5,699 research outputs found

    HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2<z<4.6?

    Get PDF
    The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain the source of the hard ionizing continuum that powers the HeII emission. We have assembled a sample of 277 galaxies with a high quality spectroscopic redshift at 2<z<4.6 from the VVDS survey, and we have identified 39 HeII1640A emitters. We study their spectral properties, measuring the fluxes, equivalent widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show HeII in emission, with rest frame equivalent widths EW0~1-7A, equally distributed between galaxies with Lya in emission or in absorption. We find 11 high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13 high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and an additional 12 possible HeII emitters. The properties of the individual broad emitters are in agreement with expectations from a W-R model. On the contrary, the properties of the narrow emitters are not compatible with such model, neither with predictions of gravitational cooling radiation produced by gas accretion. Rather, we find that the EW of the narrow HeII line emitters are in agreement with expectations for a PopIII star formation, if the episode of star formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1 only is enough to sustain the observed HeII flux. We conclude that narrow HeII emitters are either powered by the ionizing flux from a stellar population rare at z~0 but much more common at z~3, or by PopIII star formation. As proposed by Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value predicted by Tornatore et al. (2007).Comment: accepted for publication in A&

    Quantum baker maps with controlled-NOT coupling

    Full text link
    The characteristic stretching and squeezing of chaotic motion is linearized within the finite number of phase space domains which subdivide a classical baker map. Tensor products of such maps are also chaotic, but a more interesting generalized baker map arises if the stacking orders for the factor maps are allowed to interact. These maps are readily quantized, in such a way that the stacking interaction is entirely attributed to primary qubits in each map, if each subsystem has power-of-two Hilbert space dimension. We here study the particular example of two baker maps that interact via a controlled-not interaction. Numerical evidence indicates that the control subspace becomes an ideal Markovian environment for the target map in the limit of large Hilbert space dimension.Comment: 8 page

    Hypersensitivity and chaos signatures in the quantum baker's maps

    Get PDF
    Classical chaotic systems are distinguished by their sensitive dependence on initial conditions. The absence of this property in quantum systems has lead to a number of proposals for perturbation-based characterizations of quantum chaos, including linear growth of entropy, exponential decay of fidelity, and hypersensitivity to perturbation. All of these accurately predict chaos in the classical limit, but it is not clear that they behave the same far from the classical realm. We investigate the dynamics of a family of quantizations of the baker's map, which range from a highly entangling unitary transformation to an essentially trivial shift map. Linear entropy growth and fidelity decay are exhibited by this entire family of maps, but hypersensitivity distinguishes between the simple dynamics of the trivial shift map and the more complicated dynamics of the other quantizations. This conclusion is supported by an analytical argument for short times and numerical evidence at later times.Comment: 32 pages, 6 figure

    Quantum trajectories for Brownian motion

    Get PDF
    We present the stochastic Schroedinger equation for the dynamics of a quantum particle coupled to a high temperature environment and apply it the dynamics of a driven, damped, nonlinear quantum oscillator. Apart from an initial slip on the environmental memory time scale, in the mean, our result recovers the solution of the known non-Lindblad quantum Brownian motion master equation. A remarkable feature of our approach is its localization property: individual quantum trajectories remain localized wave packets for all times, even for the classically chaotic system considered here, the localization being stronger the smaller \hbar.Comment: 4 pages, 3 eps figure

    Models of Star-Planet Magnetic Interaction

    Full text link
    Magnetic interactions between a planet and its environment are known to lead to phenomena such as aurorae and shocks in the solar system. The large number of close-in exoplanets that were discovered triggered a renewed interest in magnetic interactions in star-planet systems. Multiple other magnetic effects were then unveiled, such as planet inflation or heating, planet migration, planetary material escape, and even modification of the host star properties. We review here the recent efforts in modelling and understanding magnetic interactions between stars and planets in the context of compact systems. We first provide simple estimates of the effects of magnetic interactions and then detail analytical and numerical models for different representative scenarii. We finally lay out a series of future developments that are needed today to better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of Exoplanet

    Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC

    Get PDF
    The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an "inverted" slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.Comment: Corresponds to published versio

    Photometric Redshifts of Galaxies in COSMOS

    Get PDF
    We measure photometric redshifts and spectral types for galaxies in the COSMOS survey. We use template fitting technique combined with luminosity function priors and with the option to simultaneously estimate dust extinction (i.e. E(B-V)) for each galaxy.Our estimated redshifts are accurate to i<25 and z~1.2. Using simulations with sampling and noise characteristics similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios and the number of bands used. From the simulations we find that the ratio of derived 95% confidence interval in the redshift probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. We compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1.2 from zCOSMOS. Considering different scenarios, depending on using prior, no prior and/or extinction, we compare the photometric and spectroscopic redshifts for this sample. This corresponds to an rms scatter of 0.031, with a small number of outliers (<2.5%). We also find good agreement (rms=0.10) between photometric and spectroscopic redshifts for Type II AGNs. We compare results from our photometric redshift procedure with three other independent codes and find them in excellent agreement. We show preliminary results, based on photometric redshifts for the entire COSMOS sample (to i < 25 mag.).Comment: 38 pages; 14 Figures; 7 Tables. Accepted for Publication in ApJS. COSMOS Special Issu

    Open system dynamics with non-Markovian quantum trajectories

    Full text link
    A non-Markovian stochastic Schroedinger equation for a quantum system coupled to an environment of harmonic oscillators is presented. Its solutions, when averaged over the noise, reproduce the standard reduced density operator without any approximation. We illustrate the power of this approach with several examples, including exponentially decaying bath correlations and extreme non-Markovian cases, where the `environment' consists of only a single oscillator. The latter case shows the decay and revival of a `Schroedinger cat' state. For strong coupling to a dissipative environment with memory, the asymptotic state can be reached in a finite time. Our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.Comment: 4 pages RevTeX, 3 figure
    corecore