 90	.00	••••
>THIS	IS THE C	ENTE	WAFEF	2			• / 02	10.00	2.90	•••	• 50
10	21.70	.541	18.46	-4.653	3.02	-1.51	. 659	8.19	1.04	.00	. 00
20	22.60	.553	20.46	-6.635	1.85	51	.736	9.73	1.04	.00	- 00
30	24.00	.553	21.04	-5.256	2 54	_1 32	701	0 95	2 20	.00	•00
40.*	26.80	538	20 74	-3 262	5 20	-3 33	570	2.02	2.50	• • • •	••••
50.+	20.00		20.74	- 3 • 2 0 2	5.29	- 3 • 3 2	• ) / )	0.05	2.30	• • • •	• • • •
60	20.20	55%	21.04	-2.910	0.00	-0.20	-005	9.90	2+21	• 00	.00
00 571170	21.30 TC TUF T		ZU.IU	-/.094	1.72	22	•/60	9.13	3.12	.00	•05
>1 H I J		550	10 47	6 4 9 0	1 0 1	<b>A</b> 1	710	0 ( )	2 21	~ ~	• •
4⊥ 2π	20.00	• J J U 5 / 7	10.07	-0+400	7 . 27	01	• / 13	0.02	2.54	•00	•00
2T 2T	22.00	- 5 0	10 06	-4.304	3.30	-2.00	•034	0.71	1+43	•00	•00
ј. 4т	21.30	• 547	10 / 2	-0.200	1.99	-•12	• / U 9	0.//	2.4/	•00	.00
41 577	20.30	• 2 2 0	10.43	-0.001	1.00	-1.00	•/49	8.93	3.00	.00	•00
5T 67	23.50	• 2 2 6	20.04	-5.2/3	2.55	-1.51	•/0/	9.//	3.25	•00	•00
01 7m	21.60	• > > 8	19.95	-/.906	1.49	25	• 767	9.77	3.64	•00	.00
/T	21.90	• 5 5 6	20.24	-/.955	1.48	29	•769	9.91	• 3 9	•00	•00
9T	21.90	• 5 5 6	19.65	-6.173	2.06	84	•727	9.37	3.25	.00	.00

÷ .

5

.

1 O T	21.90 .558	3 20.16	-7.691	1.55	21	.760	9.82	3.25	.00	.00
1 I T	21.60 .555	5 19.90	-7.730	1.53	32	.764	9.69	3.00	.00	.00
12T	22.30 .555	5 20.37	-7.148	1.69	38	.750	9.81	3.51	.00	.00
1 3 T	21.50 .556	5 19.67	-7.171	1.69	59	.756	9.56	3.51	.00	.00
14T.*	17.20 .483	3 11.11	-12.063	• 7 8	19.11	.334	2.93	.00	•00	.00
>THIS	IS WAFER A									
1	12.50 .527	10.81	-5.320	2.58	-1.58	.673	4.69	1.30	.00	.00
2	20.80 .537	18.42	-5.699	2.23	-1.02	.709	8.38	3.38	.00	.00
4.*	18.60 .542	2 15.81	-4.441	3.34	-3.62	.681	7.26	1.69	.00	.00
5	20.90 .544	18.72	-6.045	2.08	-1.16	.730	8.78	2.08	.00	.00
6	20.10 .522	2 17.37	-5.039	2.61	-1.29	.677	7.51	1.04	.00	.00
8	16.80 .529	13.97	-4.373	3.40	-2.29	.634	5.96	1.17	.00	-00
å	21 80 549	19 76	-6 565	1 97	_ 77	7/1	0 37	2 60	00	
10	20 60 547	19 34	-5.924	2 21	-1 25	701	9.57	2.00	.00	.00
12 +	12 70 515	10. 14	- J + 024	2 . 61	-1+23	. / 2 1	6.59	2+34	•00	.00
12	13.70 .313 TC WARED D	11.00	-4.089	3.00	-3.20	.004	4.71	•/0	•00	.00
>1412	12 WAFER B		0 0 4 4							
1	22.40 .557	20.76	-8.364	1.39	•13	./00	10.10	3.51	.00	.00
2	22.40 .553	3 20.62	-7.777	1.51	03	•756	9.91	3.25	•00	.00
3	22.40 .554	20.20	-6.596	1.87	13	.722	9.48	2.86	•00	-00
4	22.50 .552	2 20.44	-6.831	1.78	43	.741	9.73	3.00	•00	•00
5	22.40 .551	20.22	-6.417	1.93	81	• 7 3 8	9.63	3.00	•00	.00
6	11.70 .536	5 10.24	-5.483	2.52	-2.84	.700	4.64	1.95	•00	.00
7	22.30 .552	20.21	-6.686	1.83	51	.738	9.61	2.86	•00	.00
8	21.60 .553	8 19.84	-7.495	1.58	36	.759	9.59	3.51	•00	.00
!	22.30 .549	19.79	-5.627	2.31	-1.36	.719	9.31	2.34	.00	.00
10	20.80 .539	18.48	-5.721	2.23	-1.36	.720	8.54	1.82	.00	.00
11	21.50 .552	19.67	-7.187	1.67	55	.755	9.48	3.25	.00	.00
12	21.40 .552	2 19.56	-7.234	1.66	33	.750	9.37	3.25	.00	.00
>THIS	IS WAFER C									
1	20.70.550	18.67	-6.548	1.89	41	.727	8.76	2.60	.00	.00
2	20.00 .543	17.24	-4.964	2.78	-1.49	.676	7.76	1.82	.00	.00
4	22.30 .547	19.51	-5.305	2.50	-1,12	.694	8.95	2.21	.00	.00
5	22.60 .552	20.55	-6.945	1.74	27	.740	9.76	3.00	.00	. 00
6	21.90 .549	19.64	-6.260	1,99	46	.719	9.15	3.00	.00	. 00
8	21.70 .539	18.84	-5.047	2.66	-1.48	. 687	8.50	1.56	.00	.00
ů.	22.10 .546	19.57	-5.678	2.27	_ 94	708	9 04	2 24		
10	17 60 537	1 1 6 71	- 4 4 16	2 27	-2 21	64.2	5.04	1 60	.00	.00
11	18 30 530	14.71	-4.410	2.21	-1 40	.042	0.42	1.09	.00	.00
12	10.00 .000	12.24	-4./32	2.50	-1.40	+0JI	0.00	1.43	.00	.00
12	10.00 .340	10.24	-2.090	2.0/	-1.21	•0/4	1.23	1.43	.00	.00
AVERAU	JED: 90/13 D	DASELIN	E WI33 01							
	22.89 .55/	20.84	-/.054	1./4	28	• / 4 2	10.02	3.38	•00	.00
STD	.24 .002	•33	•498	•17	• 2 5	.017	• 28	1.05	*	*
	90713 WI	72CU00	6 (24E15)	) THR	EE INCH	I MATI	ERIAL			
_	21.39 :550	) 19.17	-6.429	2.08	83	.725	9.05	2.67	•00	.00
STD	2.12 .009	2.19	1.204	.60	•67	.041	1.28	•93	*	*
PERCE	NT OF BASELIN	IE								
	93.5 98.6	5 32.0	108.9	120	****	97.6	90.3	78.9	****	****
STD 🕱	10.4 2.0	) 12.1	24.7	49	742.5	7.9	15.6	60.6	****	*****

262

i

. .

90712 W173FE008 (5.1E14) THREE INCH MATERIAL W133 00 000 *SCL14 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

. - ....

î

5

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
28*	21.90	. 560	19.61	-5.982	2.16	-1.23	. 731	9.48	.00	.00	.00
11R.*	22.00	. 555	19.56	-5.944	2.16	- 49	.706	9.12	4.29	.00	.00
12B	22.50	.555	20.39	-6.676	1.84	52	.738	9.75	4.16	.00	.00
21B	22.40	.555	20.22	-6.628	1.86	16	.724	9.52	4.29	.00	.00
2 2 B	22.40	.555	20.16	-6.410	1.95	46	.726	9.54	4.55	.00	.00
38*	26.10	.550	25.40	-3.179	5.72	-5.11	.608	9.23	1.82	.00	.00
>THIS	IS THE	SEED	VAFER								
115	21.40	.548	19.39	-6.958	1.73	.16	.725	8.99	2.86	.00	.00
125	21.30	.546	19.03	-5.979	2.12	-1.00	.723	8.89	2.34	.00	.00
215	21.00	.546	18.93	-6.451	1.91	61	.731	8.86	2.60	.00	.00
225	20.70	.544	18.31	-5 520	2.37	-1.63	.717	8.54	2.47	.00	.00
235	20.80	.543	18.55	-5.869	2.17	-1.22	.723	8.64	2.73	.00	.00
24S	21.00	.543	18.94	-6.465	1.89	65	.732	8.83	3.00	.00	.00
255	20.30	.541	18.33	-6.642	1.83	34	.729	8.46	2.47	.00	.00
315	21.70	.545	19.54	-6.457	1.90	42	.726	9.08	2.21	.00	.00
32S	21.50	.546	19.51	-6.870	1.75	27	.736	9.13	2.34	.00	.00
335	21.40	.544	19.34	-6.647	1.83	36	.731	9.00	2.34	.00	.00
41S.*	21.60	.544	16.61	-5.735	2.23	8.00	.461	5.73	1.69	.00	.00
42S	21.70	.538	19.39	-6.162	2.00	38	.713	8.80	2.21	.00	.00
>THIS	IS THE	TANG	VAFER								
11T	17.60	.507	14.36	-4.058	3.67	-2.69	.618	5.83	• 39	.00	.00
1 2 T	19.00	.520	16.56	-5.415	2.35	62	.678	7.09	.65	.00	.00
1 3 T	17.60	.507	15.36	-5.478	2.27	68	.681	6.42	.52	.00	.00
14T	18.10	.511	15.83	-5.501	2.27	76	.685	6.70	• 5 2	.00	.00
2 I T	19.50	.522	16.63	-4.807	2.82	-1.26	.658	7.08	.65	.00	.00
22T.*	18.00	.503	14.50	-3.793	4.09	-3.86	.616	5.90	.39	.00	.00
2 3 T	17.90	.504	15.20	-4.722	2.83	-1.64	.657	6.27	• 5 2	.00	.00
24T	18.80	.514	16.49	-5.579	2.23	64	.688	7.03	.65	.00	.00
25T.*	17.60	.500	13.81	-3.388	5.08	-6.66	.611	5.68	.39	•00	.00
3 I T	19.00	.517	16.13	-4.620	2.98	-2.02	.662	6.88	• 5 2	.00	.00
32T	19.00	.517	16.70	-5.683	2.18	45	.688	7.15	•65	.00	•00
3 3 T	18.60	.512	15.53	-4.348	3.27	-2.26	.643	6.47	• 5 2	•00	•00
4 I T	19.00	.516	15.37	-5.203	2.48	35	.659	6.83	•65	.00	•00
4 2 T	18.10	.508	15.59	-5.219	2.44	34	•658	6.39	• 5 2	•00	•00
4 3 T	19.20	.518	16.99	-5.838	2.10	60	.701	7.37	•65	•00	•00
44T.*	17.40	• 498	13.99	-3.765	4.14	-4.26	.617	5.66	• 3 9	•00	•00
>THIS	IS THE	CENTE	R WAFE	R							
110	19.30	.521	16.84	-5.359	2.39	97	.686	7.29	•65	•00	.00
120	19.90	• 5 2 6	17.33	-5.269	2.46	-1.08	.685	7.58	• 78	•00	.00
130.*	18.00	.511	14.70	-3.828	4.09	-4.84	•642	6.25	• 50	•00	.00
21C	19.80	• 5 2 6	17.20	-5.301	2.44	66	.675	7.43	• 7 2	•00	.00
2 2 C	18.50	.516	16.31	-5.722	2.16	71	.697	7.03	1.43	.00	.00
2 3 C	20.40	.527	18.16	-6.073	2.01	33	.705	8.02	• 91	.00	.00
24C	18.90	.514	16.35	-5.224	2.45	68	.669	6.87	• 6 5	.00	.00
250	19.10	• 5 1 4	10.03	-5.297	2.40	-1.04	•084	7.10	•05	•00	•00
310	19.50	• 5 1 /	17.18	-3.021	2.21	88	.098	7.40	•00	•00	•00
320	19.90	. 3 2 3	17.00	-4.033	2.10	-1+14	•039	7.05	• 91	•00	•00
330	20.10	+ 5 2 9	1/ • / 5	- 3 • 005	2.20	-1.1/	•/0/	1.90	• 9 I ∠ c	•00	.00
410	19.00	- 519	10./4	- 3 • / 14	2.1/	39	•094 701	7 20	•03	• • • •	.00
420	19.20	• 5 1 9 5 1 7	13 70	-2.909	7 114	-8 77	•/UI 560	1+39	CO. 20.8	.00	.00
430.*	18 00	.51/	16 60	-2+723	2.21	-0.1/	. 602	7.12	8.06	.00	.00
450	20.30	.525	17.02	-5.688	2.10	- 80 - 80	. 701	7.90	8.06	.00	.00
	202.00		* * * / /	2.000	~ ~ * 7				0.00		

.....

79

ŗ

- :

7

>THIS :	IS WAFER A								
1	20.90 .541	18.44	-5.667 2.2	774	.699	8.36	1.69	.00	.00
2	21.00 .535	18.71	-5.968 2.0	374	.714	8.49	1.56	.00	.00
3.*	21.10 .537	16.24	-3.380 5.2	4 -3.62	.567	6.80	1.56	.00	.00
4	20.80 .540	18.71	-6.420 1.9	46	,724	8.60	2.21	.00	.00
5	20.70 .536	18.60	-6.334 1.9	361	.726	8.51	1.82	.00	.00
6	20.50 .536	18.33	-6.190 1.9	949	.715	8.31	1.69	.00	.00
7	20.30 .537	18.32	-6.468 1.8	3 80	.736	8.48	1.82	.00	.00
8	20.30 .538	18.40	-6.691 1.8	) - 71	.742	8.57	2.08	.00	.00
>THIS :	IS WAFER B				••••				
1	20.50 .526	16.70	-4.373 3.2	7 .28	.585	6.68	.91	.00	.00
2.*	19.00 .510	13.39	-4.579 2.9	8 8.60	.415	4.25	.91	.00	.00
3.*	20.70.528	15.79	-3.510 4.8	1 -1.72	542	6.26	.91	.00	.00
4 .	20.30 .527	17.96	-5.713 2.1	9 - 89	.705	7.98	1.04	.00	.00
5	19.20.523	16.89	-5.535 2.2	9 -1.11	.699	7.43	.82	.00	.00
6	19.20.519	16.77	-5.842 2.1	.86	.659	6.95	.78	.00	.00
7	19.90.520	17.43	-5.384 2.3	$6 - 1 \cdot 17$	.695	7.60	.75	.00	.00
8	18.90.519	16.44	-5.097 2.5	7 -1.91	-694	7.20	.75	.00	.00
9	18.00.507	15.18	-4.766 2.8	0 - 69	.636	6.14	5.00	.00	.00
10	18.20.509	15.73	-5.177 2.4	7 - 93	.671	6.57	5.00	.00	.00
>THIS	IS WAFER C - 1	METAL 12	ZATION LOOK	S BAD -					
1.*	15.50 .498	10.13	-3.665 4.4	7 7.69	.390	3.18	.26	.00	.00
2.*	14.00.502	10.23	-5.488 2.3	1 12 74	.426	3.17	.26	.00	.00
3.*	20.00 .516	15.00	-3.484 4.8	1 -1.10	.522	5.70	.50	.00	.00
4	20.20.516	15.99	-4.044 3.6	7 .13	.559	6.16	.45	.00	.00
5	19.70.507	16.29	-4.641 2.8	8 .55	.59	6.31	. 39	.00	.00
6.*	19.20.504	13.82	-3.559 4.5	5 1.78	.469	4.80	.10	.00	.00
7.*	17.00 .459	10.56	-2.776 7.3	2 -1.80	.397	3.27	.10	.00	.00
8	20.20 .491	15.87	-3.825 3.8	493	.563	5.91	.10	.00	.00
9	20.30 .515	16.41	-4.362 3.2	2.72	.573	6.33	.65	.00	.00
10	19.30 .512	15.05	-3.800 4.0	986	.554	5.79	.65	.00	.00
11	18.00 .488	13.88	-4.162 3.3	7 2.29	.517	4.80	. 43	.00	.00
12.*	17.30 .507	11.54	-3.275 5.5	5 2.55	.420	3.89	.38	.00	.00
			•			••••			
AVERAG	ES: 90712 BA	SELINE	W133 00 00	)					
	22.43 .555	20.26	-6.571 1.8	838	.729	9.60	4.33	.00	.00
S TD	.05 .000	.10	.116 .0	5.16	.006	.10	.16	*	*
	90712 W17	3FE008	(5.1E14) T	HREE IN	CH MAT	TERIAL			
	19.72 .524	17.16	-5.495 2.4	269	.679	7.45	1.55	.00	.00
STD	1.09 .014	1.36	.777 .5	4.74	.051	1.01	1.60	*	*
PERCEN	T OF BASELINE				-				
	87.9 94.3	84.7	116.4 128	17.6	93.1	77.6	35.7	*****	****
STD Z	5.1 2.5	7.2	13.5 33	353.4	7.8	11.4	39.6	****	****

ć

90701 W174TA004 (8.4E11) W133 00 000 *Soll2 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

. . . . .

n mar e A second a second a second a

ID	ISC	VO C	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.559	19.80	-6.511	1.92	77	- 7 3 9	9.57	- 00	.00	.00
18*	22.10	.550	19.32	-5.271	2.54	-1.18	.693	8.90	3,12	.00	.00
2 B	21.80	.554	19.91	-7.311	1.64	.04	.740	9.46	4.81	.00	.00
3B	22.10	.552	20.26	-7.619	1.55	. 22	.743	9.59	4.94	.00	.00
4B	22.00	.555	20.07	-7.195	1.67	12	.742	9.58	5.20	.00	.00
5 B	22.10	.553	20.21	-7.346	1.62	07	.745	9.63	5.20	.00	.00
10	19.80	.538	17.85	-6.668	1.81	05	.720	8.11	1.09	.00	.00
3C	20.30	.539	18.34	-6.836	1.75	.16	.720	8.33	3.51	.00	.00
4C	20.00	.538	18.05	-6.755	1.78	.09	.719	8.19	1.30	.00	.00
5 C	20.20	.539	18.27	-6.874	1.74	.15	.722	8.31	1.43	.00	.00
6C	20.00	.537	18.01	-6.719	1.79	• 2 2	•714	8.11	1.30	.00	.00
7 C	20.10	.539	17.67	-5.319	2.49	-1.89	.711	8,14	1.17	.00	.00
8C	19.60	• 5 2 9	16.80	-5.019	2.67	66	.656	7.20	1.43	.00	.00
9C	20.00	.529	17.01	-4.753	2.89	-1.23	.654	7.32	.78	.00	.00
10C	19.80	.532	17.08	-5.046	2.66	-1.15	.672	7.49	1.43	.00	.00
110	20.30	• 5 4 3	18.48	-7.291	1.62	.35	.729	8.50	•91	•00	.00
15	20.10	.536	17.75	-5.785	2.19	42	•694	7.91	1.04	.00	.00
25	20.10	• 5 4 0	18.21	-6.980	1.71	• 2 1	•723	8.30	1.43	.00	.00
3S	20.10	• 5 3 8	17.89	-6.132	2.03	11	.701	8.01	1.43	.00	.00
4 S	20.30	• 5 3 6	17.85	-5.649	2.26	46	•689	7.92	1.04	.00	•00
5 S	20.30	• 5 3 6	18.26	-6.665	1.80	• 2 3	•712	8.19	1.30	.00	•00
6S	20.20	.538	18.16	-6.527	1.86	08	.716	8.23	1.43	•00	•00
IT	20.10	• 5 3 8	17.89	-6.107	2.04	21	•703	8,04	1.30	•00	•00
2 T	19.90	• 5 3 5	17.88	-6.595	1.83	.21	•710	7.39	1.04	•00	•00
3т	20.00	• 5 3 7	18.14	-7.141	1.65	• 5 1	•719	8.17	1.30	.00	.00
4 T	20.10	• 5 3 7	18.18	-6.982	1.70	• 4 4	.716	8.18	1.30	•00	•00
5T	20.00	• 5 3 2	17.74	-5.965	2.08	32	•699	7.87	•91	•00	•00
6T	20.30	• 5 3 8	18.43	-7.204	1.63	.48	•722	8.34	1.30	•00	•00
AVERAGES	5: 9070	Di BA	SELINE	E W133 00	000						
	22.00	.554	20.11	-7.368	1.62	•02	•743	9.56	5.04	.00	.00
STD	.12	.001	•14	.155	•05	.13	.002	.07	.17	*	*
	9070	D1 W17	74TA004	(8.4E1)	1)						
	20.07	.537	17.91	-6.319	2.00	16	•706	8.04	1.33	.00	•03
STD	.18	.003	• 4 4	•747	• 37	.60	.021	• 32	.51	*	*
PERCENT	OF BAS	SELINE	2								
	91.2	96.9	89.0	114.2	123	* * * * *	95.0	84.1	26.3	*****	****
S TD 🗶	1.3	. 8	2.8	12.2	27	****	3.0	4.0	11.4	****	****

265

with the second second

s. 1

90702 W175W003 (2.9E11) W133 00 000 *Sol12 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

• •

ě.

5

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.557	19.66	-6.124	2.08	-1.07	-733	9.45	.00	.00	.00
18	21.90	.546	19.78	-6.779	1.78	.14	.720	9.10	3.64	.00	.00
2 B	22.10	.548	20.12	-7.121	1.67	02	.737	9.44	4.16	.00	.00
3 B	22.10	.548	20.28	-7.676	1.52	•20	.746	9.55	4.55	.00	.00
4 B	22.10	.547	20.09	-7.028	1.70	00	.733	9.37	4.03	.00	.00
5 B	21.90	.548	19.98	-7.196	1.65	10	.742	9.41	3.90	.00	.00
10	21.90	.546	19.98	-7.229	1.64	00	.739	9.35	3.51	.00	.00
2 C	21.80	.544	19.87	-7.158	1.65	06	.739	9.27	3.00	•00	.00
3C	21.90	.544	19.97	-7.208	1.64	00	.739	9.31	2.86	.00	.0č
4C	21.50	.541	19.52	-6.379	1.73	30	.737	9.07	2.73	.00	•00
5C	21.40	.539	19.21	-6.238	1.97	74	.727	8.86	2.60	.00	.00
6C	21.40	.540	19.36	-6.622	1.82	51	.735	8.98	2.86	.00	.00
7C	21.50	.541	19.38	-6.448	1.89	54	•729	8.97	2.86	.00	.00
8 C	21.90	.542	19.79	-6.765	1.77	.01	.723	9.08	2.73	.00	.00
9C	21.70	• 5 4 2	19.60	-6.563	1.85	47	•732	9.10	2.86	•00	.00
10C	21.50	.541	19.46	-6.720	1.79	34	•733	9.02	2.86	.00	.00
15	21.60	.543	19.52	-6.620	1.83	39	.731	9.7	2.86	.00	.00
2 S	21.80	•540	19.23	-5.911	2.12	• 2 2	•683	0 د . 8	2.60	.00	.00
35	22.20	.543	20.18	-7.022	1.69	03	•734	9.35	3.00	.00	.00
4 S	21.60	• 5 4 1	19.42	-6.331	1.94	60	•727	8.98	2.60	.00	.00
1T	21.40	• 5 4 2	19.12	-5.979	2.10	-1.00	•723	8.87	1.17	.00	•00
2 T	21.60	• 5 4 4	19.50	-6.610	1.84	27	•727	9.03	2.73	.00	.00
3T	21.50	• 5 4 2	19.47	-6.692	1.80	44	.735	9.06	2.60	.00	•00
4T	21.40	• 5 3 7	18.69	-5.179	2.56	-1.56	•697	8.48	1.56	.00	.00
5T	21.10	• 5 3 2	18.89	-6.168	1.98	65	.721	8.55	1.95	.00	•00
AVERAGES	5: 907	02 В.	ASELIN	E W133 0(	000						
	22.02	.547	20.05	-7.160	1.67	.04	•735	9.37	4.06	.00	.00
STD	.10	.001	.17	• 294	.08	.11	.009	.15	.30	*	*
	907	02 W1	750003	(2.9E11)	)						
	21.62	.541	19.48	-6.544	1.87	40	•727	8.99	2.63	.00	.00
STD	.25	.003	.36	.493	.21	•40	.014	.25	.52	*	*
PERCENT	OF BAS	SELIN	E								
	98.2	98.9	97.2	108.6	112	****	98.8	95.9	64.8	****	*****
STD %	1.6	• 7	2.6	10.9	19	****	3.1	4.2	18.6	****	*****

266

Name of the other states of the other

ñ

ID	ISC	Voc	IP	LOG(10)	N	R	FF	Cff	0 C D	PCDa	PCDb
2R*	21.90	.555	19.68	-6.195	2.04	-1.00	.733	9.43	.00	.00	.00
18*	18.80	.529	15.95	-4.715	2.96	-1.43	.652	6.86	1.82	.00	.00
2 B	21.30	.549	19.34	-6.781	1.79	62	.744	9.20	4.16	.00	.00
3B.*	20.60	.542	17.91	-5.092	2.66	-1.67	• 6 9 2	8.17	4.42	.00	.00
10	19.00	.526	17.21	-6.784	1.74	43	.735	7.77	2.34	.00	.00
2 C	18.10	.519	16.05	-5.711	2.18	-1.57	.718	7.14	2.73	.00	.00
3C.*	17.90	.514	15.2]	-4.353	3.29	-4.37	.691	6.73	2.73	.00	.00
4C	18.10	.516	15.72	-5.021	2.63	-2.34	.697	6.88	2.86	.00	.()
5C	17.80	• 517	16.27	-7.335	1.55	31	.749	7.29	2.73	.00	.00
6C	17.80	.508	15.73	-5.722	2.14	-1.05	.705	6.74	2.08	.00	.00
7C	18.20	.518	16.65	-7.475	1.51	.00	.744	7.42	3.00	.00	.00
8C	18.10	.515	16.61	-7.700	1.44	.12	.747	7.37	2.73	.00	.00
9C	18.40	.517	16.68	-6.859	1.69	33	.734	7.39	2.60	.00	.00
100	18.10	.517	16.58	-7.560	1.48	.02	.746	7.38	2.60	•00	.00
11C	17.80	.510	15.71	-5.673	2.17	-1.13	.704	6.76	1.56	.00	.00
15	13.80	.505	11.59	-4.628	3.05	-2.36	.644	4.75	1.69	.00	.00
2 S	19.10	.531	17.48	-7.247	1.60	62	.756	8.11	1.69	.00	•00
4S	18.60	.525	16.40	-5.268	2.1	-2.35	.722	7.45	2.21	.00	.00
55	18.90	.523	17.21	-7.080	1.63	28	.741	7.74	2.34	.00	.00
6 S	19.00	.527	17.41	-7.399	1.55	37	.754	7.98	2.34	.00	.00
2T	18.20	.525	16.54	-6.929	1.69	50	•741	7.49	2.30	.00	.00
3т	17.80	.520	15.50	-5.090	2.60	-2.39	.701	6.86	1.70	.00	•00
4 T	18.50	.526	16.86	-7.158	1.62	22	.741	7.63	1.95	.00	.00
5T	17.80	• 5 2 3	16.16	-6.970	1.67	29	•736	7.25	1.56	.00	•00
6T	17.80	.516	16.18	-6.996	1.64	38	•740	7.18	1.30	•00	.00
AVERAGES	5: 907	03 BA	ASELIN!	. W079 00	000	- 63	7 / /	0.20	1 16	0.0	0.0
כידה	21.30		13+34	-0./01	1.1/9	02	• / 4 4	9.20	4.10	•00	.00
310	007	12 11 .	-00 7N/CP-	- 1000	•00 •2m10	•00	1 5 \	•00	•00	•	•
	19 05	510 510	14 02	- 10001 (1 4 5 2 5	1 00	0/ 0/	200				
S ጥ D	1.07	.007	1 50	050-0	1.30	04 ge	• / 20	1.23	2.22	•00	•00
PERCENT	08 549	SFI ING	1+20	• 7 5 0	• 4 J	•05	• • • • • •	•00	• 4 9	~	~
LEKCENI	84.7	94.6	83.0	103.6	106	65.4	07.8	78.6	52 2	*****	*****
STDX	5.0	1.2	6.2	14.0	25	136.7	3.5	7.4	11.8	*****	*****

90703 W177N/CR-MN001 (1.2E15-1.26E15) W079 00 000 *SOL14 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

42. V *-

۰.

.

`

ø

• • - **-** - •

267

-

Section Section

and a start

- -----

90704 W178N/MN-TI001 (8.6E14-8E13) W079 00 000 *SOL14 1 /10/80 AM1: P0=91.60MW/CM²2 NO AR COATING

7

ID.	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
2 R *	21.90	• 5 5 6	19.53	-5.799	2.24	-1.38	.727	<b>9.36</b>	.00	•00	•00
>W079	BASELIN	Е									
1 B	21.40	.552	19.69	-7.778	1.51	.05	.753	9.41	5.85	.00	.00
2 B	22.10	.556	20.47	-8.454	1.37	• 4 2	.758	9.85	9.80	.00	.00
3B	22.00	• 5 5 6	19.97	-6.870	1.78	25	.736	9.52	8.45	.00	.00
4B*	21.50	.544	18.15	-4.505	3.20	-1.68	.651	8.06	1.69	.00	.00
>W176	BASELIN	E									
1761*	21.80	• 5 5 3	20.04	-7.821	1.50	• 2 4	.748	9.54	8.45	.00	.00
1762*	22.00	• 5 5 3	19.72	-6.264	2.01	40	.718	9.23	7.02	.00	• 00
1763*	21.70	• 5 4 8	19.47	-6.337	1.96	34	.718	9.03	5.46	.00	.00
1764*	21.90	• 5 5 8	20.10	-7.704	1.54	• 2 5	•7.'5	9.63	9.80	. วอ	.00
16*	5.90	•430	4.30	-4.166	3.70	5.26	•478	1.28	.78	.00	.00
2 C	19.30	.528	17.65	-7.459	1.54	.07	•742	8.00	2.86	.00	.00
4C*	14.50	• 510	12.36	-4.925	2.76	-1.67	•658	5.14	1.95	.00	• C O
5C	19.50	• 528	18.0.2	-8.385	1.32	.55	.752	8.18	3.25	.00	•0'
6C	18.60	-518	16.78	-6.818	1.70	.21	•717	7.31	2.73	.00	.00
7 C	19.50	• 528	18.10	-8.736	1.26	• 5 3	•760	8.28	3.90	.00	.00
15*	16.50	• 494	12.07	-3.588	4.55	• 6 J	.489	4.21	1.95	.00	• 00
25*	19.20	• 490	16.24	-5.163	2.37	1.10	.616	6.13	2.08	.00	.00
3 S	19.10	• 517	17.05	-6.194	1.93	35	.709	7.41	2.86	.00	.00
4S*	19.60	.519	16.06	-4.348	3.28	43	.600	6.45	3.00	.00	.00
1 T	19.20	• 528	17.22	-6.292	1.93	61	.721	7.73	1.95	.00	.00
2 T	19.10	.523	17.14	-6.529	1.82	.07	.711	7.51	12. ۲	.00	.00
3T	19.30	.524	16.98	-5.631	2.23	71	.693	7.42	2.34	.00	.00
AVERAG	ES: 907	04 B/	ASELIN	E W079 00	000						
	21.83	.555	20.04	-7.701	1.55	.07	•749	9.59	8.03	.00	.00
S TD	.31	.002	• 3 2	•649	.17	•28	.009	.19	1.64	*	*
	907	04 W1	78N/MN-	-TIOOl (8	3.6E14	4-8E13)	1				
	19.20	• 5 2 4	17.37	-7.005	1.72	03	.726	7.73	2.83	•00	.00
STD	• 2 7	.004	•46	1.026	.31	.45	.022	.36	.55	*	*
PERCEN	T OF BA	SELINE	Ξ								
	87.9	94.5	86.7	109.0	110 -	-40.4	96.9	80.6	35.8	***	*****
STOZ	2.5	1.1	3.8	22.1	34	****	4.2	5.3	15.5	*****	15.5.**

.....

• 1 **1 1 1 1** 

1

99816 W179PH006 (73515) W142 00 000 *Sol14 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

8 A

· ,=· · · ·

··· · · ·

1.

••

2

ø

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
2R*	21.90	• 556	19.89	-6.716	1.84	74	.746	9.60	.00	.00	.00
18	20.69	.592	18.75	-6.705	1.97	-1.31	.758	9.78	1.56	.00	.00
2 B	20.70	.595	19.19	-8.121	1.54	50	•778	10.14	1.69	.00	.00
3B	20.70	.594	19.15	-7.932	1.59	59	.776	10.09	1.82	.00	.00
4 B	20.80	.595	19.50	-9.480	1.27	.10	.790	10.33	1.69	- O C	.00
10	21.50	.577	18.76	<u>-5 1</u>	2.77	-1.73	.697	9.15	.91	.00	.00
2C	21.00	.591	19.20	-	2.16	.50	•689	9.30	1.56	.00	.60
3C	21.50	• 588	19.84	-7.306	1.58	28	.766	10.24	1.56	.00	.00
4C	21.70	• 580	18.53	-4-712	3.19	-1.67	•666	8.86	•91	.00	.00
5C	21.70	.592	19.77	-5.973	1.86	- 57	.748	10.16	1.82	.00	.00
6C	21.00	• 5 9 3	19-48	-8.254	1.51	26	•775	10.20	1.95	-00	.00
7C	21.50	.595	19.73	-7.422	1.73	43	.758	10.25	1.95	.00	.00
8C	21.00	• 584	19.00	-6.527	2.01	- 96	•743	9.63	1.56	•00	.00
AC	21.70	• 594	20.10	-8 307	1.49	•16	•764	10.41	1.95	.09	.00
luC	21.60	.591	20.01	-8.197	1.51	11	.769	10.39	2.08	.00	.00
110	21.50	.583	18.91	-5.437	2.58	-1.29	.702	9.30	1.04	.00	.00
15	21.)0	.589	20.03	-7.206	1.77	44	.752	10.26	2.08	.00	.00
25	22.00	.598	20.57	-9.154	1.33	.15	•782	10.88	2.21	.00	.00
35	22.20	• 594	20.19	-7.675	1.65	1.50	•706	9.84	1.95	.00	.00
4 S	21.60	• 585	19.17	-5.624	2.47	-1.60	.721	9.64	1.69	.00	.00
5 S	21.50	- 592	19.89	-8.184	1.52	.10	.762	10.26	1.82	.00	.00
1T	21.50	.599	20.21	-9.795	1.23	.14	.794	10.82	2.60	.00	.00
2T	21.80	.599	20.35	-8.930	1.38	01	•783	10.81	2.60	• 00	.00
3T	21.60	• 5 9 1	19.54	-6.481	2.05	-1.04	•744	10.04	1.82	.00	.00
4T	21.50	.591	19.07	-5.540	2.55	-1.92	•725	9.74	1.69	.00	.00
5T.*	21.60	• 580	17.94	-4.077	4.01	-3.23	.648	8.50	•91	.00	.00
5T	21.50	.592	19.32	-6.116	2.22	-1.34	•737	9.92	1.69	.00	.00
AVERAGE	S: 508	16 BA	SELINE	W142 00	000						
	20.70	• 594	19.15	-8.059	1.59	57	•775	10.08	1.69	.00	.00
STD	.07	•001	.27	• 984	.25	• 50	.011	.20	•09	*	*
	908	16 W17	79PH006	(73E15)	)						
	21.59	.590	19.60	-7.133	1.93	53	•742	10.01	1.78	.00	.00
STD	. 27	006	• 5 5	1.386	• 5 2	• 8 5	·V34	• 5 4	.44	*	*
PERLINT	OF BAS	SELINE	<u>.</u>								
	104.3	99.4	102.4	111.5	121	107.6	957	99.2	105.5	****	****
STD 🕱	1.5	1.2	4.4	30.1	56	356.5	5.8	7.4	33.2	****	****

- -

۳۰، _۲۰, ۲۰

90817 W180*TI001 (1.3E14) W057 0G 000 *SGL14 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

ſ

¥.,

e

ID	ISC	VOC	IP	LOG(10)	И	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.557	19.79	-6.4.4	1.94	87	.740	9.55	.00	.00	.00
>SAMPLES	S IB AN	ID 3B	HAVE B	AD METAL	LIZA	TION					
18*	17.50	.597	11.63	-4.977	3.10	15.01	.372	4.11	.78	.00	.00
2B ·	21.40	.587	19.31	-6.351	2.09	-1.12	.741	9.84	.78	.00	.00
3B*	17.80	.589	12.72	-4.567	3.49	9.75	.426	4.72	.78	.00	.00
5 B	21.50	.593	19.50	-7.162	1.80	.61	.719	9.69	1.56	.00	.00
10	10.50	.502	9.67	-8.220	1.34	. 34	.752	4.19	.91	.00	.00
20	10.90	.503	9.95	-7.632	1.48	.30	.737	4.27	.91	.00	.00
3C	10.80	.508	10.08	-9.348	1.15	. 49	.775	4.50	.60	.00	.00
4C	10.80	.507	10.10	-9.732	1.09	1.02	.773	4.48	.78	.00	.00
5C	10.90	.507	10.15	-9.149	1.18	.61	.769	4.50	.78	.00	.00
6C	10.90	.507	10.19	-9.648	1.10	. 88	.774	4.52	.78	.00	.00
7C	11.00	.508	10.24	-9.089	1.19	.47	.771	4.55	.78	.00	.00
80	10.80	.507	10.09	~9.528	1.12	.75	.774	4.48	.78	.00	.00
100	10.80	.505	10.04	-9.039	1.19	. 49	.769	4.44	.78	.00	.00
15	11.20	.505	10.31	-8.157	1.36	.17	.754	4.51	.78	.00	.00
25	20.20	.530	18.07	-6.317	1.92	15	.710	8.04	.91	.00	.00
3S	10.80	.498	9.68	-6.549	1.82	84	.718	4.09	.55	.00	.00
4 S	11.00	.507	10.25	-9.276	1.16	.74	.769	4.54	.55	.00	.00
5 S	10.80	•479	9.18	-5.122	2.54	-1.12	.646	3.54	.55	.00	.00
6 S	11.19	.507	10.36	-9.452	1.13	.90	.770	4.58	.55	.00	.00
1 <b>T</b>	16.80	.503	9.87	-7.754	1.45	. 49	.737	4.23	.91	.00	.00
21	10.70	.507	9.90	-8.574	1.23	. 41	.760	4.36	.91	.00	.00
3т	10.60	. 505	9.90	-9.588	1.11	. 82	.774	4.39	.91	.00	.00
4T	10.90	.505	10.04	-8.231	1.35	. 32	.753	4.38	.91	.00	.00
5T	10.40	.501	9.40	-6.953	1.68	76	.732	4.03	.91	.00	.00
AVERAGES	S: 901	7 B.	ASELINE	W057 00	000						
	21.4.	.590	19.41	-6.757	1.95	26	.730	9.77	1.17	.00	.00
STD	• 0 5	.003	.10	.405	.15	.87	.011	.08	.39	*	*
	9081	17 W18	30*TIOC	1 (1.3E)	4)						
	11.29	.505	10.37	-8.368	1.38	• 32	.751	4.53	.78	.00	.00
STD	2.05	.008	1.79	1.264	• 35	.58	.031	.84	-14	*	*
PERCENT	OF BAS	ELINE	E								
	52.7	85.6	53.5	76.2	71	323.3	102.9	46.4	66.4	*****	****
STD 🕱	9.7	1.9	9.5	27.3	25	*****	5.9	9.0	37.8	*****	****

•

È

۴

·· , •

• • •

90820 W181CR006 (1E15) W133 00 000 *SOL14 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING ID ISC VOC IP LOG(IU) N R FF Eff 0 C D PCDa PCDb .00 21.90 .555 19.64 -6.061 2.11 -1.14 .732 9.41 .00 .00 2R* .00 1 B 22.50 .558 20.92 -8.743 1.31 .35 .766 10.18 5.20 .00 2 B 22.40 .552 20.55 -7.622 1.54 .12 .747 9.77 4.29 .00 .00 -8.762 1.30 .25 .7.0 9.98 4.68 .00 .00 3B 22.20 .552 20.66 -7.089 1.68 -.24 .743 9.75 4.29 .00 .00 4 B 22.60 .549 20.60 -7.538 1.56 .01 .748 9.77 .00 .00 5B 22.40 .551 20.54 4.29 20.10 .529 18.17 -6.704 1.76 -.28 .729 8.20 1.17 .00 .00 10 20.20 .528 18.25 -6.650 1.78 -.35 .729 8.23 .00 .00 20 1.30 20.10 .528 18.21 -6.830 1.72 -.25 .733 8.22 1.04 .00 .00 3C 4 C 20.10 .526 18.11 -6.487 1.83 -.50 .728 8.14 1.04 .00 .00 5C 20.20 .525 18.19 -6.458 1.84 -.48 .726 8.14 1.04 .00 .00 .00 .00 20.20 .525 18.16 -6.442 1.85 -.35 .721 8.09 1.04 6 C 20.20 .522 17.90 -5.723 2.16 -1.10 .712 7.94 .91 .00 .00 7C 20.20 .525 18.21 -6.506 1.82 -.52 .729 8.18 1.17 .00 .00 8 C 9C 20.40 .526 18.49 -6.842 1.71 -.20 .732 8.30 1.17 .00 .00 .00 .00 100 20.20 .523 18.08 -6.145 1.96 -.74 .721 8.06 1.17 20.30 .529 18.24 -6.337 1.90 -.58 .724 8.22 1.04 .00 .00 15 20.10 .528 18.05 -6.344 1.90 -.49 .722 8.10 1.04 .00 .00 2 S -6.383 1.88 -.41 .721 8.12 1.04 .00 .00 35 20.20 .527 18.14 .00 .00 20.40 .527 18.40 -6.564 1.81 -.41 .728 8.28 1.17 **4**S -6.717 1.75 -.29 .730 8.20 1.04 .00 .00 20.20 .526 18.27 **5** S IT 20.10 .526 18.04 -6.326 1.90 -.49 .721 8.06 1.00 .00 .00 2T 20.10 .527 18.11 -6.467 1.85 -.60 .730 8.18 1.04 .00 .00 1.04 20.10 .526 18.06 -6.285 1.91 -.82 .729 8-15 .00 .00 3T 20.20 .526 18.29 -6.770 1.73 -.32 .733 8.23 1.17 .00 .00 4T 20.30 .520 17.84 -5.510 2.27 -.92 .696 7.77 .00 .00 5 T • 78 20.50 .525 18.47 -6.472 1.83 -.51 .728 8.28 1.17 .00 .00 6T AVERAGES: 90820 BASELINE W133 00 000 22.42 ,552 20.66 -7.951 1.48 .10 .755 9.89 4.55 .00 .00 ٠ .679 -15 .20 .011 .17 .36 * STD .13 .003 .14 90820 W181CR006 (1E15) .00 20.21 .526 13.18 -6.427 1.87 -.51 .725 8.15 1.08 .00 .32! .13 .22 .008 .12 .11 × ÷ STD .11 .002 .16 PERCENT OF BASELINE 23.6 ***** ***** 126 ***** 90.1 95.2 88.0 119.2 96.0 82.4 4.4 ***** ***** . 9 1.4 11.3 23 ***** 2.5 2.0 STDZ 1.0

_ + _ _ _ _

۰.

90830 W182CR007 (4.5E14) W133 00 000 *SOL14 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

- -,

٠

+ ·

į

-.

٠.

.

••

...

1 **-** 1

ID	ISC	voc	IP	LOC(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	• 563	19.84	-6.567	1.92	89	.745	9.71	.00	.00	.00
1 B	22.20	.560	20.37	-7.435	1.62	31	.756	9.94	3.51	.00	.00
2 B	22.10	.560	20.49	-8.296	1.41	01	.769	10.06	4.16	.00	.00
3 B	22.10	.561	20.37	-7.820	1.52	15	.761	9.98	4.29	.00	.00
4 B	22.00	.561	20.37	-8.156	1.44	10	.768	10.02	4.16	.00	.00
10	21.70	.559	19.65	-6.561	1.91	86	.744	9.54	3.12	.00	.00
2 C	21.90	.561	20.04	-7.194	1.69	53	.755	9.81	3.51	.00	.00
30	21.80	.560	20.00	-7.347	1.65	53	.760	9.81	3.25	.00	.00
4C	21.70	.561	19.98	-7.758	1.54	14	.759	9.77	3.64	.00	.00
5C	22.00	.549	18.72	-4.563	3.16	-2.04	.668	8.53	1.56	.00	.00
6C	22.00	.560	20.21	-7.477	1.61	41	.760	9.91	3.38	.00	.00
7C	21.90	• 556	19.69	-6.238	2.03	90	.732	9.43	3.12	.00	.00
80	21.70	• 5 5 5	19.52	-6.142	2.02	95	.734	9.34	2.60	.00	.00
90	22.20	• 5 5 5	19.94	-6.248	2.02	71	.727	9.48	2.73	.00	.00
100	22.30	.540	186	-4.247	3.47	-1.86	.637	8.11	1.04	.00	.00
110	18.90	.524	17.12	-6.722	1.75	62	.738	7.73	.65	.00	.00
15.*	11.40	.501	8.55	-3.724	4.68	-1.93	.522	3.15	.91	.00	.00
25	21.40	.549	18.48	-4.769	2.96	-2.44	.693	8.62	1.95	.00	.00
35.*	14.40	.519	11.35	-3.900	4.20	-2.49	.573	4.53	.91	.00	.00
4 S	22.00	• 557	19.74	-6.004	2.14	-1.38	.737	9.55	3.38	.00	.00
55	21.90	• 551	19.38	-5.541	2.37	-1.49	.717	9.15	2.34	.00	.00
6S	22.00	• 5 4 9	19.43	-5.583	2.34	-1.03	.796	9.01	2.34	.00	.00
1 T	21.60	.553	19.17	-5.669	2.31	-1.36	.719	9.08	2.34	.00	.00
2T	21.60	.553	18.80	-5.070	2.71	-1.73	.695	8.78	1.95	.00	.00
3T	21.90	.556	19.78	-6.507	1.92	64	.735	9.46	3.00	.00	.00
4 T	19.00	• 526	16.97	-6.144	1.99	60	•714	7.55	• 5 2	.00	.00
5T	18.80	.525	17.00	-6.664	1.78	55	•734	7.66	.52	.00	.00
6T	19.70	.522	17.64	-6.248	1.92	54	•718	7.81	.65	.00	.00
7 T	22.30	.560	20.34	-7.063	1.73	35	•746	2.85	3.64	.00	.00
		•									
AVERAGES	s: 908	30 B.	ASELIN	E W133 00	000						
	22.10	.561	20.40	-7.927	1.50	14	•764	10.00	4.03	.00	.00
STD	.07	.000	• 0 5	.333	• 0 8	.11	•005	•05	.30	*	*
	908	30 W14	82CR00	7 (4.5E1	4)						
	21.38	.549	19.10	-6.175	2.14	99	•724	9.00	2.33	.00	.00
STD	1.10	.013	1.04	.924	.51	.60	.030	•77	1.06	*	*
PERCENT	OF BA	SELIN	E								
	96.7	98.0	93.6	122.1	143	****	94.8	90.0	57.8	*****	*****
STD X	5.3	2.4	5.3	15.4	43	****	4.6	8.1	32.6	*****	****

90831 W183NB002 (2F12) W133 00 000 *SOL14 1 /10/80 AM1: PO=91.60MW/CM² NO AR COATING

en uter mensendersteren en er

ī....

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
2 R *	21.90	.561	19.82	-6.584	1.90	70	.739	9.61	.00	.00	.00
1 B	21.90	• 5 5 5	19.93	-7.008	1.73	26	.741	9.52	3.64	.00	.00
2 B	21.70	.556	19.84	-7.323	1.64	13	.746	9.52	3.64	•00	.00
3 B	21.90	.556	20.12	-7.714	1.53	.13	.749	9.65	4.16	.00	.00
4B*	21.60	.551	19.04	-5.437	2.44	-1.46	.709	8.93	2.73	.00	.00
5B.*	21.50	• 5 5 2	19.17	-5.892	2.18	-1.05	.721	9.04	3.38	•00	.00
10	19.30	.534	17.35	-6.488	1.87	28	.720	7.84	• 91	.00	.00
2C	19.30	.531	17.34	-6.462	1.87	28	.719	7.79	.78	.00	.00
3C	19.50	• 5 3 0	17.33	-5.917	2.10	80	.710	7.76	•65	.00	.00
4C	19.50	.522	16.51	-4.618	3.00	-1.06	•ò54	7.04	.46	•00	.00
5C	19.00	.529	16.97	-6.377	1.90	.15	.703	7.47	.65	. 90	.00
6C	19.70	.531	17.36	-5.024	2.26	90	.699	7.73	.65	.00	.00
7C	19.60	• 5 2 8	17.14	- 5.327	2.44	-1.32	.694	7.60	5.46	•00	•00
8C	19.60	.534	17.52	-6.588	1.83	.77	.693	7.67	• 70	.00	.00
9C	19.30	• 531	17.34	-6.363	1.91	60	.724	7.85	.60	.00	.00
100	19.80	• 5 3 1	17.50	-5.719	2.21	82	.702	7.80	•65	•00	.00
15	19.80	.532	17.72	-6.258	1.95	42	.715	7.97	.65	.00	.00
25	19.90	.535	17.88	-6.384	1.91	53	.724	8-15	.78	.00	.00
35	20.30	• 5 3 5	18.10	-6.319	1.93	.26	.698	8.02	.78	.00	.00
4 S	19.80	• 5 36	17.86	-6.584	1.83	41	.728	8.17	• 7 8	•00	•00
5 S	19.70	• 5 3 4	17.64	-6.202	1.98	69	•720	8.02	• 7 8	•00	.00
1 T	19.00	.529	16.88	-5.894	2.12	90	.711	1.56	.60	•00	.00
2 T	18.80	• 5 2 4	16.61	-5.760	2.17	73	.699	7.29	• 5 2	•00	.00
3т	19.10	• 5 2 5	16.65	-5.331	2.43	-1.01	• 684	7.26	• 5 2	•00	.00
4 T	19.20	• 5 2 9	17.27	-6.488	1.85	36	•722	7.76	.60	•00	.00
5T	19.10	•526	16.90	-5.837	2.13	58	•699	7.43	1.43	•00	•00
6T	18.90	• 5 2 3	16.69	-5-653	2.22	-1.11	.705	7.37	1.5.	•00	.00
AVERAGES	5, 908.	31 B.	ASELIN	E W133 00	000						
	21.83	• 556	9.97	-7.348	1.64	09	•745	9.56	3.81	•00	•00
STD	• 0 9	.000	.12	.289	.08	.16	.004	.06	• 2 5	*	*
	908	31 W18	8 3 N B O O I	2 (2E12)							
	19.44	• 5 3 0	17.27	-6.009	2.09	58	.706	7.69	• 98	• 0 0	.Oc
STD	• 38	•004	.44	.500	.27	• 5 3	.017	• 30	1 - 04	*	*
PERCENT	OF BAS	SELINI	3								
	89.0	95.4	86.5	118.2	128	****	94.7	80.4	25.6	****	****
STD Z	2.1	. 8	2.7	10.3	24	****	2.7	3.6	30.6	*****	****

.

•

. .

· ~ .

1

· · ·.

*SOL15 1 /10/80

.

. .

,

-

.

F

•

•

,

•

1

90904 W184PD001 (6.5E15) W133 00 000 *SOL15 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

ID	ISC	VOC	1 P	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.561	19.93	-6.943	1.77	44	.744	9.67	.00	.00	.00
18	22.00	.558	20.28	-7.924	1.49	.06	.757	9.83	4.42	.00	.00
2B*	21.60	.547	18.56	-4.807	2.91	-1.69	.676	8.44	1.95	.00	.00
3B*	21.70	.544	18.63	-4.865	2.84	-1.29	.669	8.35	1.82	.00	.00
4 B	21.70	.555	19.95	-7.655	1.55	12	.756	9.62	4.16	.00	.00
5 B	21.60	.556	20.14	-8.989	1.27	•26	.775	9.84	4.42	.00	.00
10	20.70	.548	18.92	-7.217	1.65	38	.750	9.00	2.47	.00	.OC
2C	20.90	• 5 4 4	18.89	-6.505	1.88	80	•738	8.88	1.95	.00	.00
3C	18.80	.526	17.17	-7.225	1.60	38	•748	7.83	• 7 8	.00	.00
4C	20.50	.537	18.39	-6.369	1.92	27	.716	8.34	1.43	.00	.00
5C	19.70	.529	17.92	-7.042	1.66	24	.739	8.14	.91	•00	.00
6C	19.80	.528	18.07	-7.173	1.61	30	.745	8.24	.91	•00	•00
7C	21.00	.544	19.46	-8.449	1.34	• 31	.761	9.20	2.08	.00	.00
8C	21.20	• 5 4 8	19.77	-9.098	1.23	.45	.770	9.46	2.73	.00	.00
9C	20.50	• 5 3 8	18.77	-7.391	1.58	18	• 7 4 9	8.74	1.69	.00	.00
10C	20.80	• 5 4 4	18.97	-7.162	1.66	18	•742	8.88	2.34	.00	•00
15	21.70	• 5 5 6	19.86	-7.199	1.68	55	•756	9.65	3.38	•00	.00
2 S	21.60	• 5 5 8	19.96	-7.951	1.48	27	.768	9.79	3.90	.00	•00
35	21.50	• 5 5 3	19.76	-7.523	1.58	41	.761	9.57	3.25	•00	.00
4 S	20.90	• 5 4 0	18.50	-5,534	2.34	-1.62	.718	8.57	1.82	.00	.00
55	21.10	• 5 4 7	19.01	-6.218	2.01	-1.27	•742	9.05	2.60	.00	.00
6 S	21.40	• 5 5 1	19.45	-6.833	1.78	57	• 7 4 4	9.28	3.12	•00	•00
1 T	19.10	• 5 2 8	17.26	-6.547	1.83	81	.737	7.86	•65	.00	•00
21	18.90	• 526	16.87	-5.940	2.08	-1.33	.726	7.63	.60	.00	.00
3 <b>T</b>	19.50	• 5 2 5	17.42	-6.029	2.03	-1.02	•723	7.82	•60	.00	•00
4T	19.00	.525	17.17	-6.624	1.79	61	•734	7.75	• 5 9	.00	.00
5T	19.30	• 5 2 5	17.34	-6.328	1.90	74	•727	7.79	.65	•00	•00
6 T	19.00	• 523	17.10	-6.384	1.87	80	.731	7.68	.60	•00	.00
AVERAGE	5: 909	04 В.	ASELIN	E W133 0	0 0 0 0						
	21.77	• 5 5 6	20.i3	-8.189	1.43	•07	.762	9.76	4.33	•00	.00
STD	•17	.001	•14	• 576	.12	.16	.009	.10	.12	*	*
	909	04 W1	84PD00	1 (6.5E1	5)	_					
	20.31	• 5 3 8	18.46	-6.943	1.75	54	•742	8.60	1.78	.00	.00
STD	•97	.011	1.01	.815	• 2 5	•48	.015	•70	1.05	*	*
PERCENT	OF BA	SELIN	E								
	93.3	96.8	91.7	115.2	122	*****	97.3	88.1	41.0	*****	*****
STD 🕇	5.2	2.3	5.7	16.6	29	***	3.1	8.2	26.1	****	****

• •

•

. .

.

ŝ

ť,

.

۰,

---

٠.

.00

.00

.00

.00

.00

90906 W185CU-TI004 (1.2E15-1.5E14) W133 00 000 *SOL15 1 /10/80 AM1: PO=91.60MW/CM^2 NO AR COATING PCDa PCDb ISC VOC IP LOG(10) N R FF Eff OCD ID 21.90 .559 19.80 -6.511 1.92 -.77 .739 21.70 .554 19.99 -7.770 1.52 -.17 .760 .00 .00 2R* 9.57 .00 9.67 3.64 1 B .00 2B* 21.80 .550 19.37 -5.713 2.27 -1.25 .719 9.11 3.00 

 21.80
 .547
 19.29
 -5.559
 2.34
 -1.40
 .715

 21.80
 .551
 19.82
 -6.889
 1.76
 -.41
 .741

 22.20
 .550
 19.60
 -5.511
 2.38
 -1.26
 .709

.00 3B* 9.02 2.34 .00 4 B 9.42 3.12 5B.* 9.16 3.00 .00

5B.*	22.20	.550	19.60	-5.511	2.38	-1.26	.709	9.16	3.00	.00	.00
10.*	12.20	.459	10.18	-5.552	2.11	4.11	.579	3.43	.40	.00	.00
2C	2.10	.457	10.66	-6.101	1.82	.29	.680	3.98	.52	.00	.00
3C	12.40	.459	10.94	-6.163	1.80	.31	.683	4.11	.60	.00	.00
4C	12.30	.458	10.80	-5.951	1.89	05	.681	4.05	• 5 2	.00	.00
5 C	12.30	.458	10.89	-6.253	1.76	• 2 2	.689	4.10	.52	.00	.00
6C	12.30	.455	10.76	-5.823	1.94	07	.674	3.99	.52	.00	.00
7C	12.30	.461	10.85	-6.085	1.84	04	.687	4.12	• 5 2	.00	.00
8C	12.10	.460	10.83	-6.772	1.58	.79	• 6 9 8	4.11	.52	.00	.00
9C	12.50	.462	.1.13	-6.497	1.68	.47	• 6°,	4.24	• 5 2	.00	.00
10C	12.30	.457	10.72	-5.743	1.99	08	•C ±	3.99	.52	.00	.00
15	12.30	.461	10.86	-6.164	1.81	•21	•0 J	4.11	.55	.00	.00
15	12.30	.461	10.86	-6.164	1.81	.21	.685	4.11	.55	.00	.00
35	12.10	.459	10.78	-6.539	1.66	.55	•694	4.08	• 5 5	.00	.00
4 S	12.50	.462	11.05	-6.223	1.79	•43	•684	4.17	.55	.00	.00
5 S	12.40	.458	10.84	-5.782	1.97	23	.676	4.06	• 5 5	.00	.00
1T	11.60	.455	10.20	-5.981	1.88	18	.683	3.81	.55	• 10	.00
2T	11.10	.454	9.95	-6.907	1.53	. 90	.701	3.73	.55	.00	.00
3T	11.50	.458	10.24	-6.531	1.67	.48	.695	3.87	• 5 5	.00	.00
4T	11.90	•460	10.66	-6.786	1.58	•66	.701	4.06	• 5 5	.00	.00
AVERAGE	s: 909	06 в.	ASELINE	W133 0(	000						
	21.75	.553	19.90	-7.329	1.64	29	.751	9.54	3.38	.00	.00
STD	.05	.002	.09	.441	.12	.12	.009	.12	.26	*	*
	909	06 W1	85CU-TI	004 (1.2	2E15-	1.5E14	)				
	12.13	.459	10.72	-6.248	1.78	.27	.687	4.04	.54	.00	.00
STD	.37	.002	.29	.342	.13	• 32	.009	.12	.02	*	*
PERCENT	OF BA	SELIN	E						-		
	55.8	83.0	53.9	114.8	109	293.8	91.5	42.3	16.0	*****	****
STD 🕱	1.8	• 6	1.7	10.1	17	199.6	2.3	1.9	1.9	****	****

. •

90907 W186C0003 (5.4E13) W133 00 000 *SOL15 1 /10/80 AM1: P0=91.60MW/CM^2 NO AR COATING

na ser en se Na ser en ser e ■ Terreter en ser en

. . . . 1

7

7

,**-**

.

ىرىسىيىر سىركى

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	. 559	19.86	-6.635	1.88	81	.745	9.65	.00	.00	. 20
1 B	21.70	.555	19.76	-7.236	1.66	.24	.731	9.32	3.51	.00	.00
2 B	21.90	.555	19.74	-6.640	1.86	~.02	.720	9.25	3.25	.00	.00
3B	21.60	.552	19.72	-7.290	1.64	.05	.739	9.32	3.00	.00	.00
4 B	21.90	.556	20.05	-7.415	1.61	03	.746	9.60	3.64	.00	.00
10	22.10	.552	19.29	-5.223	2.58	-1.26	.692	8.93	2.34	.00	.09
2C	23.90	.553	21.76	-7.169	1.67	.18	.732	10.23	3.00	.00	.00
36*	16.00	. 532	14.34	-4.426	3.38	-2.43	- 6 3 8	5.74	1.43	.00	.00
4C*	13.90	.504	10.29	-3.506	5.08	-2.47	.516	3.82	. 91	.00	.00
5C*	14.80	.520	11.96	-4.135	3.76	-2.24	.599	4.87	1.30	.00	.00
6C	21.80	.551	19.40	-5.819	2.21	-1.08	.719	9.13	3.00	.00	.00
70	22.40	.549	19.82	-5.656	2.29	95	.708	9.20	2.34	.00	.00
8C	20.90	.546	18.22	-5.139	2.64	-1.68	.696	8.40	2.34	.00	.00
90*	16.30	.530	13.70	-4.551	3.20	-2.24	.647	5.91	1.56	.00	.00
10C	22.50	.556	20.63	-7.352	1.63	40	.757	10.01	1.56	.00	.00
15	21.60	.548	19.16	-5.612	2.32	-1.50	.721	9.02	2.73	.00	.00
25	22.20	.552	19.97	-6.368	1.96	53	.726	9.41	3.25	.00	.00
35	20.90	.551	18.26	-5.119	2.68	-2.04	.705	8.58	2.86	.00	.00
4S	22.10	.555	20.43	-8.043	1.45	09	.765	9.93	1.56	.00	.00
58	22.10	.555	20.22	-7.367	1.62	07	.746	9.67	3.51	•00	.00
6S	21.60	.553	19.38	~6.155	2.06	91	•728	9.20	3.51	.00	.00
1T*	21.40	• 5 3 7	17.82	-4.303	3.41	-1.72	.635	7.71	1.04	.00	.00
2T	21.70	• 5 5 6	19.98	÷7.751	1.53	15	.759	9.69	3.64	.00	.00
3T	21.90	.555	20.22	-7.982	1.47	06	.762	9.80	3.77	.00	.00
4T	21.50	• 5 5 1	19.26	-6:070	2.09	-1.04	.728	9.13	3.00	.00	.00
5 <b>T</b>	21.60	• 5 5 5	19.95	-7.994	1.46	06	.762	9.67	3.64	.00	.00
AVERAGE	S: 909	07 B.	ASELIN	E W133 0	0 0 0 0						
	21.78	.555	19.82	-7.145	1.69	.06	.734	9.37	3.35	.00	. 20
STD	13	.002	.1.	.299	.10	1	.010	. ] 4	.25	*	*
	309	07 W1	8600 0	5.4E1	3)						
	21.93	.552	19.7.	-6.551	1.98	73	.732	9.37	2.88	.00	.00
STD	67	.003	.85	1.050	.43	.65	.024	.50	.68	*	*
PERCENT	OF BA	SELIN	E								
	100.7	99.6	99.7	108.3	117	****	\$9.7	100.0	85.9	*****	****
STD %	3.7	. 8	5.0	19.3	33	****	4.6	6.9	28.0	****	*****

275

می میکند. می می از میکند از میکند از می میکند از می ł

. .

90910 W187C0004 (2.8E14) W133 00 000 *SOL15 1 /10/80 And: P0=91.60MW/CM^2 NO AR COATING

S. 2.

÷

ID	ISC	VOC	IP	LOG(TỘ)	N	R	FF	Eff	000	PCDa	рсрр
2R*	21.90	.560	19.79	-6.461	1.95	84	.739	9.59	.00	.00	.00
1 B	21.90	.558	20.07	-7.352	1.64	35	•755	9.75	4.29	.00	.00
2B*	21.30	• 54	18.73	-4.789	2.91	-1.72	•676	8.48	1.69	.00	.00
3 B	21.50	.553	19.42	-6.485	1.92	74	•736	9.26	3.25	.00	.00
4B*	21.60	.549	18.52	-4.644	3.08	-2.37	.682	8.56	2.34	•00	.00
5 B	21.80	• 5 5 5	20.00	-7.458	1.60	24	•754	9.64	3.77	•00	.00
10	21.50	• 553	19.31	-6.226	2.03	81	.728	9.16	3.25	.00	.00
2C	21.40	• 556	19.41	-6.733	1.83	60	.741	9.33	3.25	•00	•00
3C	21.40	.555	19.38	-6.670	1.85	57	•738	9.27	3.00	.00	.00
4C	21.50	• 5 5 2	19.09	-5.657	2.31	-1.45	.721	9.05	2.34	•00	.00
5C	21.50	• 552	19.44	-6.563	1.88	67	.737	9.25	3.11	.00	.00
6C	21.60	• 5 5 0	19.34	-6.085	2.08		.725	9.10	2.47	.00	.00
7C	21.70	.555	19.68	-6.741	1.83	49	.739	9.41	3.51	.00	.00
8C	21.70	.555	19.80	-7.047	1.72	50	.749	9.55	3.64	.00	.00
9C	21.50	.551	19.30	-6.240	2.01	72	.726	9.09	3.00	.00	.00
100	21.60	• 550	19.06	-5.464	2.42	-1.48	.712	8.94	2.47	•00	.00
110	21.50	.551	18.93	-5.428	2.45	-1.37	.706	8.84	2.86	.00	•00
15	21.90	• 556	19.76	-6.387	1.96	84	•737	9.48	3.38	.00	.00
25	21.79	• 563	20.14	-8.324	1.41	17	.775	10.01	4.42	•00	•00
3S	21.70	• 5 5 8	19.77	-6.918	1.77	07	• 751	9.61	3.25	•00	•00
4 S	22.30	• 5 5 7	20.10	-6.425	1.95	56	.729	9.58	3.12	.00	.00
5 S	21.70	• 5 5 8	20.14	-3.406	1.38	• 0 2	.770	9.86	4.29	.00	.00
1 T	20.20	• 5 5 4	17.83	-5.527	2.41	-1.49	.711	8.41	2.60	.00	•00
2 T	20.30	• 5 5 2	17.54	-4.827	2.94	-2.48	.693	8.22	2.34	.00	.00
AVERAGE	s: 909	10 в.	ASELINI	E W133 0	000						
	21.73	• 555	19.83	-7.098	1.72	44	• 748	9.55	3.77	.00	.00
STD	•17	.002	• 2 9	.436	•14	• 21	.008	•21	• 4 2	*	*
	909	10 W1-	870004	4 (2.8E14	4)						
	21.48	;554	19.33	-6.426	2.01	88	•733	9.23	3.13	.00	• 0 <b>0</b>
STD	•48	.003	•68	•897	• 37	• 5 7	.020	• 4 4	- 58	*	*
PERCENT	OF BA	SELIN	E								
	98.8	99.8	97.5	109.5	117	2.0	97.9	96-6	83.0	*****	****
STD 🕱	3.0	1.0	4.9	19.0	33	287.8	3.8	6.8	26.4	*****	****

4 . ×

₹

r,

90913 WI	88W00	4 (2E]	L1) W1.	33 00 000	)						
*SOL15	1 /10	/80	AM1:	PO=91.601	IW/CM	^2 NO	AR CO	ATING			
ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	4.55	PCDa	PCDb
2 R *	21.90	.560	19.86	-6.664	1.87	69	.742	9.63	.00	.00	.00
1 B	22.60	.556	20.46	-6.682	1.84	38	.734	9.76	3.00	.00	.00
2 B	22.20	.553	20.03	-6,442	1.93	65	•733	9.52	3.51	.00	•00
3B.*	22.10	• 5 4 7	19.07	-4.875	2.84	-1.68	•682	8.72	2.34	.00	.00
4 B	22.00	.556	20.13	-7.339	1.63	15	•747	9.67	3.64	.00	.00
10	21.50	.551	19.49	-6.684	1.83	60	.740	9.27	3.00	•00	.00
2C	21.60	.549	19.53	-6.547	1.88	66	.737	9.24	2.47	.00	.00
3C	21.90	• 5 5 5	20.25	-8.085	1.44	09	.766	9.85	3.51	.00	.00
4C	21.50	.550	19.26	-6.091	2.08	94	•726	9.08	2.73	•00	.00
5C	22.10	• 5 5 5	20.39	-8.022	1.46	-14	•757	9.81	3.38	.00	.00
6C	22.00	.551	19.79	-6.328	1.97	64	.728	9.33	2.73	.00	.00
7C	21.90	.555	20.22	-7.913	1.48	16	.764	9 82	3.38	.00	.00
8C	21.60	.551	19.66	-7.005	1.72	28	.741	9.33	2.86	.00	.00
90	21.90	•547	19.46	-5.799	2.21	91	.713	9.03	2.21	.00	.00
100	21.60	.551	19.53	-6.564	1.88	66	.737	9.28	3.00	.00	.00
110	22.00	.551	19.97	-6.822	1.78	36	.738	9.45	3.00	.00	.00
120	21.70	.552	20.04	-8.012	1.45	01	.761	9.65	3.51	.00	.00
1 3C	21.90	.549	20.07	-7.478	1.58	06	.749	9.52	3.38	.00	.00
15	21.90	.552	19.82	-6.679	1.84	39	•733	9.37	2.86	.00	.00
25	22.10	.549	19.62	-5.811	2.21	75	.709	9.09	2.86	.00	.00
35	21.90	.550	20.14	-7.875	1.48	.30	.747	9.52	3.51	.00	.00
4 S	22.10	.552	20.20	-7.219	1.66	27	.748	9.65	3.00	.00	.00
5 S	22.20	.547	19.43	-5.652	2.29	.18	.672	8.63	2.34	.00	.00
1 T	22.20	• 5 5 2	20.17	-7.168	1.67	.43	.723	9.37	3.00	.00	.00
2 <b>T</b>	22.00	.551	20.20	-7.628	1.54	01	.751	9.63	3.25	.00	.00
3T	22.30	.550	19.66	-5.601	2.33	77	•69 <i>Э</i>	9.07	3.51	.00	.00
4 T	22.20	.550	20.23	-7.064	1.70	25	.743	9.59	3.12	.00	.00
5T	22.20	.548	19.95	-6.292	1.97	63	.727	9.35	2.86	.00	.00
6T	22.20	5 5 0	20.33	-7.491	1.57	.12	•743	9.60	3.51	.00	.00
AVERAGE	s: 909	13 B.	ASELIN	E W133 0	0 0 0 0						
	22.27	.555	20.21	-6.821	1.80	39	•738	9.65	3.38	.00	.00
STD	• 2 5	.001	.19	.379	.12	.20	.007	.10	• 28	*	*
	909	13 W1	88W004	(2E11)							
	21.94	.551	19.89	-6.910	1.79	30	•735	9.40	3.04	.00	.00
STD	• 2 4	.002	•33	• 781	.27	.39	•021	•28	• 37	*	*
PERCENT	OF BA	SELIN	E								
	98.5	99.2	98.4	98.7	99	123.0	99.6	97.4	89.9	*****	****
ና ጥ ከ ም	2 2	6	26	177	23	190 0	3 8	4 0	10 3	*****	*****

. . . *

.....

٤.

السابالا الاليا يعالى مالية

ì

•••••

· • • •

۲

۰.

. . .....

, v.

and the second s

•

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.558	19.86	-6.734	1.84	49	.738	9.54	•00	.00	.00
1 B	21.90	.558	20.46	-9.244	1.23	.39	.775	10.02	4.29	.00	.00
2 B	21.70	.554	19.75	-6.901	1.77	55	.746	9.49	3.38	.00	.00
3B*	21.70	.543	18.36	-4.449	3.26	-2.18	.662	8.24	1.69	•00	.00
4 B	21.90	.554	19.83	-6.611	1.87	69	.740	9.50	3.64	•00	.00
5B*	22.10	.544	18.85	-4.569	3.12	-2.14	.673	8.55	1.69	.00	.00
10	20.70	.550	18.88	-7.147	1.68	28	.745	8.96	1.56	.00	.00
2 C	20.70	.547	18.56	-6.279	1.99	54	.721	8.63	1.56	•00	,00
3C	20.90	• 5 4 7	18.87	-6.566	1.87	45	.730	8.82	1.30	•00	.00
4C	20.70	.543	18.31	-5.636	2.29	-1.17	.709	8.43	1.04	00	.00
5C	21.00	.550	19.22	-7.340	1.62	22	•749	9.15	1.69	•00	•00
6C	21.00	• 5 4 4	18.54	-5.537	2.35	-1.31	.709	8.57	1.30	.00	•00
7C	20.50	.523	17.25	-4.569	3.03	-1.16	.640	7.26	• 5 0	•00	.00
8C	20.90	• 5 4 8	18.93	-6.756	1.80	39	.735	8.90	2.21	.00	•00
9C	20.60	• 5 4 3	18.44	-6.086	2.06	94	.725	8.57	1.17	•00	.00
10C	21.10	• 5 4 6	19.03	-6.529	1.88	41	.727	8.86	1.69	•00	•00
110	20.70	• 5 4 4	18.40	-5.823	2.20	-1.03	.715	8.52	1.43	.00	.00
15	20.90	.551	18.88	-6.646	1.85	34	.729	8.88	1.95	•00	•00
2 S	20.80	.551	18.78	-6.422	1.94	92	.738	8.95	2.21	•00	.00
3 S	20.70	• 5 4 4	18.09	-5.261	2.54	-1.37	•694	8.27	1.17	•00	•00
4S	20.50	• 5 4 7	18.41	-6.236	2.01	87	.729	8.64	1.69	•00	•00
5 S	20.70	• 5 4 9	18.51	-6.060	2.10	90	.722	8.68	1.82	•00	.00
1 T	20.90	• 5 4 5	17.99	-4.839	2.88	-1.82	.679	8.18	1.17	•00	.00
2 T	20.60	.546	18.45	-6.206	2)2	63	.720	8.57	ι.30	•00	•00
3T	20.10	• 5 3 6	16.6'	-4.356	3.37	-1.02	.616	7.02	• 7 8	•00	.00
4 T	20.70	• 5 4 7	18.62	-6.351	1.96	70	.728	8.72	1.43	•00	•00
5 <b>T</b>	20.90	• 5 4 8	18.90	-6.642	1.84	47	.733	8.88	1.43	•00	.00
AVERAGES	s: 909	14 B.	ASELINI	E W133 0	000						
	21.83	• 5 5 5	20.02	-7.585	1.32	28	•754	9.67	3.77	.00	.00
STD	•09	.002	• 3 2	1.179	. 28	• 4 8	•015	• 2 5	• 38	*	*
	909	14 W1	89NB00	3 (3E11)							
	20.74	.545	18.46	-6.061	2.16	81	.714	8.55	1.45	•00	.00
STD	• 2 2	.006	.59	•773	• 4 4	• 4 1	.032	• 51	• 41	*	Ħ
PERCENT	OF BA	SELIN	E						••• ·		
~ ~	95.0	98.2	92.2	120.1	133	-85.9	94.7	88.4	38.4	*****	*****
STDZ	1.4	1.4	4.5	24.2	55	884•8	6.2	7 • 7	15.9	****	*****

90914 W189NB003 (3E11) W133 00 000 *SOL15 1 /10/80 AM1: PO=91.60MW/CM² NO AR COATING

٠

λ.

,

;

-

4
1

:

------

;

;

* • •

••••••

ŝ

۰.

•

90917 W190CU-ZR001 (2E15-1.2E12) W133 CO GOO *SOL15 1 /10/80 AM1: PO=91.60MW/CM^2 NO AP COATING

. . . . . . .

\$

IJ	120	VOC	IP	LOG(10)	Ŕ.	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.562	19.83	-6.620	1.89	66	.740	9.63	.00	.00	.00
1 B	22.30	. 559	20.73	-8.711	1.32	.29	.768	10.12	4.55	.00	.00
2B ·	22.20	.556	20.30	-7.482	1.59	.26	.738	9.64	3.64	.00	.00
3B	22.30	.557	20.57	-7.992	1.47	.17	.755	9.92	3.64	.00	.00
4B.*	22.10	.555	19.69	-5.880	2.19	96	.718	9.32	3.25	.00	.00
10	19.40	.532	17.15	-5.655	2.25	-1.17	.708	7.72	.78	.00	.00
20	19.90	. 535	17.76	-6.218	1.98	21	.707	7.96	.91	.00	.00
30	20.00	.536	17.05	-4.813	2.37	-1.12	.655	7.43	.78	.00	.00
40	19.70	.533	17.73	-6.343	1.92	63	.725	8.05	.78	.00	.00
50	20.00	.535	18.05	-6.606	1.82	39	.728	8.24	.78	.00	.00
6C	19.50	.533	17.71	-6.942	1.70	30	•737	8.10	.78	.00	.00
70	19.00	.531	17.31	-6.284	1.94	67	.723	7.84	.84	.00	.00
80	20.00	.532	17.76	-5.843	2.14	91	.711	8.00	.84	.00	.00
90	20.00	.531	17.63	-5.764	2.18	37	.691	7.77	.84	.00	.00
100	17.90	.533	17.77	-6.070	2.04	80	.719	8.06	.84	.00	.00
110	20.00	.535	17.98	-6.419	1.89	46	.723	8.19	•78	•00	.00
15	19.80	.536	17.77	-6.352	1.93	45	.720	8.08	.78	.00	.00
25	19.70	.535	17.57	-6.298	1.95	.17	.699	7.79	.83	•00	.00
35	19.50	.534	17.69	-6.884	1.72	28	.734	8.09	.91	.00	.00
4 S	20.10	. 534	18.04	-6.604	1.82	.35	.706	8.01	.91	.00	.00
55	19.70	.535	17.74	-6.499	1.86	43	.725	8.08	.91	•00	.00
6 S	19-70	.533	17.67	-6.248	1.96	71	.723	8.03	.91	.00	.00
1T.*	19.20	• 5 2 4	15.56	-3.814	4.17	-3.86	•625	6.65	• 5 2	.00	•00
2 T	19.70	.529	16.68	-4.469	3.20	-2.59	•666	7.34	•65	•00	.00
3T•*	19.30	.524	15.39	-3.564	4.72	-4.99	.616	6.59	• 4 5	.00	.00
4T.*	19.70	.529	16.30	-4.057	3.75	-3.40	•646	7.12	.45	•00	.00
5T	19.50	.526	16.33	-4.288	3.41	-2.79	•654	7.09	.45	.00	•00
6T	19.90	.530	16.96	-4.714	2.94	-1.69	. 53	7.40	• 4 5	.00	.00
AVERAGE	s: 909	1.7 B	ASELIN	E W133 0	e 000				_		
	22.27	• 5 5 7	20.53	-8.062	1.46	• 2 4	• 7 5 4	9.39	5 +	•00	.00
STD	• 0 5	.001	.18	.504	.11	• 0 5	.012	•20	•43	*	*
	. 909	17 W1	90CU-Z	R001 (2E	15-1.	2E12)					
	19.77	.533	17.52	-5.966	2.18	77	•706	7.86	•79	• 00	• 09
STD	• 2 3	.002	.45	• 770	.49	•78	•026	.31	•13	*	+
PERCENT	OF BA	SELIN	E				• •				
	88.8	95.6	85.3	126.0	149	****	93.7	79.5	20.0	*****	*****
STD 🕱	1.2	• 7	2.9	14.8	47	468.3	5.0	4.8	5.8	****	****

and the second 
· .....

•

.

. . .

,

.

· · · · · · ·

.

. .. . .

91107 W191CU-TA001 (2E15-6.8E11) W133 00 000 SOL16 1 /10/80 AM1: PO=91.60MW/CM^2 NO AR COATING

ID	ISC	voc	IP	LOG(10)	N	Р •	FF	Eff	OCD	PCDa	рсрр
2R*	21.90	.562	19.91	-6.771	1.84	74	.748	9.73	.00	.00	.00
1 B	21.50	.555	19.63	-7.143	1.69	36	.748	9.44	3.90	.00	.00
2 B	21.90	. 556	19.98	-7.196	1.68	08	.741	9.54	4.16	.00	.00
4 B	22.00	.560	20.50	-8.911	1.29	.27	.773	10.07	4.60	.00	.00
5B	21.50	.550	19.31	-6.288	1.99	64	.726	9.07	3.12	.00	.00
10	21.00	.541	18.44	-5.473	2.38	92	.694	8.34	1.30	.06	.00
2 C	20.20	.541	18.22	-6.718	1.80	.05	.719	8.31	1.17	.00	.00
3C	20.60	.547	18.43	-6.134	2.05	71	.719	8.57	1.56	.00	•00
4C	20.50	.545	18.49	-6.578	1.86	35	•727	8.58	1.17	.00	.00
5C	20.50	.541	18.14	-5.744	2.23	81	.704	8.26	1.04	.00	.00
6C	20.40	.541	18.19	-6.016	2.09	71	.714	8.33	1.04	.00	.00
7C	20.50	• 5 3 6	17.65	-4.912	2.78	-1.52	.675	7.85	• 91	.00	.00
8C	20.40	• 5 4 1	18.08	5-804	2.20	79	•705	8.24	1.17	.0.	.00
90	20.40	• 5 4 1	18.40	-6.514	1.87	55	•730	8.52	1.43	.00	•00
10C	20.40	.541	18.19	-6.016	2.09	71	•714	8.33	1.17	.00	.00
110	20.70	• 5 4 1	18.39	-5.888	2.15	72	•709	8.40	1.30	• 00	.00
15	20.40	• 5 4 4	18.09	-5.827	2.20	79	.707	8.30	1.30	.00	.00
2 S	20.40	.542	18.22	-6.095	2.06	-•64	.715	8.37	1.17	•00	.00
35	20.30	.539	17.52	-4.959	2.76	-1.58	.679	7.36	1.04	.00	.00
4 S	20.50	.543	18.45	-6.470	1.90	42	.725	8.53	1.56	•00	•00
5 S	20.80	• 5 4 4	18.55	-6.088	2.06	43	.709	8.49	1.30	•00	.00
6 S	20.60	• 5 4 3	18.33	-5.934	2.14	73	.711	8.41	1.30	•00	•0û
1 T	20.40	.544	18.39	-6.392	1.85	22	.723	8.49	1.17	•00	•00
2 T	20.30	.533	17.39	-4.820	2.85	-1.55	.669	7.65	1.17	•00	•00
3T	20.20	.540	18.07	-6.218	1.99	44	.715	8.24	•91	.00	•00
4 T	20.50	• 5 4 0	18.39	-6.407	1.91	16	.714	8.36	1.04	.00	.00
5T	20.50	• 5 4 0	18.27	-6.084	2.05	45	.709	8.30	1.04	.00	.00
6T	20.30	• 537	17.98	-5.834	2.17	02	.703	8.10	.91	.00	•00
AVERAGES	5: 911	07 B	ASELIN	E W133 0	0 0 0						
	21.73	.555	19.86	-7.384	1.66	20	.747	9.53	3.95	.00	•00
STD	.23	.004	• 4 4	•952	• 2 5	.34	.017	• 36	• 5 4	*	*
	911	07 W1	91CU-T	A001 (2E	15-6.	8E11)					
	20.47	• 5 4 1	18.19	-5.962	2.15	69	•708	8.30	1.18	.00	• 00
STD	.18	.003	. 30	.512	• 2 9	• 40	.015	• 2 3	.18	*	*
PERCENT	OF BA	SELIN	E				• • -				
	94.2	97.4	91.6	119.3	129	****	94.9	87.1	29.9	****	*****
STD 🕇	1.8	1.2	3.6	18.2	39	* * * * *	4.3	5.8	9.3	****	****

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.561	19.49	-5.640	2.35	-1.78	.731	9.49	.00	.00	- 50
1 . *	21.20	.552	13.84	-5.671	2.31	-1.56	.724	8.96	3.90	.00	,00
2 .*	21.70	• 5 5 8	19.02	-5.207	2.63	-1.86	.707	9.06	4.29	.00	.00
3B•*	21.50	.552	18.83	-5.255	2.57	-1.54	.701	8.80	2.47	.00	.00
4B.*	21.30	• 5 5 6	18.95	-5.758	2.27	-1.31	.721	9.03	3.38	.00	.00
10	21.40	546	19.35	-6.624	1.84	48	.734	9.06	3	.00	•00
2C	21.10	.545	19.23	-7.040	1.70	42	•746	9.07	3.01	.00	.00
3C	21.60	.543	19.40	-6.231	1.99	77	•728	9.03	2.86	.00	•00
40	21.30	• 5 4 4	19.22	-6.598	1.84	31	•727	8.91	3.64	.00	.00
5C	21.30	• 5 4 3	19.38	-6.982	1.71	31	.741	9.06	3.64	.00	.00
6C	21.60	.543	19.90	-7.930	1.45	.15	•7 ⁵ ·	9.35	3.00	.00	.00
7C	21.50	.547	19.72	-7.484	1.57	19	. 1 5 3	9.36	3.90	.00	.00
8C	21.20	.544	19.26	-6.812	1.77	60	•744	9.08	2.86	•00	.00
90	21.40	.543	19.18	-6.241	1.98	48	.719	3.83	3.00	•00	.00
10C	21.30	• 5 4 6	19.05	-5.966	2.12	-1.22	.729	8.97	3.38	.00	.00
110	21.00	.544	19.19	-7.168	1.66	50	.753	9.09	3.12	.00	.00
15	21.00	.542	19.01	-6.580	1.85	76	•740	8.91	3.00	.00	.00
2 S	21.30	• 5 4 0	18./6	-5.425	2.40	-1.44	.708	8.61	2.34	.00	.00
35	21.20	.543	18.94	-5.957	2.12	-1.10	.725	8.85	2.86	.00	•00
4 S	21.20	.541	18.86	-5.748	2.22	-1.38	.723	8.77	2.7.	.00	.00
5S	21.00	.539	18.63	-5.650	2.27	-1 32	.719	8.61	2.73	.00	.00
6 S	21.10	.543	18.83	-5.869	2.16	-1.31	.727	8.81	3.12	.00	.00
1 <b>T</b>	21.60	.546	18.98	-5.438	2.42	-1.08	.598	8.71	2.86	00	.00
2 T	21.80	44د.	19.40	-5.955	2.12	56	. 109	8.89	3.12	.00	.00
3 <b>T</b>	21.40	• 5 4 7	19.40	-6.764	1.79	41	.736	9.12	3.64	.00	.00
4 T	21.20	• 544	19.23	-6.783	1.78	44	.738	9.00	3.12	۰00	190
5T	21.50	• 544	19.40	-6.515	1.87	54	.732	9.05	3.51	.00	• (af
6T	21.40	• 5 4 4	19.28	-6.451	1.90	47	•727	8.95	3.25	.00	•00
AVERAGE	S: 911(	08 BA	ASELINE	E W133 O(	000						
NO BASEI	LINE										
	9110	08 W19	92 AGO U I	(2.08E)	15)						
	21.32	• 5 4 4	19.20	-6.444	1.94	70	,731	8.96	3.17	.00	.00
STD	• 21	•002	• 2 9	.632	• 2 5	.43	.014	.19	• 38	*	*

9.108 W192AG001 (2.28E15) W133 CO 000 SOL16 1 /10/80 AM1: P0=91.60MW/CM² NO AR COATING

. . .

1

ø

e

,

· · ·

7.04 5

1 . . .

t.

τ,

٩

....

•• • . .

and a second and the second and the second and the second second second second second second second second second

۰.

× • ?

* ***** * *

91109 W193SN001 (4.85E18) W133 00 000 SOL16 J '10/80 AM1: P0=91.60MW/CM² NO AR COATING

1.16.10.2.2.2.27

- and the second second

- 2

4

ų,

•

ID	т SC	VOC	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.565	19.88	-6.646	1.89	91	•749	9.80	.00	.00	.00
18.*	21.90	.562	18.89	-5.028	2.79	96	•670	8.72	4.55	.00	.00
2B.*	21.90	.553	.8.89	-4.820	2.92	-1.99	.686	8.78	2.47	•00	.00
3B	22.00	.559	20.07	-7.075	1.72	42	.748	9.73	3.64	.00	.00
4 B	21.20	.552	19.22	-6.638	1.86	78	.743	9.20	2.08	.00	.00
10	21.50	.559	19.68	-7.436	1.62	00	.745	9.47	3.38	•00	.00
2C	21.50	.559	19.76	-7.611	1.57	19	•756	9.61	3.90	•00	.00
3C	21.50	.556	19.37	-6.314	2.00	97	.737	9.31	3.38	.00	.00
4C	21.90	• 5 5 9	20.16	-7.779	1.53	.00	.755	9.78	4.16	•00	.00
5C	22.00	.560	20.04	-6.958	1.76	50	.747	9.73	4.16	.00	.00
6C	21.60	.560	19.76	-7.299	1.66	27	.750	9.59	2.47	.00	.00
7C	21.70	.560	19.91	-7.416	1.63	38	•757	9.73	4.03	.00	.00
8C*	21.70	.553	19.13	-5.486	2.42	-1.30	.708	8.98	3.00	.00	.00
9C	21.60	.556	19.59	-6.720	1.84	62	.742	9.42	3.25	.00	.00
10C	21.90	• 5 5 8	20.07	-7.408	1.62	25	.753	9.73	3.77	.00	.00
1 S	21.90	.558	19.86	-6.669	1.86	71	.743	9.61	4.16	.00	.00
25	21.60	.556	19.36	-6.103	2.09	98	.728	9.25	3.38	.00	.00
3S	22.00	• 5 5 9	20.31	-8.058	1.46	.15	.757	9.85	4.16	.00	.00
4 S	21.90	• 5 5 5	19.63	-6.125	2.08	85	•726	9.33	3.51	.00	-00
5S	21.90	• 5 5 7	19.90	-6.814	1.80	54	•743	9.58	4.03	.00	.00
1 T	21.90	.561	19.43	-5.611	2.37	-1.49	.720	9.36	3.00	.00	.00
2T	21.90	.564	20.12	-7,557	1.60	28	.758	9.90	4.30	.00	.00
3T	21.90	.560	19.81	-6.560	1.91	67	.738	9.57	3.90	.00	.00
4T	21.60	.560	19.58	-6.736	1.84	49	•738	9.44	3.90	.00	.00
5T	21.60	.561	19.74	-7.238	1.68	24	.747	9.57	4.42	•00	.00
AVERAGE	s: 911	09 B.	ASELIN	E W133 0(	000						
	21.60	.556	19.64	-6.857	1.79	60	.746	9.46	2.86	.00	.00
S TD	•40	.004	.43	.218	•07	.18	.002	• 27	• 7 8	*	*
	911	09 Wl	935N00	1 (4.85E)	18)						
	21.76	.559	19.79	-6.969	1.79	49	•744	9.57	3.75	.00	.00
STD	.18	.002	• 26	.629	• 2 2	.39	.011	.18	.49	*	*
PERCENT	OF BAS	SELIN	E								
	100.7	100.6	100.8	98.4	100	119.1	99.8	101.1	131.1	*****	*****
STD 🕱	2.7	1.0	3.6	12.7	17	108.3	1.8	4 • 8	57.6	****	****

283

•

. . . . . .

91113	W194TIO	12 (3	.0E12)	w133 00	000						
SOLIG	1 /10/8	30 /	AMI: PO	=91.60M	H/CM^	2 NO	AR COA	TING			
ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДЪ
2R*	21.90	.564	19.80	-6.361	2.00	-1.27	.749	9.78	•00	.00	.00
1 B	22.10	.558	20.30	-7.586	1.57	11	.753	9.83	4.16	.00	.00
2 B	21.90	.562	20.09	-7.449	1.62	25	.754	9.82	3.90	.09	.00
3 B	22.00	.563	20.19	-7.477	1.62	29	.756	9.90	4.55	.00	.00
4B	21.90	.561	19.95	-7.066	1.73	26	.742	9.65	4.03	.00	.00
5 B	22.10	.559	20.23	-7.348	1.64	17	.749	9.78	3.90	.00	.00
10	13.60	.547	16.76	-6.564	1.89	39	.724	7.79	.78	.00	.00
2 C	18.50	.540	16.46	-6.059	2.08	54	.707	7.47	.52	.00	.00
30	18.70	.546	16.96	-6.959	1.74	10	.731	7.89	.78	.00	.00
4C	18.80	.544	16.95	-6.609	1.86	32	.725	7.84	•65	.00	.00
5C	18.50	.538	16.66	-6.411	1.92	91	.733	7.72	•65	•00	.00
6 C	18.50	.537	16.37	-5.871	2.17	56	.699	7.35	• 5 2	.00	.00
7C	18.80	.546	17.05	-6.939	1.75	16	.732	7.95	•70	.00	.00
8C	18.70	.532	16.41	-5.660	2.26	35	.683	7.19	• 5 2	.00	.00
15	18.40	.541	16.45	-6.311	1.97	25	.710	7.48	.60	.00	.00
25	18.80	.544	16.95	-6.609	1.86	32	.725	7.84	.78	.00	.00
35	18.30	.540	16.36	-6.286	1.98	31	.711	7.43	• 5 2	.00	.00
4 S	18.80	• 546	17.08	-7.016	1.72	19	.735	7.98	•78	.00	.00
55	18.60	• 546	16.70	-6.439	1.94	33	.718	7.71	•65	.00	.00
6S	18.50	• 5 4 4	16.67	-6.600	1.87	29	.723	7.70	•72	.00	.00
l T	18.20	.543	16.08	-5.753	2.26	93	.702	7.34	•40	.00	.00
2 T	18.00	• 5 4 2	16.31	-á.958	1.74	03	.728	7.51	.55	.00	.00
3T	18.00	• 540	16.28	-6.687	1.75	.01	.725	7.45	• 5 2	.00	.00
4T	18.00	• 5 3 8	16.17	-5.506	1.89	23	.717	7.34	•42	.00	.00
ST	18.20	.543	16.43	-6,709	1.83	24	.725	7.58	• 5 2	.00	.00
6T·	18.40	.543	16.51	-6.360	1.96	55	.721	7.61	•65	•00	.00
AVERAG	ES: 911	13 E.	ASELINF	W133 0	0 000						
	22.00	.561	20.15	-7.385	1.64	22	.751	9.79	4.11	.00	.00
STD	.09	.002	•12	.177	.05	•07	.005	.08	.24	*	*
	911	13 W]	94TI012	2 (3.0E1)	2)						
	18.47	.542	16.58	-6.475	1.92	35	.719	7.61	.61	.00	.00
STD	. 27	• 004	• 2 9	.391	.16	• 2 4	.013	.22	-12	*	*
PERCEN	IT OF BAS	SELIN	E								
	83.9	96.7	82.3	112.3	117	37.8	95.7	77.7	14.9	****	****
STD I	1.6	1.0	1.9	7.5	14	197.0	2.3	3.0	3.9	****	*****

•--

a state and a second 
.

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	PCDb
2R*	21.90	.564	19.81	-6.436	1.97	-1.07	.745	9.74	.00	.00	.00
1 B	22.00	.558	20.20	-7.671	1.55	.12	.748	9.71	4.81	.00	.00
2 B	21.90	• 558	20.23	-8.105	1.45	.15	.758	9.80	4.55	.00	.00
3 B	21.80	• 5 5 3	19.60	-6.318	1.98	63	.727	9.27	3.51	• . 0	.00
4B.*	22.10	• 5 5 3	19.20	-4.977	2.78	-1.91	.696	8.99	3.12	.00	.00
10	18.40	• 5 2 4	16.39	-6.167	1.97	25	.704	7.18	• 5 2	.00	.00
2 C	18.70	.519	16.53	-5.799	2.13	63	.699	7.17	• 46	.00	.00
30	17.10	.510	14.98	-5.671	2.18	29	.680	6.27	• 39	.00	.00
4C	17.90	• 5 2 2	16.02	-6.305	1.91	47	.716	7.07	• 5 2	.00	.00
5C	18.10	• 5 2 4	16.34	-6.728	1.76	21	.725	7.28	• 39	.00	.00
6C	18.50	.523	16.34	-5.901	2.10	19	.691	7.07	• 5 2	.00	.00
7C	18.40	.517	15.78	-4.917	2.71	-1.42	.667	6.71	.39	.00	.00
8C	18.40	.521	16.22	-5.806	2.14	33	.690	6.99	• 52	.00	.00
90	18.30	.519	16.22	-6.053	2.01	08	.695	6.98	.52	.00	.00
10C	18.10	.514	15.89	-5.645	2.20	51	.686	6.75	• 52	.00	.00
15	18.60	.528	16.74	-6.516	1.84	39	.723	7.51	• 5 2	.00	.00
25	18.40	.525	16.59	-6.701	1.77	03	.720	7.35	.52	.00	.00
35	18.60	.526	16.73	-6.498	1.84	39	.722	7.48	.52	.00	.00
45	18.80	.529	16.87	-6.371	1.90	45	.719	7.56	• 52	.00	.00
55	18.50	.526	16.65	-6.507	1.84	42	.724	7.45	•65	.00	.00
IT	18.30	.522	16.07	-5.614	2.25	70	.690	6.97	.39	.00	.00
2 T	17.50	.519	15.60	-6.327	1.90	.18	.699	6.71	.39	.00	.00
3T	18.10	.520	16.02	-5.942	2.07	30	.695	6.92	.39	.00	.00
4T	18.00	.519	16.13	-6.471	1.83	.01	.709	7.01	.40	.00	.00
5T	18.10	.522	16.16	-6.267	1.93	24	.708	7.08	.46	.00	.00
6T	18.40	.521	16.32	-5.961	2.06	50	.702	7.12	.46	.00	.00
AVERAGE	5: 911	28 B.	ASELIN	E W133 0	0 0 00						
	21.90	.556	20.01	-7.365	1.66	12	.745	9.59	4.29	.00	.00
STD	.08	.002	• 2 9	.761	• 2 3	• 36	.013	•23	.56	*	*
	911	28 .W1	95TI-V	-MOOU1 (	3E12-	3E12-6	.0E11)				
	18.25	.521	16.22	-6.103	2.02	36	.703	7.08	.47	.00	.00
STD	.39	.004	• 4 2	.430	.21	.32	.016	• 30	.07	*	*
PERCENT	OF BA	SELIN	E								
	83.3	93.7	81.0	117.1	121	****	94.4	73.8	11.1	*****	****
STDZ	2.1	1.2	3.3	15.0	32	* * * * *	3.8	5.0	3.3	*****	****

91128 W195TI-V-MOOO1 (3E12-3E12-6.0E11) W133 00 000 SOL16 1 /10/80 AM1: PO-91.50MW/CM² NO AR COATING

....

1

- -

4

.

.

Ą

91129 W196TI-V-MO-TAOO1 (3.0E12-3.0E12-6.0E11-3.0E11) W133 00 000 SOL16 1 /10/80 AN1: PO=91.60MW/CM² NO AR COATING

. r

3

ID	ISC	VOC	IP	LOG(10)	N	R	FF	Etf	OCD	PCDa	PCDb
2R*	21.90	.565	19.85	-6.544	1.93	99	.747	9.78	.00	.00	.00
1 B	22.50	.555	20.50	-7.142	1.69	02	.737	9.74	4.55	.00	.00
2B	22.00	.549	20.17	-7.574	1.55	.12	.745	9.52	3.25	.00	.00
3B*	22.20	.548	19.25	-5.041	2.70	-1.37	.684	8.81	2.47	.00	.00
4 B	22.40	.554	20.56	-7.735	1.52	.33	.743	9.75	4.16	.00	.00
5 B	22.40	.553	20.32	-6.849	1.78	21	.734	9.62	4.03	.00	.00
10	18.80	.526	16.30	-5.237	2.50	92	.675	7.06	• 39	.00	.00
2 C	18.30	.528	16.45	-6.643	1.80	.20	•711	7.26	2.34	.00	.00
3C	18.60	.528	16.76	-6.732	1.76	.15	.716	7.43	.52	•00	.00
4C	18.30	.525	16.33	-6.246	1.95	23	.707	7.20	• 46	.00	.00
5 C	18.30	• 5 2 3	16.07	-5.670	2.22	46	•686	6.95	.30	•00	.00
6C	18.60	• 526	16.60	-6.286	1.93	06	•704	7.29	.40	.00	.00
7C	18.70	• 526	16.56	-5.953	2.08	27	•696	7.24	• 50	.00	.00
8C	18.50	.525	16.55	-6.394	1.88	.01	.707	7.26	• 40	•00	.00
90	18.50	• 5 2 4	16.32	-5.800	2.15	45	•693	7.10	.52	.00	.00
10C	19.00	• 527	16.96	-6.351	1.90	.16	.701	7.43	• 20	.00	.00
15	18.80	.532	16.76	-6.195	i.99	19	•705	7.45	• 46	.00	.00
25	18.70	• 532	16.74	-6.429	1.89	.07	.707	7.44	• 5 2	.00	•00
35	18.60	• 5 3 0	16.64	-6.377	1.91	09	.709	7.39	• 5 2	.00	.00
45	19.00	.531	17.12	-6.780	1.75	• 32	•713	7.61	• 5 2	.00	.00
5 S	18.90	.530	17.01	-6.659	1.79	.11	.714	7.57	• 5 2	.00	.00
1 T	18.60	.528	16.29	-5.490	2.35	92	.690	7.16	.39	.00	.00
2T	18.20	.526	16.27	-6.422	1.88	.14	.704	7.13	.39	.00	.00
3T	18.40	.525	15.42	-6.362	1.90	.18	.701	7.16	.39	.00	.00
4 T	18.50	• 5 2 4	16.38	-6.042	2.03	•08	•690	7.07	• 39	.00	.00
5T	18.30	.519	15.78	-5.185	2.51	64	•664	6.67	• 30	.00	.00
6T	18.70	.527	16.75	-6.531	1.83	.28	•705	7.34	•40	.00	.00
AVERAGES	5: 911	29. BA	ASELIN	E W133 00	0 0 00						
	22.33	.553	20.39	-7.325	1.63	.06	.740	9.66	4.00	.00	.00
STD	.19	.002	.15	.350	.10	.20	.004	.09	.47	*	*
	911	29 W1	96TI-V	-M0-TA00	1 (3.)	0E12-3	• 0E12-	-6.0E11	-3.0E1	(1)	
	18.59	.527	16.53	-6.180	2.00	12	.700	7.25	.53	.00	.00
STD	.23	.003	.31	.455	• 2 2	.36	.013	.21	.41	*	*
PERCENT	OF BA	SELIN	E								
	83.3	95.3	81.1	115.6	122	****	94.6	75.1	13.3	****	****
STD Z	1.8	.9	2.1	10.5	22	****	2.3	3.0	13.1	****	****

z

. . . .

والمحافظ والمعالي والمعالية والمعالية والمعالية والمعادي والمعالية والمعالية والمعالية والمعالية والمعالية والم

91130 W197TI-V-MO-TA-CUGO1 (3E12-3E12-6E11-3E11-2E15) W133 00 000 SOL16 1 /10/80 AM1: PO=91.60MW/CM² NO AR COATING

ID	ISC	voc	IP	LOG(10)	N	R	FF	Eff	OCD	PCDa	РСДР
>IMPURI	TY CON	CENTRA	ATIONS	(4E12-2.	8E12	-5.3E1	1-5.1E	11-1.3	E15)		
2R*	21.90	.562	19.86	-6.639	1.89	79	.744	9.69	.00	.00	.00
1 B	22.30	.556	20.11	-6.416	1.95	66	.732	9.60	3.25	.00	.00
2 B	22.30	.560	20.35	-7.110	1.71	36	.748	9.87	4.55	.00	.00
3 B	22.40	.559	20.32	-6.630	1.87	84	.747	9.89	4.42	.00	.00
4B	22.20	.558	20.28	-7.191	1.68	26	.747	9.78	3.51	.00	.00
5 B	22.30	.558	20.26	-6.817	1.80	53	.743	9.78	3.64	.00	.00
10	18.30	.526	16.43	-6.374	1.89	61	.723	7.36	.39	.00	• Ò0
2C	18.70	• 5 2 5	16.81	-6.321	1.91	88	.730	7.57	• 50	.00	.00
3C	19.10	• 5 2 5	17.05	-6-049	2.03	90	.719	7.62	.50	.00	• 00
4C	18.50	.523	16.50	-6.078	2.01	78	.716	7.32	.50	.00	.00
5C	19.20	.524	17.07	-5.883	2.10	-1.02	.715	7.61	.50	.00	• 00
6C	19.30	.524	17.04	-5.661	2.22	98	.703	7.52	.50	.00	.00
7C	18.80	.524	16.77	-6.013	2.04	97	.719	7.49	.50	.00	.00
8C	18.90	• 520	16.56	-5.340	2.40	-1.56	.700	7.27	.50	.00	.00
9C	18.90	.513	16.22	-4.935	2.67	1.31	.667	6.84	.50	.00	• 00
10C	19.20	• 5 2 3	17.04	-5.856	2.11	87	•709	7.53	.50	.00	• 00
110	18.80	.522	16.82	-6.145	1.97	90	.723	7.50	.50	.00	.00
15	18.90	.523	16.63	-5.472	2.33	-1.48	.705	7.37	• 50	.00	•00
25	19.30	• 5 2 6	17.29	-6.150	1.98	97	.726	7.80	• 5 2	• 00	• 00
35	19.50	.525	17.31	-5.781	2.15	-1.18	.715	7.74	• 5 2	•00	•00
4 S	19.20	• 5 2 4	17.22	-6.226	1.94	84	.725	7.72	• 5 0	.00	•00
55	18.70	• 524	16.78	-6.255	1.93	86	.726	7.52	.52	.00	.00
1 T	19.00	• 5 2 3	16.22	-4.671	2.96	-2.31	•673	7.08	•41	•00	.00
2T	19.10	• 5 2 6	17.03	-6.080	2.01	63	.712	7.57	• 39	.00	•00
3T	18.50	.520	16.25	-5.503	2.30	-1.21	.698	7.10	.39	.00	.00
4T	19.20	• 5 2 4	17.01	-5.768	2.16	98	.708	7.53	.52	.00	.00
5T	19.00	• 5 2 4	16.92	-5.948	2.07	95	.716	7.53	• 5 2	.00	•00
6T	18.90	.523	16.96	-6.360	1.88	50	.721	7.53	• 5 2	.00	•00
AVERAGE	s: 911	30 B/	ASELIN	E W133 OC	000						
	22.30	.558	20.27	-6.833	1.81	53	.743	9.79	3.87	.00	.00
STU	.06	.001	.09	.290	.10	.21	.006	.10	.52	*	*
	911	30 W19	97TI-V·	-MO-TA-CU	1001	(3E12~	3E12-6	E11-3E	11-2E1	5)	
	18.95	.523	16.82	-5.858	2.14	-1.03	.711	7.46	. 49	.00	.00
STD	. 29	.003	.33	.438	.26	.38	.016	. 2 2	.04	*	*
PERCENT	OF BAS	SELINI	E								
	85.0	93.7	83.0	114.3	119	5.2	95.7	76.2	12.6	****	*****
STD 🛪	1.5	• 7	2.0	10.3	22	175.4	2.8	3.1	3.0	****	****