21 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Radiative lifetime of the A 2Π1/2 state in RaF with relevance to laser cooling

    No full text
    International audienceThe radiative lifetime of the AA2Π1/2^2 \Pi_{1/2} (v=0) state in radium monofluoride (RaF) is measured to be 35(1) ns. The lifetime of this state is of relevance to the laser cooling of RaF via the optically closed AA2Π1/2←X^2 \Pi_{1/2} \leftarrow X2Σ1/2^2\Sigma_{1/2} transition, which is an advantageous aspect of the molecule for its promise as a probe for new physics. The radiative decay rate Γ=2.9(2)×107\Gamma = 2.9(2)\times 10^7 s−1^{-1} is extracted using the lifetime, which determines the natural linewidth of 4.6(3) MHz and the maximum photon scattering rate of 4.1(3)×1064.1(3)\times 10^6 s−1^{-1} of the laser-cooling transition. RaF is thus found to have a comparable photon-scattering rate with other laser-cooled molecules, while thanks to its highly diagonal Franck-Condon matrix it is expected to scatter an order of magnitude more photons when using 3 cooling lasers before it decays to a dark state. The lifetime measurement in RaF is benchmarked by measuring the lifetime of the 8P3/28P_{3/2} state in Fr to be 83(3) ns, in agreement with literature

    Radiative lifetime of the A 2Π1/2 state in RaF with relevance to laser cooling

    No full text
    The radiative lifetime of the AA2Π1/2^2 \Pi_{1/2} (v=0) state in radium monofluoride (RaF) is measured to be 35(1) ns. The lifetime of this state and the related decay rate Γ=2.86(8)×107\Gamma = 2.86(8) \times 10^7s−1s^{-1} are of relevance to the laser cooling of RaF via the optically closed AA2Π1/2←X^2 \Pi_{1/2} \leftarrow X2Σ1/2^2\Sigma_{1/2} transition, which makes the molecule a promising probe to search for new physics. RaF is found to have a comparable photon-scattering rate to homoelectronic laser-coolable molecules. Thanks to its highly diagonal Franck-Condon matrix, it is expected to scatter an order of magnitude more photons than other molecules when using just 3 cooling lasers, before it decays to a dark state. The lifetime measurement in RaF is benchmarked by measuring the lifetime of the 8P3/28P_{3/2} state in Fr to be 83(3) ns, in agreement with literature

    Pinning down electron correlations in RaF via spectroscopy of excited states

    No full text
    International audienceWe report the spectroscopy of 11 electronic states in the radioactive molecule radium monofluoride (RaF). The observed excitation energies are compared with state-of-the-art relativistic Fock-space coupled cluster (FS-RCC) calculations, which achieve an agreement of >99.71% (within ~8 meV) for all states. High-order electron correlation and quantum electrodynamics corrections are found to be important at all energies. Establishing the accuracy of calculations is an important step towards high-precision studies of these molecules, which are proposed for sensitive searches of physics beyond the Standard Model
    corecore