research

Products, coproducts and singular value decomposition

Abstract

Products and coproducts may be recognized as morphisms in a monoidal tensor category of vector spaces. To gain invariant data of these morphisms, we can use singular value decomposition which attaches singular values, ie generalized eigenvalues, to these maps. We show, for the case of Grassmann and Clifford products, that twist maps significantly alter these data reducing degeneracies. Since non group like coproducts give rise to non classical behavior of the algebra of functions, ie make them noncommutative, we hope to be able to learn more about such geometries. Remarkably the coproduct for positive singular values of eigenvectors in AA yields directly corresponding eigenvectors in A\otimes A.Comment: 17 pages, three eps-figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019