research

Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i

Abstract

Modelling studies were performed with the multiphase mechanism RACM- MIM2ext/CAPRAM 3.0i to investigate the tropospheric multiphase chemistry in deli- quesced particles and non-precipitating clouds using the SPACCIM model framework. Simulations using a non-permanent cloud scenario were carried out for two different environmental conditions focusing on the multiphase chemistry of oxidants and other linked chemical subsystems. Model results were analysed by time-resolved reaction flux analyses allowing advanced interpretations. The model shows significant effects of multiphase chemical interactions on the tropospheric budget of gas-phase oxidants and organic com- pounds. In-cloud gas-phase OH radical concentration reductions of about 90 % and 75 % were modelled for urban and remote conditions, respectively. The reduced in-cloud gas- phase oxidation budget increases the tropospheric residence time of organic trace gases by up to about 30 %. Aqueous-phase oxidations of methylglyoxal and 1,4-butenedial were identified as important OH radical sinks under polluted conditions. The model revealed that the organic C3 and C4 chemistry contributes with about 38 %/48 % and 8 %/9 % consid- erably to the urban and remote cloud / aqueous particle OH sinks. Furthermore, the simulations clearly implicate the potential role of deliquescent particles to operate as a reactive chemical medium due to an efficient TMI/HOx,y chemical processing including e.g. an effective in-situ formation of OH radicals. Considerable chemical differences be- tween deliquescent particles and cloud droplets, e.g. a circa 2 times more efficient daytime iron processing in the urban deliquescent particles, were identified. The in-cloud oxidation of methylglyoxal and its oxidation products is identified as efficient sink for NO3 radicals in the aqueous phase

    Similar works