3,945 research outputs found

    Radio Lobes of Pictor A: an X-ray spatially resolved Study

    Full text link
    A new XMM observation has made possible a detailed study of both lobes of the radio galaxy Pictor A. Their X-ray emission is of non thermal origin and due to Inverse Compton scattering of the microwave background photons by relativistic electrons in the lobes, as previously found. In both lobes, the equipartition magnetic field (Beq) is bigger than the Inverse Compton value (Bic), calculated from the radio and X-ray flux ratio. The Beq/Bic ratio never gets below 2, in spite of the large number of reasonable assumptions tested to calculate Beq, suggesting a lobe energetic dominated by particles. The X-ray data quality is good enough to allow a spatially resolved analysis. Our study shows that Bic varies through the lobes. It appears to increase behind the hot spots. On the contrary, a rather uniform distribution of the particles is observed. As a consequence, the radio flux density variation along the lobes appears to be mainly driven by magnetic field changes.Comment: 15 pages, 3 figures, ApJ accepte

    Unveiling radio halos in galaxy clusters in the LOFAR era

    Full text link
    Giant radio halos are mega-parsec scale synchrotron sources detected in a fraction of massive and merging galaxy clusters. Radio halos provide one of the most important pieces of evidence for non-thermal components in large scale structure. Statistics of their properties can be used to discriminate among various models for their origin. Therefore, theoretical predictions of the occurrence of radio halos are important as several new radio telescopes are about to begin to survey the sky at low frequencies with unprecedented sensitivity. In this paper we carry out Monte Carlo simulations to model the formation and evolution of radio halos in a cosmological framework. We extend previous works on the statistical properties of radio halos in the context of the turbulent re-acceleration model. First we compute the fraction of galaxy clusters that show radio halos and derive the luminosity function of radio halos. Then, we derive differential and integrated number count distributions of radio halos at low radio frequencies with the main goal to explore the potential of the upcoming LOFAR surveys. By restricting to the case of clusters at redshifts <0.6, we find that the planned LOFAR all sky survey at 120 MHz is expected to detect about 350 giant radio halos. About half of these halos have spectral indices larger than 1.9 and substantially brighten at lower frequencies. If detected they will allow for a confirmation that turbulence accelerates the emitting particles. We expect that also commissioning surveys, such as MSSS, have the potential to detect about 60 radio halos in clusters of the ROSAT Brightest Cluster Sample and its extension (eBCS). These surveys will allow us to constrain how the rate of formation of radio halos in these clusters depends on cluster mass.Comment: 12 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    Is the Sunyaev-Zeldovich effect responsible for the observed steepening in the spectrum of the Coma radio halo ?

    Full text link
    The spectrum of the radio halo in the Coma cluster is measured over almost two decades in frequency. The current radio data show a steepening of the spectrum at higher frequencies, which has implications for models of the radio halo origin. There is an on-going debate on the possibility that the observed steepening is not intrinsic to the emitted radiation, but is instead caused by the SZ effect. Recently, the Planck satellite measured the SZ signal and its spatial distribution in the Coma cluster allowing to test this hypothesis. Using the Planck results, we calculated the modification of the radio halo spectrum by the SZ effect in three different ways. With the first two methods we measured the SZ-decrement within the aperture radii used for flux measurements of the halo at the different frequencies. First we adopted the global compilation of data from Thierbach et al. and a reference aperture radius consistent with those used by the various authors. Second we used the available brightness profiles of the halo at different frequencies to derive the spectrum within two fixed apertures, and derived the SZ-decrement using these apertures. As a third method we used the quasi-linear correlation between the y and the radio-halo brightness at 330 MHz discovered by Planck to derive the modification of the radio spectrum by the SZ-decrement in a way that is almost independent of the adopted aperture radius. We found that the spectral modification induced by the SZ-decrement is 4-5 times smaller than that necessary to explain the observed steepening. Consequently a break or cut-off in the spectrum of the emitting electrons is necessary to explain current data. We also show that, if a steepening is absent from the emitted spectrum, future deep observations at 5 GHz with single dishes are expected to measure a halo flux in a 40 arcmin radius that would be 7-8 times higher than currently seen.Comment: 8 pages, 6 figures, accepted in Astronomy and Astrophysics (date of acceptance 19/08/2013

    Radio Halos From Simulations And Hadronic Models II: The Scaling Relations of Radio Halos

    Full text link
    We use results from a constrained, cosmological MHD simulation of the Local Universe to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from star-burst driven, galactic outflows. We evaluate three models, where we choose different normalizations for the Cosmic Ray proton population within clusters. Similar to our previous analysis of the Coma cluster (Donnert et al. 2010), the radial profile and the morphological properties of observed radio halos can not be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models, however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavored to reproduce the large scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of Ī³\gamma-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in Ī³\gamma-ray emission, emphasizing that large scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters

    A high resolution view of the jet termination shock in a hot spot of the nearby radio galaxy Pictor A: implications for X-ray models of radio galaxy hot spots

    Full text link
    Images made with the VLBA have resolved the region in a nearby radio galaxy, Pictor A, where the relativistic jet that originates at the nucleus terminates in an interaction with the intergalactic medium, a so-called radio galaxy hot spot. This image provides the highest spatial resolution view of such an object to date (16 pc), more than three times better than previous VLBI observations of similar objects. The north-west Pictor A hot spot is resolved into a complex set of compact components, seen to coincide with the bright part of the hot spot imaged at arcsecond-scale resolution with the VLA. In addition to a comparison with VLA data, we compare our VLBA results with data from the HST and Chandra telescopes, as well as new Spitzer data. The presence of pc-scale components in the hot spot, identifying regions containing strong shocks in the fluid flow, leads us to explore the suggestion that they represent sites of synchrotron X-ray production, contributing to the integrated X-ray flux of the hot spot, along with X-rays from synchrotron self-Compton scattering. This scenario provides a natural explanation for the radio morphology of the hot spot and its integrated X-ray emission, leading to very different predictions for the higher energy X-ray spectrum compared to previous studies. From the sizes of the individual pc-scale components and their angular spread, we estimate that the jet width at the hot spot is in the range 70 - 700 pc, which is comparable to similar estimates in PKS 2153-69, 3C 205, and 4C 41.17. The lower limit in this range arises from the suggestion that the jet may dither in its direction as it passes through hot spot backflow material close to the jet termination point, creating a "dentist drill" effect on the inside of a cavity 700 pc in diameter.Comment: Accepted by the Astronomical Journal. 35 pages, 6 figure

    Chirped pulse Raman amplification in plasma: high gain measurements

    Get PDF
    High power short pulse lasers are usually based on chirped pulse amplification (CPA), where a frequency chirped and temporarily stretched ``seed'' pulse is amplified by a broad-bandwidth solid state medium, which is usually pumped by a monochromatic ``pump'' laser. Here, we demonstrate the feasibility of using chirped pulse Raman amplification (CPRA) as a means of amplifying short pulses in plasma. In this scheme, a short seed pulse is amplified by a stretched and chirped pump pulse through Raman backscattering in a plasma channel. Unlike conventional CPA, each spectral component of the seed is amplified at different longitudinal positions determined by the resonance of the seed, pump and plasma wave, which excites a density echelon that acts as a "chirped'" mirror and simultaneously backscatters and compresses the pump. Experimental evidence shows that it has potential as an ultra-broad bandwidth linear amplifier which dispenses with the need for large compressor gratings

    The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98

    Full text link
    The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is reported. In two exposures on the target, faint diffuse X-ray emission associated with the radio lobes was significantly detected, together with a bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is (4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern lobes are reproduced by a single power law model modified by the Galactic absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively. These indices are consistent with that of the radio synchrotron spectrum, 1.73 +- 0.01 The luminosity of the northern and southern lobes are measured to be 8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1, respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is interpreted as an inverse-Compton emission, produced when the synchrotron-emitting energetic electrons in the lobes scatter off the cosmic microwave background photons. The magnetic field in the lobes is calculated to be about 1.7 \mu G, which is about 2.5 times lower than the value estimated under the minimum energy condition. The energy density of the electrons is inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical Journa

    Chandra detection of the radio and optical double hot spot of 3C 351

    Get PDF
    In this letter we report a Chandra X-ray detection of the double northern hot spot of the radio quasar 3C 351. The hot spot has also been observed in the optical with the Hubble Space Telescope (R-band) and with the 3.5m. Telescopio Nazionale Galileo (B-band). The radio-to-optical and X-ray spectra are interpreted as the results of the synchrotron and synchrotron-self-Compton (SSC) mechanisms, respectively, with hot-spot magnetic field strengths ~3 times smaller than the equipartition values. In the framework of shock acceleration theory, we show that the requirement for such a relatively small field strength is in agreement with the fitted synchrotron spectral models and with the sizes of the hot spots. Finally, we show that the combination of a lower magnetic field strength with the high frequencies of the synchrotron cut-off in the fitted synchrotron spectra provides strong evidence for electron acceleration in the hot spots.Comment: 16 pag. + 2 .PS figures (fig.2 color), ApJ Letter in pres

    Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis

    Get PDF
    We present an extensive synthetic observational analysis of numerically- simulated radio galaxies designed to explore the effectiveness of conventional observational analyses at recovering physical source properties. These are the first numerical simulations with sufficient physical detail to allow such a study. The present paper focuses on extraction of magnetic field properties from nonthermal intensity information. Synchrotron and inverse-Compton intensities provided meaningful information about distributions and strengths of magnetic fields, although considerable care was called for. Correlations between radio and X-ray surface brightness correctly revealed useful dynamical relationships between particles and fields. Magnetic field strength estimates derived from the ratio of X-ray to radio intensity were mostly within about a factor of two of the RMS field strength along a given line of sight. When emissions along a given line of sight were dominated by regions close to the minimum energy/equipartition condition, the field strengths derived from the standard power-law-spectrum minimum energy calculation were also reasonably close to actual field strengths, except when spectral aging was evident. Otherwise, biases in the minimum- energy magnetic field estimation mirrored actual differences from equipartition. The ratio of the inverse-Compton magnetic field to the minimum-energy magnetic field provided a rough measure of the actual total energy in particles and fields in most instances, within an order of magnitude. This may provide a practical limit to the accuracy with which one may be able to establish the internal energy density or pressure of optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2 February 1, 200

    Deep LOFAR 150 MHz imaging of the Bo\"otes field: Unveiling the faint low-frequency sky

    Get PDF
    We have conducted a deep survey (with a central rms of 55Ī¼Jy55\mu\textrm{Jy}) with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bo\"otes field, with an angular resolution of 3.98ā€²ā€²Ć—6.45ā€²ā€²3.98^{''}\times6.45^{''}, and obtained a sample of 10091 radio sources (5Ļƒ5\sigma limit) over an area of 20ā€…deg220\:\textrm{deg}^{2}. The astrometry and flux scale accuracy of our source catalog is investigated. The resolution bias, incompleteness and other systematic effects that could affect our source counts are discussed and accounted for. The derived 150 MHz source counts present a flattening below sub-mJy flux densities, that is in agreement with previous results from high- and low- frequency surveys. This flattening has been argued to be due to an increasing contribution of star-forming galaxies and faint active galactic nuclei. Additionally, we use our observations to evaluate the contribution of cosmic variance to the scatter in source counts measurements. The latter is achieved by dividing our Bo\"otes mosaic into 10 non-overlapping circular sectors, each one with an approximate area of 2ā€…deg2.2\:\textrm{deg}^{2}. The counts in each sector are computed in the same way as done for the entire mosaic. By comparing the induced scatter with that of counts obtained from depth observations scaled to 150MHz, we find that the 1Ļƒ1\sigma scatter due to cosmic variance is larger than the Poissonian errors of the source counts, and it may explain the dispersion from previously reported depth source counts at flux densities S<1ā€‰mJyS<1\,\textrm{mJy}. This work demonstrates the feasibility of achieving deep radio imaging at low-frequencies with LOFAR.Comment: A\&A in press. 15 pages, 16 figure
    • ā€¦
    corecore