

THE STRUCTURE OF THE -PHASE OF NIOBIUM DEUTERIUM

著者	Brun T.O., Kajitani T., Mueller M.H.,				
	Westlake D.G., Makenas B.J., Birnbaum H.K.				
journal or	AIP Conference Proceedings				
publication title					
volume	53				
page range	397-399				
year	1979				
URL	http://hdl.handle.net/10097/51586				

doi: 10.1063/1.31811

T. O. Brun, T. Kajitani, M. H. Mueller, D. G. Westlake Argonne National Laboratory*, Argonne, IL 60439

and

B.J. Makenas and H. K. Birnbaum University of Illinois, Urbana, IL 61801

ABSTRACT

Lambda phases of NbD_x $(0.78 \le x \le 0.84)$, which exist below 220 K, have been studied by neutron and electron diffraction. The observed modulated structure can be described as a deuteron concentration wave in a slightly distorted bcc Nb matrix. The wave-vector is parallel to <001>, and the wavelength varies from 16.0 Å to 21.4 A, increasing with increasing concentration.

INTRODUCTION

The phase diagram for NbD is very similar to the phase diagram for NbH_x, shown in Fig. 1. The λ -phase structures are based on the β -phase structure at NbH_x(D_x). The β -phase is an orthorhombic structure with dimensions $\sqrt{2}$ a x $\sqrt{2}$ a x a, where a (= 3.43 Å) is the lattice constant of the bcc structure formed by Nb in NbH_x(D_x). In the remainder of this paper, the atomic position as well as the reciprocal lattice will be in reference to the bcc structure. The Nb atoms in the orthorhombic β -phase cell form a f.c.o. lattice with 4 Nb in the f.c.o. basis positions, (000), $\binom{1212}{222}$, $\binom{-1212}{22}$, (010). The arrangement of the 4D atoms in the orthorhombic cell is shown in Fig. 2. For β_1 , the D atoms are $(0, \frac{1}{2}, \frac{1}{4})$, $\binom{-1}{2}, 1, \frac{1}{4}$, and (0, 3/2, 3/4), and for β_2 , $(0, \frac{1}{2}, 3/4)$, $(-\frac{1}{2}, 1, 3/4)$, $(\frac{1}{2}, 1, \frac{1}{4})$ and $(0, 3/2, \frac{1}{4})$. For the β -phase, the two sets of positions, β_1 and β_2 , correspond to a different origin of the orthorhombic lattice. In other words, β_1 and β_2 are related by a $\binom{1}{22}$ 0 translation.

RESULTS AND DISCUSSION

The discussion presented here is based on single crystal neutron diffraction,² electron diffraction² and recent polycrystalline neutron diffraction measurements. In Fig. 3, top half, the results of a neutron diffraction scan are shown for a polycrystalline sample of NbD_{0.834} at room temperature. The (110) and $\binom{11}{221}$ reflections are shown, the latter being the characteristic β -reflection. When the sample is cooled below the β - λ transition, the β reflection disappears and two satellites are formed at $\binom{11}{221}-\delta$ and $\binom{11}{221}-\delta$ (see bottom half of Fig. 3). This characteristic of the λ phases can be interpreted by stacking β_1 and β_2 unit cells as building blocks in the <001> direction as shown schematically in Fig. 2. The β_1 - β_2 boundary layer is denoted by ζ_1 in Fig. 2, and the detailed analysis of the D positions in this

*Work supported by the U. S. Department of Energy.

ISSN:0094-243X/79/530397-03\$1.50 Copyright 1979 American Institute of Physics

layer is beyond the scope of this paper. However, in Fig. 2 we have assumed that only 2 of the 4 positions $(\frac{1}{2}, 1, \frac{1}{4})$, $(\frac{1}{2}, 1, 3/4),$ $(0, 3/2, \frac{1}{2}),$ (0,3/2,3/4) are occupied in the boundary layer.If 3 or 4 positions were occupied, the D-D distances would become unreasonably small.³ The ratio, D/Nb, is also shown in Fig. 2 for the different layers. If one assumes for the moment that the ζ layer con-

tains 4 D atoms, then the interpretation of the λ -phase diffraction pattern is simplified; for example a structure consisting of n β_1 layers followed by n β_2 would not have a $\binom{1}{2}21$ β -reflection but instead have satellites at $\binom{1}{2}21 \pm 1/2n$.

The results of our investigations are presented in Table I. We have observed four λ phases in NbD by neutron diffraction, 3 of these have been observed in NbH_x by electron diffraction. The values of δ show that the structures have long range modulation. For an idealized λ -structure, consisting of n β_1 , n β_2 , m ζ_1 and m ζ_2 layers, it is easy to show that the concentration x is equal to $1 - \delta$, in agreement

with the results in Table I. Due to the ζ layers in the λ -structure, the structure can also be described as a deuteron concentration wave. In another paper presented at this conference a model is discussed that predicts the existence of the concentration waves.

TABLE	I
-------	---

System		x	δ	1 - δ	Comments
NbD _x	single crystal	0.77	0.214	0.786	Mix $\lambda - \varepsilon$, lower λ -phase boundary
"	17 TT	0.85			No λ , upper λ phase boundary
NDD	polycrystal	0.792	0.200	0.800	-
н х	1 11	0.815	0.180	0.820	
11	н	0.834	0.160	0.840	
NDH _x	thin foil		0.21		Electron diffrac-
			0.18		tion
			0.16		
			0.10		

REFERENCES

- T. Schober and H. Wenzl in "The Systems NbH(D), TaH(D), VH(D): Structures, Phase Diagrams Morphologies, Methods of Preparation", Kernforschungsanlage Julich GmbH, Institut fur Festkorperforschung (1977).
- B. Makenas, H. K. Birnbaum, T. Brun and M. H. Mueller, Bull. Am. Phys. Soc. <u>23</u>, 235 (1978).
- A. C. Switendick, International Meeting on Hydrogen in Metals, Münster, March 6-9, 1979.