3,152 research outputs found
Turnover and activity-dependent transcriptional control of NompC in the Drosophila ear.
Across their lives, biological sensors maintain near-constant functional outputs despite countless exogenous and endogenous perturbations. This sensory homeostasis is the product of multiple dynamic equilibria, the breakdown of which contributes to age-related decline. The mechanisms of homeostatic maintenance, however, are still poorly understood. The ears of vertebrates and insects are characterized by exquisite sensitivities but also by marked functional vulnerabilities. Being under the permanent load of thermal and acoustic noise, auditory transducer channels exemplify the homeostatic challenge. We show that (1) NompC-dependent mechanotransducers in the ear of the fruit fly Drosophila melanogaster undergo continual replacement with estimated turnover times of 9.1Â hr; (2) a de novo synthesis of NompC can restore transducer function in the adult ears of congenitally hearing-impaired flies; (3) key components of the auditory transduction chain, including NompC, are under activity-dependent transcriptional control, likely forming a transducer-operated mechanosensory gain control system that extends beyond hearing organs
Growth of non-polar InGaN quantum dots with an underlying AlN/GaN distributed Bragg reflector by metal-organic vapour phase epitaxy
Non-polar (11-20) InGaN quantum dots (QDs) have been grown using a modified droplet epitaxy method by metal-organic vapour phase epitaxy on top of a 15-period AlN/GaN distributed Bragg reflector (DBR) on a-plane GaN pseudo-substrate prepared by epitaxial lateral overgrowth (ELOG), in which the QDs are located at the centre of a ca. 180 nm GaN layer. The AlN/GaN DBR has shown a peak reflectivity of ~80% at a wavelength of ~454 nm with a 49 nm wide, flat stop-band. Variations in layer thicknesses observed by cross-sectional scanning transmission electron microscopy have been identified as the main source of degradation of the DBR reflectivity. The presence of trenches due to incomplete coalescence of the ELOG template and the formation of cracks due to relaxation of tensile strain during the DBR growth may distort the DBR and further reduce the reflectivity. The DBR top surface is very smooth and does not have a detrimental effect on the subsequent growth of QDs. Enhanced single QD emission at 20 K was observed in cathodoluminescence.This work has been funded by the EPSRC (Grant No. EP/H047816/1 and EP/J001627/1).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.spmi.2015.10.00
Fiber Acoustic Waveguide : A Sensor Candidate
Sensor development plays a key role in the field of nondestructive evaluation and process control. The annual fiber optic sensor market alone is a multimillion dollar business (1). Acoustic waves are about five orders of magnitude slower than optical waves and can also be guided in cladded glass fibers, similar to optical fibers, with low loss and low dispersion (2–7). Fiber acoustic waveguides are believed to be a very attractive and basic component for further sensor development (8). In this paper a brief theoretical description of a weakly guiding acoustic fiber (7) is given. The material selection criteria for the core and the cladding of the fiber guide, the properties of single-mode operation, and some sensing mechanisms for temperature and pressure variations are discussed. The acoustic waveguide with a liquid core is also considered
Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold
Nano-cathodoluminescence (Nano-CL) reveals optical emission from individual InGaN quantum wells for applications in optoelectronic devices. We show the luminescent intensity decays over time with exposure to the electron beam for energies between 80 and 200 keV. Measurements of the CL intensity over time show an exponential decline in intensity, which we propose is due to the formation of nitrogen Frenkel defects. The measured CL damage decreases with reductions in the electron accelerating voltage and we suggest that the electron induced structural damage may be suppressed below the proposed damage threshold. The electron beam induced damage leads to a non-radiative region that extends over the measured minority carrier diffusion length. Nano-CL may thus serve as a powerful technique to study III-nitride optoelectronics.This work was carried out with the support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/NO17927/1 and EP/J003603/1. R. Oliver acknowledges funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) ERC grant agreement number 279361 (MACONS) and the from the Royal Academy of Engineers/Leverhulme Trust senior research fellowship
Sex and species specific hearing mechanisms in mosquito flagellar ears
Hearing is essential for the courtship of one of the major carriers of human disease, the mosquito. Males locate females through flight-tone recognition and both sexes engage in mid-air acoustic communications, which can take place within swarms containing thousands of individuals. Despite the importance of hearing for mosquitoes, its mechanisms are still largely unclear. We here report a multilevel analysis of auditory function across three disease-transmitting mosquitoes (Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus). All ears tested display transduction-dependent power gain. Quantitative analyses of mechanotransducer function reveal sex-specific and species-specific variations, including male-specific, highly sensitive transducer populations. Systemic blocks of neurotransmission result in large-amplitude oscillations only in male flagellar receivers, indicating sexually dimorphic auditory gain control mechanisms. Our findings identify modifications of auditory function as a key feature in mosquito evolution. We propose that intra-swarm communication has been a driving force behind the observed sex-specific and species-specific diversity
Biotic and abiotic retention, recycling and remineralization of metals in the ocean
Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals
A single-photon transistor using nano-scale surface plasmons
It is well known that light quanta (photons) can interact with each other in
nonlinear media, much like massive particles do, but in practice these
interactions are usually very weak. Here we describe a novel approach to
realize strong nonlinear interactions at the single-photon level. Our method
makes use of recently demonstrated efficient coupling between individual
optical emitters and tightly confined, propagating surface plasmon excitations
on conducting nanowires. We show that this system can act as a nonlinear
two-photon switch for incident photons propagating along the nanowire, which
can be coherently controlled using quantum optical techniques. As a novel
application, we discuss how the interaction can be tailored to create a
single-photon transistor, where the presence or absence of a single incident
photon in a ``gate'' field is sufficient to completely control the propagation
of subsequent ``signal'' photons.Comment: 20 pages, 4 figure
Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth
Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations
Mammographic density and risk of breast cancer according to tumor characteristics and mode of detection: a Spanish population-based case-control study
It is not clear whether high mammographic density (MD) is equally associated with all subtypes of breast cancer (BC). We investigated the association between MD and subsequent BC, considering invasiveness, means of detection, pathologic subtype, and the time elapsed since mammographic exploration and BC diagnosis.
METHODS:
BC cases occurring in the population of women who attended screening from 1997 through 2004 in Navarre, a Spanish region with a fully consolidated screening program, were identified via record linkage with the Navarre Cancer Registry (n = 1,172). Information was extracted from the records of their first attendance at screening in that period. For each case, we randomly selected four controls, matched by screening round, year of birth, and place of residence. Cases were classified according to invasiveness (ductal carcinoma in situ (DCIS) versus invasive tumors), pathologic subtype (considering hormonal receptors and HER2), and type of diagnosis (screen-detected versus interval cases). MD was evaluated by a single, experienced radiologist by using a semiquantitative scale. Data on BC risk factors were obtained by the screening program in the corresponding round. The association between MD and tumor subtype was assessed by using conditional logistic regression.
RESULTS:
MD was clearly associated with subsequent BC. The odds ratio (OR) for the highest MD category (MD >75%) compared with the reference category (MD <10%) was similar for DCIS (OR = 3.47; 95% CI = 1.46 to 8.27) and invasive tumors (OR = 2.95; 95% CI = 2.01 to 4.35). The excess risk was particularly high for interval cases (OR = 7.72; 95% CI = 4.02 to 14.81) in comparison with screened detected tumors (OR = 2.17; 95% CI = 1.40 to 3.36). Sensitivity analyses excluding interval cases diagnosed in the first year after MD assessment or immediately after an early recall to screening yielded similar results. No differences were seen regarding pathologic subtypes. The excess risk associated with MD persisted for at least 7 to 8 years after mammographic exploration.
CONCLUSIONS:
Our results confirm that MD is an important risk factor for all types of breast cancer. High breast density strongly increases the risk of developing an interval tumor, and this excess risk is not completely explained by a possible masking effect.This work was supported by research grants from Eli Lilly and Company (EV1 1082/08); and the Spanish Federation of Breast Cancer Patients (Federación Española de Cáncer de Mama) (FECMA 485 EPY 1170-10).S
A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus
Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus
- …