766 research outputs found

    Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i

    Get PDF
    Modelling studies were performed with the multiphase mechanism RACM- MIM2ext/CAPRAM 3.0i to investigate the tropospheric multiphase chemistry in deli- quesced particles and non-precipitating clouds using the SPACCIM model framework. Simulations using a non-permanent cloud scenario were carried out for two different environmental conditions focusing on the multiphase chemistry of oxidants and other linked chemical subsystems. Model results were analysed by time-resolved reaction flux analyses allowing advanced interpretations. The model shows significant effects of multiphase chemical interactions on the tropospheric budget of gas-phase oxidants and organic com- pounds. In-cloud gas-phase OH radical concentration reductions of about 90 % and 75 % were modelled for urban and remote conditions, respectively. The reduced in-cloud gas- phase oxidation budget increases the tropospheric residence time of organic trace gases by up to about 30 %. Aqueous-phase oxidations of methylglyoxal and 1,4-butenedial were identified as important OH radical sinks under polluted conditions. The model revealed that the organic C3 and C4 chemistry contributes with about 38 %/48 % and 8 %/9 % consid- erably to the urban and remote cloud / aqueous particle OH sinks. Furthermore, the simulations clearly implicate the potential role of deliquescent particles to operate as a reactive chemical medium due to an efficient TMI/HOx,y chemical processing including e.g. an effective in-situ formation of OH radicals. Considerable chemical differences be- tween deliquescent particles and cloud droplets, e.g. a circa 2 times more efficient daytime iron processing in the urban deliquescent particles, were identified. The in-cloud oxidation of methylglyoxal and its oxidation products is identified as efficient sink for NO3 radicals in the aqueous phase

    Molecular traffic control in single-file networks with fast catalysts

    Get PDF
    As a model for molecular traffic control (MTC) we investigate the diffusion of hard core particles in crossed single-file systems. We consider a square lattice of single-files being connected to external reservoirs. The (vertical) alpha-channels, carrying only A-particles, are connected to reservoirs with constant density ra. B-particles move along the (horizontal) beta-channels, which are connected to reservoirs of density rB. We allow the irreversible transition A to B at intersections. We are interested in the stationary density profile in the alpha- and beta- channels, which is the distribution of the occupation probabilities over the lattice. We calculate the stationary currents of the system and show that for sufficiently long channels the currents (as a function of the reservoir densities) show in the limit of large transition rates non analytic behavior. The results obtained by direct solution of the master equation are verified by kinetic Monte Carlo simulations.Comment: 11 page

    Products, coproducts and singular value decomposition

    Full text link
    Products and coproducts may be recognized as morphisms in a monoidal tensor category of vector spaces. To gain invariant data of these morphisms, we can use singular value decomposition which attaches singular values, ie generalized eigenvalues, to these maps. We show, for the case of Grassmann and Clifford products, that twist maps significantly alter these data reducing degeneracies. Since non group like coproducts give rise to non classical behavior of the algebra of functions, ie make them noncommutative, we hope to be able to learn more about such geometries. Remarkably the coproduct for positive singular values of eigenvectors in AA yields directly corresponding eigenvectors in A\otimes A.Comment: 17 pages, three eps-figure

    Cultivable microbiota associated with Aurelia aurita and Mnemiopsis leidyi

    Get PDF
    The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host-specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS-interfering activities. They interfered with the acyl-homoserine lactone (AHL)-based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non-model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota

    A quark model analysis of the charge symmetry breaking in nuclear force

    Full text link
    In order to investigate the charge symmetry breaking (CSB) in the short range part of the nuclear force, we calculate the difference of the masses of the neutron and the proton, ΔM\Delta {\rm M}, the difference of the scattering lengths of the p-p and n-n scatterings, Δa\Delta a, and the difference of the analyzing power of the proton and the neutron in the n-p scattering, ΔA(θ)\Delta A(\theta), by a quark model. In the present model the sources of CSB are the mass difference of the up and down quarks and the electromagnetic interaction. We investigate how much each of them contributes to ΔM\Delta {\rm M}, Δa\Delta a and ΔA(θ)\Delta A(\theta). It is found that the contribution of CSB of the short range part in the nuclear force is large enough to explain the observed ΔA(θ)\Delta A(\theta), while Δa\Delta a is rather underestimated.Comment: 26 pages,6 figure

    Differences in the microbiota of native and non-indigenous gelatinous zooplankton organisms in a low saline environment

    Get PDF
    Highlights: • Non-indigenous species (NIS) are increasingly recognized as a matter of concern. • The microbiome of native and NIS gelatinous zooplankton organisms are compared. • Next generation sequencing confirms sign. Species specific microbiome differences. • Indicator OTUs include bacteria which contain known pathogenic strains. • Microbiome monitoring of NIS should be considered for aquaculture risk assessments. Abstract: The translocation of non-indigenous species (NIS) around the world, especially in marine systems, is increasingly being recognized as a matter of concern. Species translocations have been shown to lead to wide ranging changes in food web structure and functioning. In addition to the direct effects of NIS, they could facilitate the accumulation or translocation of bacteria as part of their microbiomes. The Baltic Sea harbours many non-indigenous species, with most recent detection of the jellyfish Blackfordia virginica and the comb jelly Mnemiopsis leidyi in the low saline southwestern Baltic Sea. In this study, we used a multidisciplinary approach and investigated three gelatinous zooplankton species that co-occur in the same environment and feed on similar zooplankton food sources but show different histories of origin. The aim was to conduct a comparative microbiome analysis of indigenous and non-indigenous gelatinous zooplankton species in the low-saline southwestern Baltic Sea. Next-generation 16S rRNA marker gene sequencing of the V1/V2 region was employed to study the bacterial microbiome compositions. All tested species showed significant differences in their microbiome compositions (one way ANOSIM, R = 1, P < 0.008) with dissimilarities ranging from 85 to 92%. The indigenous jellyfish Aurelia aurita showed the highest bacterial operational taxonomic unit (OTU) richness. The overall differentiation between microbiomes was driven by eight indicator OTUs, which included Mycoplasma and Vibrio species. These bacteria can be problematic, as they include known pathogenic strains that are relevant to human health and aquaculture activities. Our results suggest that the impact assessment of NIS should consider potential pathogenic bacteria, enriched in the environment due to invasion, as potential risks to aquaculture activities

    Statistical properties of genealogical trees

    Get PDF
    We analyse the statistical properties of genealogical trees in a neutral model of a closed population with sexual reproduction and non-overlapping generations. By reconstructing the genealogy of an individual from the population evolution, we measure the distribution of ancestors appearing more than once in a given tree. After a transient time, the probability of repetition follows, up to a rescaling, a stationary distribution which we calculate both numerically and analytically. This distribution exhibits a universal shape with a non-trivial power law which can be understood by an exact, though simple, renormalization calculation. Some real data on human genealogy illustrate the problem, which is relevant to the study of the real degree of diversity in closed interbreeding communities.Comment: Accepted for publication in Phys. Rev. Let
    • …
    corecore