12,001 research outputs found

    Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lamprey

    Full text link
    We analyze the dynamics of the neural circuit of the lamprey central pattern generator (CPG). This analysis provides insights into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behaviour regimes (characterized by phase and amplitude relationships between oscillators) of forward/backward swimming, and turning, can be controlled using the neural connection strengths and external inputs.Comment: 4 pages, accepted for publication in Physical Review Letter

    Characterization of Megatrypanum trypanosomes from European Cervidae

    Get PDF
    Megatrypanum trypanosomes have been isolated from a number of different European Cervidae, but on the basis of morphology it has not been possible to define the species to which these isolates belong. We isolated Trypanosoma (Megatrypanum) theileri from 10 cattle, and Megatrypanum trypanosomes from 11 fallow deer (Cervus dama), 9 red deer (Cervus elaphus), and 4 roe deer (Capreolus capreolus) by blood culture on a biphasic medium (NNN agar slopes). Trypanosomes were propagated in Schneider's Drosophila medium and characterized by isoenzyme analysis and molecular karyotyping. Isocitrate dehydrogenase and phosphoglucomutase were visualized after starch gel electrophoresis of trypanosome lysates. By cluster analysis of this data all isolates from deer were clearly separated from the T. (M.) theileri isolates from cattle. Isolates from roe deer were different not only from T. (M.) theileri but also from the other deer isolates. Isolates from fallow deer and red deer were grouped together. Thus, there are probably at least two different species of Megatrypanum trypanosomes in the three Cervidae. One parasitizing roe deer, the other, apparently less host specific species, infecting red deer and fallow deer. Separation of the chromosomes of Megatrypanum trypanosomes by pulsed-field gradient gel electrophoresis (PFGE) showed that each isolate contained a large number (> 18) of chromosomes ranging in size from 300 to > 2200 kb. The molecular karyotypes were similar for all isolates, although no isolate was identical to anothe

    Synchronization reveals topological scales in complex networks

    Get PDF
    We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology and spectral graph analysis.Comment: 4 pages, 3 figure

    Analysis of a new genetic cross between two East African Trypanosoma brucei clones

    Get PDF
    Two clones of East African Trypanosoma brucei, with distinct homozygous isoenzyme patterns for one of three enzymes examined, were cotransmitted through the tsetse fly vector Glossina morsitans centralis. Flies with mature infections were individually fed on mice and the subsequent bloodstream form populations analysed for the presence of hybrid trypanosomes by isoenzyme analysis. Several combinations have previously been detected using this approach (Schweizer, Tait & Jenni, 1988; Sternberg et al. 1989). Four clones were isolated from one of the hybrid-containing populations. They showed a hybrid phenotype, as would be expected for the F1 progeny in a diploid Mendelian system. The analysis of the progeny clones, using two gene probes which detect restriction fragment length polymorphisms between the two parental stocks, showed that alleles had segregated at each locus and given rise to three different non-parental combinations of alleles in the hybrid progeny. Characterization of the hybrid progeny clones by PFGE (pulsed field gradient gel electrophoresis) revealed that all progeny clones were recombinant for the intermediate size chromosomes. From the analysis of the segregation of the larger chromosomes, marked by P0K (phosphoglycerate kinase) and CP (cysteine protease) gene probes, it was inferred that the progeny clones did not result from a direct fusion of diploid cells. Results with the PGK probe fit into a classical system with meiosis and subsequent fusion of the nuclei to form diploid progeny. On the other hand, blots with the CP probe as well as some of the ethidium bromide stained PFGE gels revealed the existence of non-parental size chromosomes in some of the hybrid progeny. This phenomenon was observed previously (Gibson, 1989) and further investigation is required to elucidate the mechanis

    Coiling Instability of Multilamellar Membrane Tubes with Anchored Polymers

    Full text link
    We study experimentally a coiling instability of cylindrical multilamellar stacks of phospholipid membranes, induced by polymers with hydrophobic anchors grafted along their hydrophilic backbone. Our system is unique in that coils form in the absence of both twist and adhesion. We interpret our experimental results in terms of a model in which local membrane curvature and polymer concentration are coupled. The model predicts the occurrence of maximally tight coils above a threshold polymer occupancy. A proper comparison between the model and experiment involved imaging of projections from simulated coiled tubes with maximal curvature and complicated torsions.Comment: 11 pages + 7 GIF figures + 10 JPEG figure

    Thermal and Surface Core-Electron Binding-Energy Shifts in Metals

    Get PDF
    High-resolution photoemission spectra from the shallow core levels of alkali metals and of In have been obtained between 78 K and room temperature. The data yield values for the alkali-metal surface-atom core-level shift and show thermal shifts of comparable size for bulk and surface. The positive surface shifts are due to the spill-out of conduction-electron charge, which is responsible for the surface dipole layer. The surface shifts are in good agreement with values obtained from a Born-Haber cycle expressed in terms of surface energies. The thermal shifts are proportional to the lattice expansion, and arise from both initial-state and final-state effects. As the lattice expands, the Fermi level decreases, decreasing the core-electron binding energy. At the same time, the expansion of the conduction-electron charge increases rs, thereby decreasing the potential at the core level and increasing the binding energy. The expansion also decreases the relaxation energy, further increasing the core-electron binding energy. In the alkali metals, the combined potential- and relaxation-energy terms dominate the Fermi-level term, making the shifts positive. In divalent metals the three terms tend to cancel, while in trivalent metals it is the Fermi-level term that dominates, making the shifts negative

    Effect of Disorder Strength on Optimal Paths in Complex Networks

    Full text link
    We study the transition between the strong and weak disorder regimes in the scaling properties of the average optimal path opt\ell_{\rm opt} in a disordered Erd\H{o}s-R\'enyi (ER) random network and scale-free (SF) network. Each link ii is associated with a weight τiexp(ari)\tau_i\equiv\exp(a r_i), where rir_i is a random number taken from a uniform distribution between 0 and 1 and the parameter aa controls the strength of the disorder. We find that for any finite aa, there is a crossover network size N(a)N^*(a) at which the transition occurs. For NN(a)N \ll N^*(a) the scaling behavior of opt\ell_{\rm opt} is in the strong disorder regime, with optN1/3\ell_{\rm opt} \sim N^{1/3} for ER networks and for SF networks with λ4\lambda \ge 4, and optN(λ3)/(λ1)\ell_{\rm opt} \sim N^{(\lambda-3)/(\lambda-1)} for SF networks with 3<λ<43 < \lambda < 4. For NN(a)N \gg N^*(a) the scaling behavior is in the weak disorder regime, with optlnN\ell_{\rm opt}\sim\ln N for ER networks and SF networks with λ>3\lambda > 3. In order to study the transition we propose a measure which indicates how close or far the disordered network is from the limit of strong disorder. We propose a scaling ansatz for this measure and demonstrate its validity. We proceed to derive the scaling relation between N(a)N^*(a) and aa. We find that N(a)a3N^*(a)\sim a^3 for ER networks and for SF networks with λ4\lambda\ge 4, and N(a)a(λ1)/(λ3)N^*(a)\sim a^{(\lambda-1)/(\lambda-3)} for SF networks with 3<λ<43 < \lambda < 4.Comment: 6 pages, 6 figures. submitted to Phys. Rev.

    Ethics, space, and somatic sensibilities: comparing relationships between scientific researchers and their human and animal experimental subjects

    No full text
    Drawing on geographies of affect and nature-society relations, we propose a radical rethinking of how scientists, social scientists, and regulatory agencies conceptualise human and animal participants in scientif ic research. The scientific rationale for using animal bodies to simulate what could be done in human bodies emphasises shared somatic capacities that generate comparable responses to clinical interventions. At the same time, regulatory guidelines and care practices stress the differences between human and animal subjects. In this paper we consider the implications of this differentiation between human and animal bodies in ethical and welfare protocols and practices. We show how the bioethical debates around the use of human subjects tend to focus on issues of consent and language, while recent work in animal welfare reflects an increasing focus on the affectual dimensions of ethical practice. We argue that this attention to the more-than-representational dimensions of ethics and welfare might be equally important for human subjects. We assert that paying attention to these somatic sensibilities can offer insights into how experimental environments can both facilitate and restrict the development of more care-full and response-able relations between researchers and their experimental subjects. <br/

    The HPS electromagnetic calorimeter

    Get PDF
    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level
    corecore