11 research outputs found
Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure.
SummaryAfter neural tube closure, amniotic fluid (AF) captured inside the neural tube forms the nascent cerebrospinal fluid (CSF). Neuroepithelial stem cells contact CSF-filled ventricles, proliferate, and differentiate to form the mammalian brain, while neurogenic placodes, which generate cranial sensory neurons, remain in contact with the AF. Using in vivo ultrasound imaging, we quantified the expansion of the embryonic ventricular-CSF space from its inception. We developed tools to obtain pure AF and nascent CSF, before and after neural tube closure, and to define how the AF and CSF proteomes diverge during mouse development. Using embryonic neural explants, we demonstrate that age-matched fluids promote Sox2-positive neurogenic identity in developing forebrain and olfactory epithelia. Nascent CSF also stimulates SOX2-positive self-renewal of forebrain progenitor cells, some of which is attributable to LIFR signaling. Our Resource should facilitate the investigation of fluid-tissue interactions during this highly vulnerable stage of early brain development
Recommended from our members
Serotonin Receptors in the Medulla Oblongata of the Human Fetus and Infant: The Analytic Approach of the International Safe Passage Study
The Safe Passage Study is an international, prospective study of approximately 12 000 pregnancies to determine the effects of prenatal alcohol exposure (PAE) upon stillbirth and the sudden infant death syndrome (SIDS). A key objective of the study is to elucidate adverse effects of PAE upon binding to serotonin (5-HT) 1A receptors in brainstem homeostatic networks postulated to be abnormal in unexplained stillbirth and/or SIDS. We undertook a feasibility assessment of 5-HT1A receptor binding using autoradiography in the medulla oblongata (6 nuclei in 27 cases). 5-HT1A binding was compared to a reference dataset from the San Diego medical examiner’s system. There was no adverse effect of postmortem interval ≤100 h. The distribution and quantitated values of 5-HT1A binding in Safe Passage Study cases were essentially identical to those in the reference dataset, and virtually identical between stillbirths and live born fetal cases in grossly non-macerated tissues. The pattern of binding was present at mid-gestation with dramatic changes in binding levels in the medullary 5-HT nuclei over the second half of gestation; there was a plateau at lower levels in the neonatal period and into infancy. This study demonstrates feasibility of 5-HT1A binding analysis in the medulla in the Safe Passage Study
Lack of Association of the Serotonin Transporter Polymorphism with the Sudden Infant Death Syndrome in the San Diego Dataset
Dysfunction of medullary serotonin (5-HT)-mediated respiratory and autonomic function is postulated to underlie the pathogenesis of the majority of sudden infant death syndrome (SIDS) cases. Several studies have reported an increased frequency of the LL genotype and L allele of the 5-HT transporter (5-HTT) gene promoter polymorphism (5-HTTLPR), which is associated with increased transcriptional activity and 5-HT transport in vitro, in SIDS cases compared with controls. These findings raise the possibility that this polymorphism contributes to or exacerbates existing medullary 5-HT dysfunction in SIDS. In this study, we tested the hypothesis that the frequency of LL genotype and L allele are higher in 179 SIDS cases compared with 139 controls of multiple ethnicities in the San Diego SIDS Dataset. We observed no significant association of genotype or allele with SIDS cases either in the total cohort or on stratification for ethnicity. These observations do not support previous findings that the L allele and/or LL genotype of the 5-HTTLPR are associated with SIDS