139 research outputs found
Flexible memory controls sperm competition responses to male Drosophila melanogaster
Males of many species use social cues to predict sperm competition (SC) and tailor their reproductive strategies, such as ejaculate or behavioural investment, accordingly. While these plastic strategies are widespread, the underlying mechanisms remain largely unknown. Plastic behaviour requires individuals to learn and memorize cues associated with environmental change before using this experience to modify behaviour. Drosophila melanogaster respond to an increase in SC threat by extending mating duration after exposure to a rival male. This behaviour shows lag times between environmental change and behavioural response suggestive of acquisition and loss of memory. Considering olfaction is important for a male's ability to assess the SC environment, we hypothesized that an olfactory learning and memory pathway may play a key role in controlling this plastic behaviour. We assessed the role of genes and brain structures known to be involved in learning and memory. We show that SC responses depend on anaesthesia-sensitive memory, specifically the genes rut and amn. We also show that the γ lobes of the mushroom bodies are integral to the control of plastic mating behaviour. These results reveal the genetic and neural properties required for reacting to changes in the SC environment
Fitness consequences of redundant cues of competition in male Drosophila melanogaster
Phenotypic plasticity can allow animals to adapt their behavior, such as their mating effort, to their social and sexual environment. However, this relies on the individual receiving accurate and reliable cues of the environmental conditions. This can be achieved via the receipt of multimodal cues, which may provide redundancy and robustness. Male Drosophila melanogaster detect presence of rivals via combinations of any two or more redundant cue components (sound, smell, and touch) and respond by extending their subsequent mating duration, which is associated with higher reproductive success. Although alternative combinations of cues of rival presence have previously been found to elicit equivalent increases in mating duration and offspring production, their redundancy in securing success under sperm competition has not previously been tested. Here, we explicitly test this by exposing male D. melanogaster to alternative combinations of rival cues, and examine reproductive success in both the presence and absence of sperm competition. The results supported previous findings of redundancy of cues in terms of behavioral responses. However, there was no evidence of reproductive benefits accrued by extending mating duration in response to rivals. The lack of identifiable fitness benefits of longer mating under these conditions, both in the presence and absence of sperm competition, contrasted with some previous results, but could be explained by (a) damage sustained from aggressive interactions with rivals leading to reduced ability to increase ejaculate investment, (b) presence of features of the social environment, such as male and female mating status, that obscured the fitness benefits of longer mating, and (c) decoupling of behavioral investment with fitness benefits
Social competition stimulates cognitive performance in a sex-specific manner
Social interactions are thought to be a critical driver in the evolution of cognitive ability. Cooperative interactions, such as pair bonding, rather than competitive interactions have been largely implicated in the evolution of increased cognition. This is despite competition traditionally being a very strong driver of trait evolution. Males of many species track changes in their social environment and alter their reproductive strategies in response to anticipated levels of competition. We predict this to be cognitively challenging. Using a Drosophila melanogaster model, we are able to distinguish between the effects of a competitive environment versus generic social contact by exposing flies to same-sex same-species competition versus different species partners, shown to present non-competitive contacts. Males increase olfactory learning/memory and visual memory after exposure to conspecific males only, a pattern echoed by increased expression of synaptic genes and an increased need for sleep. For females, largely not affected by mating competition, the opposite pattern was seen. The results indicate that specific social contacts dependent on sex, not simply generic social stimulation, may be an important evolutionary driver for cognitive ability in fruit flies
Interactive effects of social environment, age and sex on immune responses in Drosophila melanogaster
Social environments have been shown to have multiple effects on individual immune responses. For example, increased social contact might signal greater infection risk and prompt a prophylactic upregulation of immunity. This differential investment of resources may in part explain why social environments affect ageing and lifespan. Our previous work using Drosophila melanogaster showed that single-sex social contact reduced lifespan for both sexes. Here, we assess how social interactions (isolation or contact) affect susceptibility to infection, phagocytotic activity and expression of a subset of immune and stress related genes in young and old flies of both sexes. Social contact had a neutral, or even improved, effect on post-infection lifespan in older flies and reduced the expression of stress response genes in females, however it reduced phagocytotic activity. Overall the effects of social environment were complex and largely subtle, and do not indicate a consistent effect. Together, these findings indicate that social contact in D. melanogaster does not have a predictable impact on immune responses and does not simply trade-off immune investment with lifespan
Comparison of alternative approaches for analysing multi-level RNA-seq data
RNA sequencing (RNA-seq) is widely used for RNA quantification in the environmental, biological and medical sciences. It enables the description of genome-wide patterns of expression and the identification of regulatory interactions and networks. The aim of RNA-seq data analyses is to achieve rigorous quantification of genes/transcripts to allow a reliable prediction of differential expression (DE), despite variation in levels of noise and inherent biases in sequencing data. This can be especially challenging for datasets in which gene expression differences are subtle, as in the behavioural transcriptomics test dataset from D. melanogaster that we used here. We investigated the power of existing approaches for quality checking mRNA-seq data and explored additional, quantitative quality checks. To accommodate nested, multi-level experimental designs, we incorporated sample layout into our analyses. We employed a subsampling without replacement-based normalization and an identification of DE that accounted for the hierarchy and amplitude of effect sizes within samples, then evaluated the resulting differential expression call in comparison to existing approaches. In a final step to test for broader applicability, we applied our approaches to a published set of H. sapiens mRNA-seq samples, The dataset-tailored methods improved sample comparability and delivered a robust prediction of subtle gene expression changes. The proposed approaches have the potential to improve key steps in the analysis of RNA-seq data by incorporating the structure and characteristics of biological experiments
Sex-specific effects of social isolation on ageing in Drosophila melanogaster
Social environments can have a major impact on ageing profiles in many animals. However, such patterns in variation in ageing and their underlying mechanisms are not well understood, particularly because both social contact and isolation can be stressful. Here, we use Drosophila melanogaster fruitflies to examine sex-specific effects of social contact. We kept flies in isolation versus same-sex pairing throughout life, and measured actuarial (lifespan) and functional senescence (declines in climbing ability). To investigate underlying mechanisms, we determined whether an immune stress (wounding) interacted with effects of social contact, and assessed behaviours that could contribute to differences in ageing rates. Pairing reduced lifespan for both sexes, but the effect was greater for males. In contrast, for females pairing reduced the rate of decline in climbing ability, whereas for males, pairing caused more rapid declines with age. Wounding reduced lifespan for both sexes, but doubled the negative effect of pairing on male lifespan. We found no evidence that these effects are driven by behavioural interactions. These findings suggest that males and females are differentially sensitive to social contact, that environmental stressors can impact actuarial and functional senescence differently, and that these effects can interact with environmental stressors, such as immune challenges
Individual variation in early-life telomere length and survival in a wild mammal
Individual variation in survival probability due to differential responses to early‐life environmental conditions is important in the evolution of life‐histories and senescence. A biomarker allowing quantification of such individual variation, and which links early‐life environmental conditions with survival by providing a measure of conditions experienced, is telomere length. Here, we examined telomere dynamics among 24 cohorts of European badgers (Meles meles). We found a complex cross‐sectional relationship between telomere length and age, with no apparent loss over the first 29 months, but with both decreases and increases in telomere length at older ages. Overall, we found low within‐individual consistency in telomere length across individual lifetimes. Importantly, we also observed increases in telomere length within individuals, which could not be explained by measurement error alone. We found no significant sex differences in telomere length, and provide evidence that early‐life telomere length predicts lifespan. However, while early‐life telomere length predicted survival to adulthood (≥1 year old), early‐life telomere length did not predict adult survival probability. Furthermore, adult telomere length did not predict survival to the subsequent year. These results show that the relationship between early‐life telomere length and lifespan was driven by conditions in early‐life, where early‐life telomere length varied strongly among cohorts. Our data provide evidence for associations between early‐life telomere length and individual life‐history, and highlight the dynamics of telomere length across individual lifetimes due to individuals experiencing different early‐life environments
The Impact of Climate Change on Fertility
Rising global temperatures are threatening biodiversity. Studies on the impact of temperature on natural populations usually use lethal or viability thresholds, termed the ‘critical thermal limit’ (CTL). However, this overlooks important sublethal impacts of temperature that could affect species’ persistence. Here we discuss a critical but overlooked trait: fertility, which can deteriorate at temperatures less severe than an organism’s lethal limit. We argue that studies examining the ecological and evolutionary impacts of climate change should consider the ‘thermal fertility limit’ (TFL) of species; we propose that a framework for the design of TFL studies across taxa be developed. Given the importance of fertility for population persistence, understanding how climate change affects TFLs is vital for the assessment of future biodiversity impacts
Sensory perception of rivals has trait-dependent effects on plasticity in Drosophila melanogaster
The social environment has myriad effects on individuals, altering reproduction, immune function, cognition, and aging. Phenotypic plasticity enables animals to respond to heterogeneous environments such as the social environment but requires that they assess those environments accurately. It has been suggested that combinations of sensory cues allow animals to respond rapidly and accurately to changeable environments, but it is unclear whether the same sensory inputs are required in all traits that respond to a particular environmental cue. Drosophila melanogaster males, in the presence of rival males, exhibit a consistent behavioral response by extending mating duration. However, exposure to a rival also results in a reduction in their lifespan, a phenomenon interpreted as a trade-off associated with sperm competition strategies. D. melanogaster perceive their rivals by using multiple sensory cues; interfering with at least two olfactory, auditory, or tactile cues eliminates the extension of mating duration. Here, we assessed whether these same cues were implicated in the lifespan reduction. Removal of combinations of auditory and olfactory cues removed the extended mating duration response to a rival, as previously found. However, we found that these manipulations did not alter the reduction in lifespan of males exposed to rivals or induce any changes in activity patterns, grooming, or male–male aggression. Therefore, our analysis suggests that lifespan reduction is not a cost associated with the behavioral responses to sperm competition. Moreover, this highlights the trait-specific nature of the mechanisms underlying plasticity in response to the same environmental conditions
- …