39 research outputs found
Fractal Quasar Clouds
This paper examines whether a fractal cloud geometry can reproduce the emission-line spectra of active galactic nuclei (AGNs). The nature of the emitting clouds is unknown, but many current models invoke various types of magnetohydrodynamic confinement. Recent studies have argued that a fractal distribution of clouds, in which subsets of clouds occur in self-similar hierarchies, is a consequence of such confinement. Whatever the confinement mechanism, fractal cloud geometries are found in nature and may be present in AGNs too. We first outline how a fractal geometry can apply at the center of a luminous quasar. Scaling laws are derived that establish the number of hierarchies, typical sizes, column densities, and densities. Photoionization simulations are used to predict the integrated spectrum from the ensemble. Direct comparison with observations establishes all model parameters so that the final predictions are fully constrained. Theory suggests that denser clouds might form in regions of higher turbulence and that larger turbulence results in a wider dispersion of physical gas densities. An increase in turbulence is expected deeper within the gravitational potential of the black hole, resulting in a density gradient. We mimic this density gradient by employing two sets of clouds with identical fractal structuring but different densities. The low-density clouds have a lower column density and large covering factor similar to the warm absorber. The high-density clouds have high column density and smaller covering factor similar to the broad-line region (BLR). A fractal geometry can simultaneously reproduce the covering factor, density, column density, BLR emission-line strengths, and BLR line ratios as inferred from observation. Absorption properties of the model are consistent with the integrated line-of-sight column density as determined from observations of X-ray absorption, and when scaled to a Seyfert galaxy, the model is consistent with the number of multiple UV absorption components observed in them. Rough estimates show that about one in 100 of the galaxies that harbor a supermassive black hole will show activity, assuming that material needs to be within its EUV continuum emitting radius for activity to occur. This is close to the observationally determined duty cycle. Stochastic feeding of the central engine of fractal cloud distribution of material may therefore account for continuum variations and long-term activity. The total cloud mass is much larger than that measured in ionized gas alone since the clouds are mutually self-shielding
Dissipative Heating and Quasar Emission Lines
Recent observations reveal that the profiles of emission lines of active galactic nuclei are too smooth to be produced by discrete thermal (T~104 K) clouds. The lines may also be too bright to be powered by the continuum unless a large covering factor or additional heating mechanisms are present. We have been investigating one possible explanation of these observations, namely, that the clouds are turbulent. This paper focuses on observational effects caused by dissipation of turbulent energy into cloud heating. We find that internal heating can explain these observations. Clouds energized by both the ionizing continuum and dissipative heating are more efficient line emitters than those powered by the continuum alone. The turbulent velocity field broadens the emission contributions of individual line-emitting clouds so that they overlap, smoothing the line profile. We have broad success in reproducing the observed emission-line spectrum with a turbulent velocity of ~200 km s-1, a cloud density of 1010 cm-3, and a column density of 1022 cm-2. Dissipative turbulence selectively increases intensities of low-ionization lines, making it possible to obtain the standard\u27\u27 broad-line region line spectrum with a column density ~10 times smaller than usually assumed. The presence of dissipative heating could explain two long-standing puzzles in quasar emission-line spectra, namely, the smooth line profiles and the energetics of the spectrum
Observational Constraints on the Internal Velocity Field of Quasar Emission-Line Clouds
This paper addresses the question, what does the spectrum of a typical quasar reveal about the velocity structure within its broad emission line region clouds? Turbulent (i.e., nonthermal) broadening of spectral lines can be due to macroturbulence or microturbulence. Microturbulence affects line formation and the emitted spectrum and may be required to account for the observed smoothness of the line profiles. The velocity field is crucial since it addresses the fundamental nature of the individual clouds and the global structure of the active galactic nuclei (AGNs) environment. For example, stellar winds or magnetically confined blobs might be highly microturbulent, requiring only a few internally broadened clouds to account for the observed smooth line profiles in AGNs. On the other hand, clouds in pressure confinement would have only thermal line widths, requiring many clouds moving in a large-scale velocity field to achieve the same effect. There are almost no previous studies of the effects of microturbulence, even though the observation that AGN lines are very smooth seems to require additional line broadening mechanisms. We present a broad range of photoionization calculations in which the microturbulence is varied between 0 km s-1 (thermal broadening only) and 104 km s-1, an upper limit set by the observed line width. In general, the line spectrum grows stronger relative to the continuum as turbulence increases. This is because lines more easily escape due to diminished line optical depth and permitted lines are selectively strengthened by continuum pumping. Comparisons with observations reveal two cases. The predicted relative intensities of the majority of the strong lines in typical objects do not depend strongly on the microturbulent field. A turbulence of ~103 km s-1 does not violate observations, but is not required either. However, in the sharp-lined quasars, some lines require a turbulence of the same order as the observed line width to reproduce the spectrum
He II Reverberation in Active Galactic Nucleus Spectra
This paper compares the observed reverberation response lags and the intensity ratios of the broad-line region (BLR) emission lines He II λ1640, He II λ4686, and C IV λ1549 with predictions. Published observations indicate that the He II λ1640 lag is 3 times shorter than the lags of He II λ4686 or C IV λ1549. Diverse models, however, do not reproduce this observation. Extensive improved numerical simulations of the hydrogenic isoelectronic sequence emission show that the He II spectrum remains especially simple, even in the central regions of a luminous quasar. Line trapping never builds up a significant population of excited states, and the emissivities of the two He II lines are close to simple case B predictions. Using improved He II calculations, we computed the lags of distributions of clouds concentrated in approximate radius-dependent pressure laws as well as the lags of locally optimally emitting cloud (LOC) distributions. In addition, the effect on lags and intensities due to anisotropic beaming of line emission and observer orientation angle with respect to an obscuring disk is estimated. Comparing our results to observations, we do not see how any distribution of clouds can produce intrinsic He II λ1640 and He II λ4686 emission with substantially different responses, nor do we see how He II λ1640 can vary on a substantially shorter timescale than C IV λ1549. Our models suggest that in fact the observed He II λ1640 reverberation timescale is shorter than expected rather than the observed He II λ4686 timescale being longer than expected. We discuss a possible explanation
Luminosity indicators in dusty photoionized environments
The luminosity of the central source in ionizing radiation is an essential
parameter in a photoionized environment, and one of the most fundamental
physical quantities one can measure. We outline a method of determining
luminosity for any emission-line region using only infrared data. In dusty
environments, grains compete with hydrogen in absorbing continuum radiation.
Grains produce infrared emission, and hydrogen produces recombination lines. We
have computed a very large variety of photoionization models, using ranges of
abundances, grain mixtures, ionizing continua, densities, and ionization
parameters. The conditions were appropriate for such diverse objects as H II
regions, planetary nebulae, starburst galaxies, and the narrow and broad line
regions of active nuclei. The ratio of the total thermal grain emission
relative to H (IR/H) is the primary indicator of whether the
cloud behaves as a classical Str\"{o}mgren sphere (a hydrogen-bounded nebula)
or whether grains absorb most of the incident continuum (a dust-bounded
nebula). We find two global limits: when infrared recombination
lines determine the source luminosity in ionizing photons; when
the grains act as a bolometer to measure the luminosity.Comment: 12 pages 3 figures. Accepted ASP Sept.9
Dynamics of Warm-Absorbing Gas in Seyfert Galaxies: NGC 5548
A hydromagnetic (MHD) wind from a clumpy molecular accretion disk is invoked
to explain observations of warm absorbing (WA) gas in UVX from Sy galaxies.
This paper focuses on two issues: (1) compatibility of kinematics and dynamics
of MHD wind with the observed properties of WAs; and (2) relationship between
the UVX absorptions. We provide an in-depth comparison between the MHD model
and the Sy 1 galaxy NGC 5548, which at high spectral resolution exhibits a
number of discrete UV absorption components. We find that: (1) the total column
densities of Ovii, Oviii and H, are reproduced by constraining the UV ion
column densities of Civ and Nv in each component to lie within a factor of 2 of
their observed values and optimizing over the possible sets of component
ionization states and Civ column densities; (2) the WA exists in the outer part
of the wind and is not a continuation of the flow in the BLR; and (3) the WA
extends in radial and polar directions and is ionization-stratified. X-ray
absorption is found to be heavily biased towards smaller r, and UV absorption
originates at larger distances from the central continuum source. We show that
the discrete absorption components along the line-of-sight are intrinsically
clumpy. Density differences between kinematic components result in a range of
ionization and recombination timescales. We further test the applicability of
the MHD wind to WAs in general, by constructing a quasi-continuous flow model,
and extending it to arbitrary aspect angles. We estimate the fraction of Sy 1s
having detectable WAs with larger Ovii column density than Oviii, and the range
of total H column densities. We also find that the ratio of Ovii to Oviii
optical depths can serve as a new diagnostic of AGN aspect angle.Comment: Latex, 8 postscript figures. Astrophysical Journal, 536, June 10, in
pres
Spitzer Space Telescope Measurements of Dust Reverberation Lags in the Seyfert 1 Galaxy NGC 6418
We present results from a fifteen-month campaign of high-cadence (~ 3 days)
mid-infrared Spitzer and optical (B and V ) monitoring of the Seyfert 1 galaxy
NGC 6418, with the objective of determining the characteristic size of the
dusty torus in this active galactic nucleus (AGN). We find that the 3.6 m
and 4.5 m flux variations lag behind those of the optical continuum by
days and days, respectively. We
report a cross-correlation time lag between the 4.5 m and 3.6 m flux
of days. The lags indicate that the dust emitting at 3.6
m and 4.5 m is located at a distance of approximately 1 light-month
(~ 0.03 pc) from the source of the AGN UV-optical continuum. The reverberation
radii are consistent with the inferred lower limit to the sublimation radius
for pure graphite grains at 1800 K, but smaller by a factor of ~ 2 than the
corresponding lower limit for silicate grains; this is similar to what has been
found for near-infrared (K-band) lags in other AGN. The 3.6 and 4.5 m
reverberation radii fall above the K-band
size-luminosity relationship by factors and ,
respectively, while the 4.5 m reverberation radius is only 27% larger than
the 3.6 m radius. This is broadly consistent with clumpy torus models, in
which individual optically thick clouds emit strongly over a broad wavelength
range.Comment: 13 pages, 9 figure
Dynamics of Broad-Emission Line Region in NGC 5548: Hydromagnetic Wind Model versus Observations
We analyze the results of long-term observations of broad-line region (BLR)
in the Sy1 galaxy NGC 5548 and provide a critical comparison with the
predictions of a hydromagnetically-driven outflow model of Emmering, Blandford
and Shlosman. This model was used to generate a time series of CIV line
profiles that have responded to a time varying continuum. The model includes
cloud emission anisotropy, cloud obscuration, a CLOUDY-generated emissivity
function and a narrow-line component used to generate the line profiles, and is
driven with continuum input based on the monitoring campaigns of NGC 5548. The
line strengths, profiles and lags are compared with the observations. It
reproduces the basic features of CIV line variability in this AGN without
varying the model parameters. The best fit model provides the effective size,
the dominant geometry, the emissivity distribution and the 3D velocity field of
the CIV BLR and constrains the mass of the central BH. The inner part of the
wind appears to be responsible for the anisotropically emitted CIV line, while
its outer part remains dusty and molecular, thus having similar spectral
characteristics to a molecular torus, although its dynamics is fundamentally
different. In addition, our model predicts a differential response across the
CIV line profile, producing a red-side-first response in the mid-wings followed
by the blue mid-wing and by the line core. Based on the comparison of data and
model cross-correlation functions and 1D and 2D transfer functions, we find
that the rotating outflow model is compatible with observations of the BLR in
NGC 5548.Comment: 50 pages, TeX, 14 figures. Also available as compressed postscript at
ftp://gradj.pa.uky.edu/shlosman/ngc5548 . Accepted for publication in Ap
Disk-Jet Connection in the Radio Galaxy 3C 120
We present the results of extensive multi-frequency monitoring of the radio
galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as
well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of
observation, significant dips in the X-ray light curve are followed by
ejections of bright superluminal knots in the VLBA images. Consistent with
this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the
radio variations. This implies that, in this radio galaxy, the radiative state
of accretion disk plus corona system, where the X-rays are produced, has a
direct effect on the events in the jet, where the radio emission originates.
The X-ray power spectral density of 3C 120 shows a break, with steeper slope at
shorter timescale and the break timescale is commensurate with the mass of the
central black hole based on observations of Seyfert galaxies and black hole
X-ray binaries. These findings provide support for the paradigm that black hole
X-ray binaries and active galactic nuclei are fundamentally similar systems,
with characteristic time and size scales linearly proportional to the mass of
the central black hole. The X-ray and optical variations are strongly
correlated in 3C 120, which implies that the optical emission in this object
arises from the same general region as the X-rays, i.e., in the accretion
disk-corona system. We numerically model multi-wavelength light curves of 3C
120 from such a system with the optical-UV emission produced in the disk and
the X-rays generated by scattering of thermal photons by hot electrons in the
corona. From the comparison of the temporal properties of the model light
curves to that of the observed variability, we constrain the physical size of
the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21
figures, 2 table
\u3cem\u3eSpitzer Space Telescope\u3c/em\u3e Measurements of Dust Reverberation Lags in the Seyfert 1 Galaxy NGC 6418
We present results from a 15 month campaign of high-cadence (~3 days) mid-infrared Spitzer and optical (B and V) monitoring of the Seyfert 1 galaxy NGC 6418, with the objective of determining the characteristic size of the dusty torus in this active galactic nucleus (AGN). . . .
For the remainder of the abstract, please visit:
http://dx.doi.org/10.1088/0004-637X/801/2/12