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ABSTRACT
This paper examines whether a fractal cloud geometry can reproduce the emission-line spectra of

active galactic nuclei (AGNs). The nature of the emitting clouds is unknown, but many current models
invoke various types of magnetohydrodynamic conÐnement. Recent studies have argued that a fractal
distribution of clouds, in which subsets of clouds occur in self-similar hierarchies, is a consequence of
such conÐnement. Whatever the conÐnement mechanism, fractal cloud geometries are found in nature
and may be present in AGNs too. We Ðrst outline how a fractal geometry can apply at the center of a
luminous quasar. Scaling laws are derived that establish the number of hierarchies, typical sizes, column
densities, and densities. Photoionization simulations are used to predict the integrated spectrum from the
ensemble. Direct comparison with observations establishes all model parameters so that the Ðnal predic-
tions are fully constrained. Theory suggests that denser clouds might form in regions of higher turbu-
lence and that larger turbulence results in a wider dispersion of physical gas densities. An increase in
turbulence is expected deeper within the gravitational potential of the black hole, resulting in a density
gradient. We mimic this density gradient by employing two sets of clouds with identical fractal structur-
ing but di†erent densities. The low-density clouds have a lower column density and large covering factor
similar to the warm absorber. The high-density clouds have high column density and smaller covering
factor similar to the broad-line region (BLR). A fractal geometry can simultaneously reproduce the
covering factor, density, column density, BLR emission-line strengths, and BLR line ratios as inferred
from observation. Absorption properties of the model are consistent with the integrated line-of-sight
column density as determined from observations of X-ray absorption, and when scaled to a Seyfert
galaxy, the model is consistent with the number of multiple UV absorption components observed in
them. Rough estimates show that about one in 100 of the galaxies that harbor a supermassive black hole
will show activity, assuming that material needs to be within its EUV continuum emitting radius for
activity to occur. This is close to the observationally determined duty cycle. Stochastic feeding of the
central engine of fractal cloud distribution of material may therefore account for continuum variations
and long-term activity. The total cloud mass is much larger than that measured in ionized gas alone
since the clouds are mutually self-shielding.
galaxies : ISM È quasars : emission lines È quasars : general È radiation mechanisms : thermal

1. INTRODUCTION

The broad-line region (BLR) of quasars and other active
galactic nuclei (AGNs) are unresolved, and so their nature
cannot be directly determined. Many ideas have been pre-
sented, including magnetically conÐned blobs (Rees 1987),
winds above an accretion disk (Blandford & Payne 1982),
continuum radiation driven winds (Mathews 1986), the disk
itself (Collin-Sou†rin 1987), tails behind ablating stars
(Mathews 1983 ; Netzer & Alexander 1994), or Ðlaments
similar to those in the Crab Nebula (Davidson & Netzer
1979). No ab initio theory for the origin of these clouds is
now possible, so a semiempirical approach is taken, often
arguing by analogy with geometries encountered elsewhere
in nature. The approach taken in most work is to devise a
scenario for the presence of thermal matter, then compute
the emitted spectrum, and Ðnally compare this with obser-
vations to see whether conÑicts arise.

In this paper we investigate whether fractal cloud dis-
tributions might describe the gas distribution in the center
of a massive active galaxy. Observations of clouds in the
interstellar medium (ISM) of our Galaxy (Elmegreen 1997 ;
Elmegreen & Falgarone 1996 ; Heithausen et al. 1998) show
that gas clusters in a fractal geometry extending over to 9
orders of magnitude in mass.

Theoretical work has argued that fractal clustering is a
natural consequence of MHD turbulence. Numerical ex-

periments simulating the propagation of MHD waves
through a gas show that clouds form and dissipate over a
few dynamical crossing times (Elmegreen 1999 ; Mac Low &
Ossenkopf 2000). Merging turbulent Ñows create temporary
regions of enhanced density (clouds). Because clouds are
constantly forming or dissipating, they are always present,
removing the need for a conÐnement mechanism to main-
tain them. The numerical experiments further show that,
contrary to expectation, higher levels of MHD-caused
microturbulence produce structures with higher gas particle
density. Structures with lower gas particle density, however,
can also exist in the same environment.

Rees (1987) argued that BLR clouds are conÐned by a
magnetic Ðeld in energy equipartition, and Bottor† &
Ferland (2000) argued that MHD waves would result and
could explain why line proÐles are observed to be so
smooth. The theory described above would argue that a
fractal geometry must then result. In any case it is inter-
esting to see whether a fractal geometry can reproduce the
observed AGN spectrum.

Here we apply the fractal structure observed in the ISM
but with length scales and gas densities appropriate for the
BLR and the inner part of the narrow-line region (NLR) in
AGNs. The choice of fractal geometry means that, from the
largest to the smallest scales, clustering forms structures
within structures that are self-similar. Thus, if any two
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structures are compared, the substructures in each will
appear similar, even if the two structures have di†erent
sizes. The self-similar structure is repeated, at ever smaller
scales, to the point that each BLR cloud is a collection
of overlapping constant density clumps. These smallest
clumps we will call ““ cloud elements,ÏÏ and for model simpli-
city the cloud elements are assumed to be spherical.

Several criteria must be satisÐed for the model to be con-
sistent with observations. (1) It should reproduce the ob-
served BLR line intensity ratios and line equivalent widths.
(2) The column density of individual BLR cloud elements
should be of the order of cm~2 (Davidson &NBLR D 1023
Netzer 1979). (3) Since the observed EW of the Lya line is
about 10% of that produced for full coverage of the contin-
uum source, the ensemble should have a covering fraction
(the fraction of the sky covered by BLR clouds, as seen by
the continuum source) of about 10% (Peterson 1997). (4)
The geometry should be spatially extended to account for
observed range in BLR line variability. (5) Low-density
clouds need to cover about 50% of the sky to be consistent
with the statistics of warm absorbing (WA) gas in AGNs
(Reynolds 1997). (6) The cumulative column density of the
low-density clouds should be of the order of NWA\
1021.5 cm~2 (Reynolds 1997 ; George et al. 1998).

In ° 2 we describe the geometric details of a fractal dis-
tribution of BLR clouds. First, the basics of fractal clus-
tering are reviewed. To be deÐnite and to provide a visual
example, a speciÐc fractal distribution is illustrated and dis-
cussed. The average covering fraction of a fractal cloud
distribution is shown to be a linearly increasing function of
the integrated radius. The relative radius at which the
covering fraction is 10% determines the relative extent of
the BLR in the fractal. An estimate of the degree of cloud-
to-cloud obscuration is made.

In ° 3 general formulae describing the number, size,
column density, and mass of individual fractal clouds are
given. An absolute scale is set, following a discussion of the
quasar continuum. If the continuum is known, then the size
of the BLR and length scales for the substructures in the
fractal distribution are in turn set. The general formulae are
rewritten in terms of two parameters : (1) the volume-Ðlling
factor and (2) a geometric factor that describes the relative
scale in a fractal structure. A method for estimating the
covering factor is discussed, but its lengthy derivation is
diverted to an appendix. The parameters are constrained by
observation of WA gas in AGNs. This reduces the solution
to only one free parameter, the volume-Ðlling factor. Set-
ting one more constraint, namely, that the column density
(N [cm~2]) of a BLR cloud element be of the order of
log (N)\ 23.0, Ðxes a solution with no unconstrained free
parameters. We note that in this model, a cloud element is
the smallest structural unit of the fractal but the most
important for reprocessing the AGN continuum into BLR
emission lines. We will see, however, that the cloud elements
strongly cluster together into larger, more distinct struc-
tures. To avoid confusion, we will always refer to the larger,
more distinct structures as ““ clouds ÏÏ and the smaller struc-
tures as ““ cloud elements.ÏÏ

In ° 4 the emission-line properties of the fractal BLR
model are calculated and compared with observations. The
emission-line spectrum produced by clouds with a cumula-
tive covering fraction that is a linear function of spherical
radius (a constant di†erential covering fraction) and a
cumulative BLR covering factor of 0.1 are calculated. We

Ðnd that most of the bright observed lines or line blends are
within a factor of 2 of observation if the gas particle density
of the cloud elements in the BLR are D1010 cm~3, reinfor-
cing the assumption of the BLR gas particle density in °° 2
and 3. In ° 5 we discuss the plausibility of such a model as a
description of gas within a few parsecs of the AGN contin-
uum engine. Finally, our results are summarized in ° 6.

2. FRACTAL FUNDAMENTALS

The fractal structure that is applied in this paper is purely
a geometric model. It speciÐes, in a relative way, how struc-
tures of one length scale are related to another in terms of
number, size, and proximity to one another. While there are
indications, in both observation and simulation (Elmegreen
& Falgarone 1996 ; Elmegreen 1997, 1999), that the physical
mechanism that causes fractal structure is MHD turbu-
lence, the physical mechanism that produces the fractal
structure is left as an open question. As a result, the fractal
model does not ab initio specify physical characteristics of
the clouds such as their density, size (and therefore the
resulting column density), or the extent of their distribution
(e.g., the size of the BLR region). These must be constrained
by observation, which we do in later sections.

The structure of a fractal is deÐned by three dimension-
less parameters : the geometric factor (L [ 1.0), the multi-
plicity (N), and the maximum hierarchy (H). The geometric
factor L describes the relative size of the largest substruc-
ture within a structure. For example, if a structure has size
*X, the largest substructure within it will have size *XL ~1.
The multiplicity N deÐnes the number of substructures of
size *XL ~1 in a structure of size *X. The values L and N
are conveniently related to one another by the fractal
dimension (D) deÐned by

D\ log (N)
log (L )

. (1)

The value of D allows us to eliminate N by replacing it with
LD. Elmegreen & Falgarone (1996) found that the mean
value of D for the ISM is DB 2.3, and we adopt this value.
The maximum hierarchy H deÐnes how many levels
(hierarchies) of substructures there are from the largest scale
to the smallest scale. Thus,

LH\R max
S

, (2)

where is the characteristic maximum radius of theRmaxfractal distribution and S is the radius of a single cloud
element.

Between and S the size of a structure h hierarchiesRmaxlarger than S (or alternatively H[h hierarchies smaller than
is given byRmax)

R(h) \ SLh , (3)

where h ranges from 0 to H. Each structure contains N
substructures randomly distributed within it, and each sub-
structure contains N sub-substructures randomly distrib-
uted within them, until at the smallest substructure (h \ 1)
there are N cloud elements of size S. The total number of
cloud elements is therefore NH (or alternatively LDH), and
the total number of cloud elements within any substructure
of hierarchy h is LDh.

The cloud elements are not uniformly spread over the
volume of the BLR, so their mean number density depends



120 BOTTORFF & FERLAND Vol. 549

on the hierarchy h. Following Elmegreen (1997), the mean
number density of cloud elements in a structure of sizen

s
(h)

R(h) is

n
s
(h)\ 3

4nS3 L(D~3)h . (4)

Note that at the smallest scale corre-n
s
(0)\ 1/(4/3nS3),

sponding to one cloud element per unit volume of cloud
element. Further note that if D\ 3.0 then the number
density of cloud elements decreases with increasing struc-
ture size.

A simple fractal is illustrated in Figure 1a. The Ðgure
shows the two-dimensional projection onto a plane of a
fractal structure in three-dimensional space. The fractal
shown has D\ 2.3, L B 3.05, and H \ 3. In the Ðgure the
smallest spheres represent cloud elements. The value of L is
chosen because the number of substructures per structure is
an integer (LD B 3.052.3B 13), making it easy to illustrate
and describe. In addition, it is close to a Ðducially chosen
value of 3.0 and an observationally constrained value close
to 3.2 (see below). In principle, however, LD need not be an
integer. In such a case LD represents the average number of
structures per substructure.

The sphere in Figure 1a labeled 1 is a factor of 3.05 larger
than a cloud element and contains 13 cloud elements with
centers randomly distributed within the sphere. Likewise,
the sphere labeled 2 is a factor of 3.052 times larger than a
cloud element and contains the centers of 13 spheres of the
size labeled 1 randomly distributed within it. Finally the
largest sphere (labeled 3) is 3.053 times larger than a cloud
element and contains 13 spheres of the size labeled 2 ran-
domly distributed within it. The total number of cloud ele-
ments in the fractal structure is therefore 133\ 2197.

Using D\ 2.3 and L B 3.05, equation (4) becomes
Thus, the cloud element densityn

s
(h) \ 2.18~h(3/4nS3).

decreases with increasing h. Equation (4) somewhat over-
predicts the density of cloud elements at high values of h
because it does not take into account the fact that some
cloud elements can be outside of a substructure. For
example, the sphere labeled 2 has cloud elements within it
that exist outside of the sphere labeled 3. The equation,
however, is exact for h \ 1.

We note that the cloud element density is so high within
the sphere labeled 1 that cloud elements strongly overlap
one another in volume and projected area. This is not the
case, however, for the spheres labeled 2 and 3. Cloud ele-
ments in these overlap less, and their overall structure
appears clumpy with relatively more empty space between
clumps.

Small-scale clustering and obscuration are more clearly
illustrated in Figure 1b. The Ðgure shows a slice through the
center of the fractal structure in Figure 1a. The thickness of
the slice is taken to be one cloud element diameter. The
cloud elements in the slice produce varying degrees of
cloud-to-cloud obscuration in the structure. Three exam-
ples of obscuration are shown. The dotted-line pairs show
columns through the cloud having cross section 4S2. Cloud
elements with centers that fall within the volumes are shown
as Ðlled circles. Along the column labeled i there are four
cloud elements. If there were a continuum source to the
right of the Ðgure, the cloud element farthest to the right
(provided it is optically thick) would obscure the continuum
from the others. The column density through this path is
therefore roughly 4 times the column density of a single
cloud element. Because the elements are not connected,
however, they should not be considered as part of a single
cloud. Along the column labeled ii there are only two cloud

FIG. 1.È(a) Orthogonal projection of a randomly chosen three-dimensional fractal structure of hierarchy 3 on a plane. The circles labeled 1, 2, and 3 show
the relative sizes of successively larger structural elements. In this Ðgure each labeled circle is 3.05 times larger than the previous one. If this were a small part
of an AGN fractal cloud distribution, the smallest circles would correspond to ““ cloud elements.ÏÏ In this model there are about 13 cloud elements tightly
packed within the circle labeled 1. Because of the tight packing, we deÐne a ““ cloud ÏÏ to be a cluster of cloud elements one hierarchy larger than a cloud
element. (b) Thin slice through the center of the H \ 3 fractal. Three line-of-sight paths (dashed-line pairs) show varying degrees of obscuration from cloud
elements ( Ðlled circles). Note that the most dense regions are roughly the same size as circle 1 in (a).
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elements. These strongly overlap, but there are also cloud
elements just above and below the pair. The column labeled
ii must therefore cut the edge of a larger local structure, so
the two elements together are not representative of a cloud.
The column labeled iii, however, cuts through the center of
a distinct structure of closely packed cloud elements. Other
structures like it are also visible in the Ðgure and are
roughly L times the diameter of a cloud element.

The preceding discussion emphasizes the fact that the
clustering of cloud elements is greatest at the level h \ 1.
The volumes of individual cloud elements, within an h \ 1
substructure, overlap so much that their individuality
looses meaning. We therefore deÐne a ““ cloud ÏÏ to be a
structure one hierarchy higher than that of a cloud element.
Thus, a cloud has characteristic radius SL and mass
(4/3)nS3nkLD, where n is the hydrogen gas particle density of
a cloud element and k is the mean atomic weight of the gas
(here we take k B 1.4 amu).

Important cloud properties, from the standpoint of
photoionization considerations, are the cloud particle
density and column density. The average column density,
along an arbitrary center line through a cloud structure, is
LD times the expected column contribution of a single cloud
element along the line. Thus, we have

SNcloudT \ LD
P
0

s
n2JS2[ r2 4nrJ(SL )2[ r2

(4/3)n(SL )3 dr , (5)

where 4nr[(SL )2[ r2]1@2dr/(4/3)n(SL )3 is the probability
that a cloud element is within a perpendicular distance r
to r ] dr of the center line through the cloud and
n2(S2[ r2)1@2 is the column density contribution of a cloud
element to the center line. Equation (5) may be rewritten as

SNcloudT \ 2(SL )nI(L ) , (6)

where 2(SL )n is the column density through the center of a
sphere of radius SL with uniform density n and

I(L )\ 3LD~3
P
0

1
J1 [ w2

S
1 [

Aw
L
B2

wdw (7)

is the correction for the fractal structure. The integration
is straightforward but tedious. A value of L B 3.0, for
example, gives I(L )B 0.45, a little less than half that if the
cloud were a solid sphere.

In equations (5) and (6) the expression n is the density of a
cloud element. This simple model, however, allows the
cloud elements to interpenetrate, producing a local density
enhancement within a cloud. This will be important for
photoionization considerations only if overlap between
cloud elements within a cloud results in a density enhance-
ment of a factor of about 2 or more over a signiÐcant
volume of the ionized part of a cloud. We estimate the
probability of such an event by calculating the probability
that, in an isolated cloud, any given cloud element is over-
lapped a distance S or less by one or more other cloud
elements. At the center of the cloud this probability is given
by

P(R\ S)\ (LD [ 1)
C (4/3)nS3
(4/3)n(L S)3

D
\ (LD [ 1)L~3 . (8)

When L B 3.0 and D\ 2.3, the probability of a density
enhancement of a factor of 2 or more is 43% at the center of
a cloud. The probability is largest near the center of the

cloud because a cloud element can have any part of its
volume occupied by another cloud element. A cloud ele-
ment with its center near the edge of the cloud, however, can
only be occupied in the part of its volume interior to the
sphere of radius L S. Thus, the probability of overlap at the
cloud boundary is less. When corrected for the probability
gradient within a cloud, the probability is only 0.19 at the
cloud edge where continuum reprocessing is expected to
occur. We therefore neglect density enhancements in the
photoionization calculations presented in ° 4.

2.1. Two Fractals
Fractal structure is caused by turbulence, possibly pro-

duced by MHD waves, and higher turbulence results in
higher average particle density (Elmegreen 1999). Physi-
cally, there would be higher levels of turbulence closer to
the central object if turbulence scales with depth into the
potential well, as occurs for many forms of MHD tur-
bulence (Rees 1987 ; Bottor† & Ferland 2000). What is
expected then is that at each radial distance R (or if the
luminosity of the central engine is Ðxed, at each hydrogen
ionizing Ñux ') there will be a chaotic mix of clouds of
di†erent densities. The gray area in Figure 2 shows a sche-
matic diagram of the range of density in the log (n)-versus-
log (') plane due to turbulence in equipartition with
gravity. At high values of log ('), corresponding to small
values of R, turbulence is large, the result is the mean
density, and the range of possible cloud densities is large. At
small values of log ('), corresponding to large values of R,
turbulence is small, the result is the mean density, and the
range of possible densities is small.

Clouds illuminated by the continuum at each value of
log (') contribute to the emission lines of the quasar. The

FIG. 2.ÈQualitative schematic diagram of the range of gas density as a
function of Ñux (gray area). Deep in the gravitational potential (toward
higher Ñux) the turbulence is high, resulting in a broad range in gas density.
Farther out (toward lower Ñux) turbulence is less and results in a smaller
range in gas density. In addition, the mean gas density for high levels of
turbulence is expected to be higher than the mean gas density at low levels
of turbulence. The superimposed black vertical lines show the simpliÐed
density distribution used in our model.
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total emission-line Ñux is a result integrating over the
number distribution of illuminated clouds in the log (n)-
versus-log (') plane, the surface area of each cloud, and the
cloud emissivity, which is subject to strong selection e†ects
(Baldwin et al. 1995). Unfortunately, a detailed theory
linking turbulence, structure size, and density for compress-
ible Ñuids does not yet exist. Such integration is therefore
not yet possible without approximation. In addition, we
wish to avoid invoking a particular dynamical scenario (e.g.,
inÑow, outÑow, rotation, etc.) since this is now unknown
and we want to focus on the e†ects of fractal structure. We
therefore invoke a simple model involving two sets of
clouds with identical fractal structure but di†erent densities.
A high-density fractal is embedded within a low-density
fractal so that the mean density and the range of density
decrease, in stepwise fashion, with increasing radius. The
density distribution for our simple model is illustrated in
Figure 2 by the two vertical solid lines and is meant to
mimic crudely the gray area. Inside the BLR there are two
densities, a high-density component and a low-density com-
ponent, denoted as and respectively. (See belownBLR nWA,
for an explanation of the nomenclature.) Outside the BLR
only the low-density component continues. The boundary
of the BLR at Ñux is set by the dust sublimation'BLRboundary, and the outer boundary of the low-density com-
ponent is at a distance corresponding to the outer boundary
of the fractal (see ° 3 below for details).

Observationally, the central regions of an AGN have at
least two components : the BLR, high-density gas seen in
emission, and the WA, gas only detected by its absorption.
The WA is likely to have lower density, which would
account for its lower emissivity. It is therefore natural to
attempt to associate our two-fractal model with the WA
and the BLR. The low-density fractal is given a density of
n D 107 cm~3 and is required to have a covering fraction of
about 0.5 to be consistent with the current statistics of WA
gas in AGNs (Reynolds 1997). The high-density fractal, cor-
responding to BLR clouds, is given a density of n D 1010
cm~3 and is required to have a covering fraction of 0.1 to be
consistent with the energy output of BLR emission lines
relative to the continuum (Peterson 1997). The geometry is
investigated to see if a fractal cloud distribution can repro-
duce observations of quasars.

2.2. T he Covering Factor
We envision an AGN continuum source placed at the

center of a fractal cloud distribution. The continuum illumi-
nates cloud elements at the leading edge of BLR clouds
causing them to produce emission-line radiation. The dis-
tance of a cloud from the continuum source, the gas density,
the column density, and the abundances determines the
emergent emission-line Ñux from a cloud. The total lumi-
nosity of a line, however, depends on the covering factor of
the cloud ensemble.

The cumulative cloud covering factor f (R) at radius R is
given by integrating the fraction of sky covered by each
cloud element. Accounting for possible cloud-cloud
overlap, along any line of sight, this is given by

f (R)B
P
0

R
neff

nS2
4nr2 4nr2 dr . (9)

Here is the e†ective cloud element number densityneffincluding correction for cloud overlap along the line of
sight ; nS2/4nr2 is approximately the fraction of sky covered

by a cloud element of radius S at a distance r from the
continuum source, as seen from the continuum source ; and
4nr2 dr is a di†erential volume element. Implicit in this
approximation is that nS2/4nr2> 1.0.

Any particular fractal distribution is clumpy, but the
probability distribution of clumps is random, and therefore
averaged over the ensemble of possible fractal distributions
for a given L , H, and D, is constant out to We mayneff Rmax.therefore write the covering fraction formula as

f (R) B neff nS2R . (10)

Thus, f (R) (or rather its ensemble average) is a linear func-
tion of R, meaning that the di†erential covering fraction

is a constant. The linear covering fraction(df/dR\ neff nS2)
function implies that the maximum extent of the WA fractal
must be about 5 times that of the BLR to account for the
di†erence between the covering fractions ; therefore, we
have

Rmax \ 5.0RBLR . (11)

Since a given L and H can yield a covering fraction slightly
larger or smaller than 0.5, a small correction is added to the
coefficient 5.0 in equation (11) to ensure always that the
BLR covering fraction is 0.1. For all of our calculations
the correction is at most only a few percent.

The total covering fraction may be rewritten asf (Rmax)

f (Rmax) B
neff nS2

4n
4n
3

Rmax3

]
/0Rmax (1/R2)4nR2 dR

(4n/3)Rmax3 \ Neff
4

S2 3.0
Rmax2 (12)

\ 3
4

Neff
A S
Rmax

B2\ 3
4

Neff L~2H , (13)

where is the e†ective number of clouds (the e†ectiveNeffnumber density times the volume of the BLR) and 3.0/Rmax2
is the volume-weighted value of 1/R2 over the fractal.

The derivation of a direct method for approximating
as a scale-free function of L and H is presented inf (Rmax)Appendix A. [Note : a graph of for L \ 3.0 as af (Rmax)function of H appears in Appendix A in Fig. 5b.] Here,

however, we utilize equations (12) and (13) to calculate the
fraction of clouds directly exposed to the continuum. This is
given by solving equations (12) and (13) for and divid-Neffing by the total number of cloud elements (LDH), yielding

Neff
LDH

\ 4
3

f (Rmax)L(2~D)H . (14)

For we have Tof (Rmax) \ 0.5 Neff/LDH\ 0.1(20/3)L(2~D)H.
illustrate, using easy to work with values, close to the ones
obtained when a physical scale is set to the fractal distribu-
tion (see ° 3), we choose L \ 3.0, H \ 11, and D\ 2.3. The
resulting ratio with these values is 0.018. Thus, in this case,
only one out of 56 cloud elements is directly exposed to the
continuum. The rest are partially shielded by intervening
low-density, optically thin (see below) clouds.

High-density clouds are optically thick (see below), and
therefore signiÐcant obscuration is to be expected. This is
now estimated for the BLR portion of the fractal structure.
The volume-weighted average solid angle of sky covered by
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a BLR cloud element is

)B
nS2

(RBLR/J3)2
\ 3n

A S
RBLR

B2

\ 3n
A S
Rmax/5

B2\ 75nL~2H , (15)

and the number of obscuring clouds is therefore given by
Solving for givesNeff,BLR )\ 4n(0.1). Neff,BLR Neff,BLR \

0.1(4/75)L2H. Since the number of BLR clouds is LDH/125,
the fraction of BLR cloud elements (and therefore clouds)
not obscured is This is125Neff,BLR/LDH\ 0.1(20/3)LH(2~D).
identical to the fraction not obscured in the whole fractal
structure. Apparently, the decrease in number is made up
for by the decrease in the required total covering factor and
the increase in the solid angle subtended by a BLR cloud
element.

The shielding of many cloud elements by a few is made
possible by the clustering of structures in a fractal. Figures
3a and 3b show an orthogonal projection onto a plane of
the upper and lower half of a fractal with L \ 3.05 and
H \ 4. The Ðgure shows the strong clustering trend. If
we were to imagine that this were instead a fractal with
H \ 11 (as in our Ðducial values above), then each of the
smallest circles in the Ðgure would actually contain
LD(11~4) B 6.3] 107 cloud elements or, by the above deÐni-
tion of a cloud, LD(11~4)/LD B 4.8] 106 clouds. To put
Figures 3a and 3b into perspective, the larger dot-dashed
circle has radius and represents the outer boundary ofRmaxthe inner part of the NLR. The inner solid circle has radius

and represents the outer boundary of the BLR.Rmax/5.0
Our shielding estimates thus far have been presumptive.

We can, however, estimate the average relative number of
cloud elements obscured along a line of sight directly by
using the derivation in Appendix A. This is calculated by

dividing the number of cloud elements by the number of
obscuring cloud elements in the largest substructure (of size

An example is shown in Figure 5a in Appendix A.Rmax/L ).
The crosses in the Ðgure show a graph of the area of cloud
elements per unit area of substructure as a function of hier-
archy h for a fractal with H \ 11 (and L \ 3.0) given as
A(11, h)/n(SLh)2. Here the function A(11, h) is a special case
of the general function A(H, H [ i), derived in Appendix A,
which directly integrates the projected area of cloud ele-
ments within a substructure of hierarchy h \ H [ i. To
illustrate, consider the structure associated with the circle
labeled 2 in Figure 1a. This is a substructure of hierarchy
h \ 2 in an H \ 3 fractal. If the areas of the cloud elements
(small circles) interior to the circle labeled 2 are shaded, then
A(3, 2) is the shaded area. A(3, 2)/n(SL 2)2 is then the relative
area per unit area of structure.

Returning to Figure 5a, we see that A(11, 10)/n(SL10)2
B 0.46, which means that, 10 levels above the smallest scale
(and one level below the largest scale), the cloud elements
shadow 46% of a circle of radius Rmax/L .

All cloud elements, regardless of whether they are shield-
ing or shielded, lie within this projected area. The
(equivalent) number of shielding elements is A(11, 10)/
nS2\ 1.6] 109, the total number of cloud elements in the
structure is thus (LD)10 B 9.4] 1010, and the ratio of
unshielded cloud elements to shielding ones is (9.4] 1010È
1.6] 109)/1.6 ] 109B 58. Compared with the value of
D56 in the above estimate and given the approximations
involved, the result obtained through direct methods is con-
sistent with the previous estimate. The important point here
is not so much the precise value, since that depends on the
geometry chosen for the cloud elements. Moreover, approx-
imations have been made in both the estimate and the direct
calculation. Rather, the important point is that in a fractal
structure shielding of many cloud elements by a few is pos-
sible.

FIG. 3.È(a) Orthogonal projection of the upper half of a fractal of hierarchy 4 onto a plane. If this Ðgure were representative of a fractal distribution of
clouds near an AGN, then each smallest circle in the Ðgure would contain additional hierarchies of structure and millions of clouds. The dot-dashed circle
represents the extent of low-density material that we associate with the WA, and the solid circle represents the extent of the BLR clouds. (b) The same as (a),
except that the lower half of the fractal is shown.
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The average number of line-of-sight clouds shielded per
shielding cloud can be estimated in a similar way as the
cloud elements. The (equivalent) number of shielding clouds
is given by A(11, 10)/A(11, 1)B 2.5] 108, and the total
number of clouds in the structure is LD(10~1)B 7.5] 109.
The ratio of shielded clouds to unshielded clouds is thus
(7.5] 109[ 2.5] 108)/2.5 ] 108B 29. Consequences of
shielding are discussed in ° 5.

3. SETTING A PHYSICAL SCALE TO FRACTAL

BLR CLOUDS

The fractal parameters L and H may be related to the
more physical but still dimensionless variable v, the volume-
Ðlling factor of the clouds. We distinguish v from the
volume-Ðlling factor of the emitting gas, which we denote
by is a small fraction of v due to shielding orvemit ; vemitionization fronts. Its value is estimated later in this section.
Following Elmegreen (1997), the relative volume between
clouds is given approximately by

Vempty
Vtotal

B 1 [
ALD
L3
BH

. (16)

The volume-Ðlling fraction is thusv\ Vfull/Vempty
e B L(D~3)H . (17)

Solving for H in terms of L and v gives

H \ log (e)
(D[ 3) log (L )

, (18)

and therefore

L~H\ e1@(3~D) . (19)

Recalling that the number of cloud elements is LDH and that
there are LD cloud elements per cloud, the number of clouds,
&, in the fractal structure is

&\ eD@(D~3)L~D . (20)

Since the radius of a cloud element is S \S \ Rmax L~H,
so the radius of a cloud isRmax v1@(3~D),

Rcloud\ Rmax e1@(3~D)L , (21)

and the column density through the center of the cloud is

SNcloudT \ 2Rmax e1@(3~D)L I(L )n . (22)

The mass of a cloud, is LD times the mass of oneMcloud,cloud element, thus

Mcloud\ kn
4n
3

Rmax3 e(3@3~D)LD . (23)

The result is that all important physical quantities are
expressed in terms of four quantities : two free parameters, L
and v ; which is Ðxed by and the WA coveringRmax, RBLRfraction ; and n, which will be set by the requirements of the
relative strengths of observed quasar emission lines.

In this section we take the density of BLR cloud elements
to be D1010 cm~3 in anticipation of the optimal density
that we Ðnd for emission lines (see ° 4 below). Physically, the
outer boundary of the BLR is set at the radius where emis-
sion lines are suppressed as a result of the onset of dust
formation. This occurs at a hydrogen ionizing number Ñux
'\ 1018 cm~2 s~1 (Netzer & Laor 1993). If the bolometric
continuum luminosity is given, then can be deter-L

b
RBLR

mined. With ergs s~1, the Ñux ' at dis-L
b
\ L 46] 1046

tance cm from the continuum source isR\R18] 1018

'\ L
b

4nR2SET
f
H

\ 4.87] 1019 L 46
R182 SEeVT

(cm~2 s~1) ,

(24)

where the mean ionizing photon energy in eV andSEeVTis
is the fraction of ionizing photons above 1 ryd.f

H For the continuum that we use (see ° 4 for further details),
the fraction of the luminosity in ionizing photons is f

H
\

0.658 and the mean energy of photons above 13.6 eV is
eV. Substituting '\ 1018 cm~2 s~1 andSEeVT \ 44.23

solving for the radius gives

RBLR \ 6.98] 1018
SL 46 f

H
SEeVT

(cm)

\ 8.51] 1017JL 46 (cm) . (25)

The radius of the fractal is 5 times this, so

Rmax\ 4.26] 1018JL 46 (cm) . (26)

The establishment of a distance scale for allows us toRmaxscale the other quantities. First, we have

S \ 8.22] 1012JL 46 e~410@7 (cm) , (27)

where andv~4\ v/10~4
Rcloud\ 8.22] 1012JL 46 e~410@7L (cm) . (28)

As discussed in ° 1, the fractal cloud model is assumed to
have two populations of clouds. If the clouds are in overall
virial equilibrium, then cloud density will tend to increase
with decreasing radius. In MHD simulations the range in
cloud density also increases. The net e†ect is that clouds
closer to the central source tend to have a higher micro-
turbulence, to be denser, and to have a wider range of den-
sities. Clouds with particle density 107 cm~3 are found
throughout the fractal structure. Clouds exterior to RBLRform the inner part of the NLR. Clouds inside may beRBLRremnants of dispersed high-density BLR clouds or precur-
sors to converging Ñows. All of the low-density material is a
potential candidate for a warm absorber. Therefore, we will
refer to low-density clouds as WA clouds. The cloud
column densities for the two cloud types are thus

SNBLRT \ 1.64] 1023JL 46 e~410@7L I(L )n10 (cm~2) (29)

and

SNWAT \ 1.64] 1020JL 46 e~410@7L I(L )n7 (cm~2) , (30)

where (cm~3) and (cm~3). Like-n10\ n/1010 n7\ n/107
wise, the cloud masses are

MBLR \ 2.72] 10~8(JL 46 )3e~430@7 L2.3n10 (M
_

) (31)

and

MWA\ 2.72] 10~11(JL 46)3e~430@7L2.3n7 (M
_
) . (32)

Since the BLR is 5 times more compact than the fractal, the
number of BLR clouds is 53 times less than the number of
WA clouds. The number of WA clouds is

&WA\ 1.39] 1013e~4~23@7L~2.3 , (33)

and so the number of BLR clouds is

&BLR \ 1.11] 1011e~4~23@7L~2.3 . (34)
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FIG. 4.È(a) Plot of column density, (b) total BLR mass, and (c) BLR
cloud number as a function of volume-Ðlling factor v. The star graph
marker shows the values when the column density of a cloud element is
1023 cm~2.

The total BLR mass is Likewise,MBLR(total) \&BLRMBLR.
the total WA mass is Thus,MWA(total) \&WA MWA.

MBLR(total) \ 3.02] 103e~4(JL 46)3n10(M_
) (35)

and

MWA(total) \ 3.77] 102e~4(JL 46)3n7(M_
) . (36)

For the purpose of analyzing variability, we also calcu-
late the number of high-velocity BLR clouds. Suppose that
the local velocity Ðeld is given by v2D 1/R. Since 'D 1/R2,
we have vD '1@4. We normalize the velocity so that it is 300
km s~1 when '\ 1018 cm~2 s~1. This scales the velocity
Ðeld so that it is typical of narrow line velocity widths at the
Ñux where BLR lines are suppressed from dust formation
(Netzer & Laor 1993). Since quasar emission lines have
FWZM of the order of 103È104 km s~1(Netzer 1990), we
deÐne the high-velocity (and/or high-turbulence) clouds to
have v[ 2500 km s~1. This gives '[ 1021.68 cm~2 s~1.
Since RP '~1@2, the radius, inside which v[ 2500 km s~1,
is 69.4 times smaller than so the number of BLRRBLR,clouds with v[ 2500 km s~1 is 69.43 times less(&BLR,2500)than the total number of BLR clouds. The number of high-
velocity clouds is

&BLR,2500 \ 3.32] 105e~4~23@7L~2.3 . (37)

In terms of v the fraction of BLR clouds not obscured
(i.e., illuminated) is 0.1(20/3)v(D~2)@(3~D)B 1.29 ] 10~2v~43@7.
Thus, the number of illuminated BLR clouds is

&
i,BLR\ 1.43] 109e~4~23@7L~2.3 , (38)

and the number of illuminated BLR clouds with v[ 2500
km s~1 is

&
i,BLR,2500 \ 4.16] 103e~4~23@7L~2.3 . (39)

may be used to estimate the emission volume-Ðlling&
i, BLRfactor, The thickness of the ionization front, D, is givenvemit.by

DB 1023 '
cn2 (cm) (40)

(Ferland 1999), where n is the gas particle density and c is
the speed of light. For the value of D we use n \ n10 ] 1010
cm~3 and the value of ' at Since 'P R~2R\RBLR/31@2.
and the Ñux is 1018 cm~2 s~1 at then '\ 3 ] 1018RBLR,cm~2 s~1. Substitution of these quantities gives DB

cm. To estimate we Ðrst calculate the volume1011n10~2 vemit,of the part of the spherical cloud element between the
surface that faces the continuum and an identical spherical
surface displaced a distance D toward the cloud element
interior. This is given by J(D, S) \ nS3(D/S) for D/S > 1.
The volume is then multiplied by the number of illuminated
cloud elements and divided by the volume of the(LD&

i,BLR)
BLR, to give(4/3)nRBLR3 ,

eemitB 1.18] 10~8 n10
JL 46

e~4~3@7 . (41)

The choice of v and L controls the number, size, column
density, mass, and the emission volume-Ðlling factor. Pos-
sible values for v and L are determined by requiring the
covering fraction (derived in Appendix A as a function of H
and L ) to have a value in the range 0.50 ^ 0.05. In order to
search the two-dimensional parameter space of L and v, we
replaced L in terms of H and v via

L \ e1@(D~3)H , (42)

making the covering fraction a function of H and v. This
transformation is convenient because H is an integer and L
is readily found from H and v. The integer H was allowed to
range from 2 to 50, and log (v) was allowed to range
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TABLE 1

PROPERTIES OF A SAMPLE FRACTAL AGN MODELa

Category Property Symbol Value

Geometry . . . . . . . . . . . . . . . . . . . . . Fractal dimension D 2.3
Geometric factor L 3.2098
Substructures per hierarchy LD 14.62
Number of hierarchies H 11
log (number of smallest structures) log (LDH) 11.65

Length (cm) . . . . . . . . . . . . . . . . . . . log (BLR radius) log (RBLR) 17.93b
log (maximum radius) log (Rmax) 18.64c
log (cloud radius) log (Rcloud) 13.57d
log (cloud element radius) log (S) 13.07e

Column density (cm~2) . . . . . . log (BLR cloud column density) log (NBLR) 23.51f
log (WA cloud column density) log (NWA) 20.51g

Number . . . . . . . . . . . . . . . . . . . . . . . log (BLR cloud number) log (&BLR) 9.52
log (BLR cloud number, v\ 2500 km s~1) log (&BLR,2500) 4.00h
log (WA cloud number) log (&WA) 11.14i

Mass (M
_

) . . . . . . . . . . . . . . . . . . . . log (mass BLR cloud) log (Mcloud) [5.94
log (mass BLR) log (MBLR) 3.58
log (mass BLR for v[ 2500 km s~1) log (MBLR,2500) [1.94
log (mass WA) log (MWA) 2.70

Covering fraction . . . . . . . . . . . . BLR covering fraction fBLR 0.10
WA covering fraction fWA 0.51

Filling factor . . . . . . . . . . . . . . . . . . log (BLR Ðlling factor) vBLR [3.90
log (emission Ðlling factor) vWA [6.09j

a Indicated by a star in Fig. 4.
b Value obtained from (cm) andRBLR \ 8.51] 1017(L 46)1@2 L 46\ 1.0.
c Rmax \RBLR 100.71.
d Rcloud \Rmax L~H`1.
e S \ Rmax L~H.

where n \ 1010 cm~3.f NBLR\ 2nRcloud,where n \ 107 cm~3.g NWA \ 2nRcloud ,h Velocity normalized so that log (v/300 km s~1)\ 0.25 log ('/1018 cm~2 s~1).
i &WA \ LD(H~1).
j Assumes that the thickness of the ionization layer is 1011 cm.

between [7.0 and [2.0 in steps of 0.093. Values of H and
log (v) that made the covering fraction function (see Appen-
dix A) satisfy the above constraint were Ðltered out for
further analysis.

Figures 4a, 4b, and 4c show the resulting cloud column
density, total BLR mass, and total BLR cloud number as
functions of v. The slight wiggles in the cloud column
density and the cloud number are due to the corrections
that maintain an average BLR covering fraction of 0.1.
Given the explorative nature of our calculations, however,
further Ðne-tuning is not justiÐed. Of the set of solutions
obtained, the mean covering fraction is 0.50^ 0.02, and
the mean geometric factor is L \ 3.16^ 0.10. Of par-
ticular interest is the solution at log (v)\ [3.90 because
this solution has a BLR cloud element column density

(cm~2)]\ 23.0 corresponding to column den-log [NBLRsities inferred in the BLR (Davidson & Netzer 1979). The
solution is marked by a star in the graphs of Figure 4 and is
summarized numerically, in greater detail, in Table 1. In ° 5
we discuss this solution in the context of the emission-line
calculations presented below in ° 4.

4. EMISSION-LINE PROPERTIES OF A FRACTAL BLR

CLOUD DISTRIBUTION

In the previous section the physical and geometric
properties of a fractal AGN model were established. The
observed emission-line spectrum is predicted in this section.
Calculations of the spectrum of constant density clouds,
having an integrated covering fraction linear with radius,

were carried out using CLOUDY (Version 95.00). The
maximum integrated covering fraction was normalized to
0.1 at an ionizing Ñux of 1018 cm~2 s~1. BLR cloud den-
sities were allowed to vary from 107 to 1014 cm~3, while the
column density (N) was normalized so that N \ 1023.5
(n/1010 cm~3) (cm~2), where n is the particle density. With
this normalization the cloud size remains the same for all
densities. This grid is similar to those given in Korista et al.
(1997), which contains further details.

The clouds are illuminated by the continuum given in
Korista et al. (1997). The shape is given by

fl\ laUV exp
A
[ hl

kTBB

B
exp

A
[ kTIR

hl
B

] alaX , (43)

where a is chosen so that

fl(2 keV)
fl(2500 A� )

\ 403.3aox . (44)

The speciÐc parameters are K,aUV \[0.50, TBB \ 106.0
ryd, and The full con-kTIR\ 0.01 aX \[1.0, aox\ [1.40.

tinuum between 912.02 cm and 100.01 MeV is considered.
The inner radius is set where the Ñux is 1024 cm~2 s~1.
Above this Ñux emission lines are suppressed by thermaliza-
tion. In absolute measure this limits the inner radius to
about cm.1.05 ] 1015(L 46)1@2Photoionization predictions are listed in Table 2. The
table shows 11 bright emission-line blends relative to the
Lya line and the equivalent width of Lya. The Ðrst column
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TABLE 2

LINE STRENGTH RELATIVE TO LYa : OBSERVATION AND FRACTAL MODEL

Emission-Line
Blend Zheng Baldwin 107a 108 109 1010 1011 1012 1013 1014

O III j835 ] O II j834 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.014 . . . 0.008 0.007 0.006 0.006 0.005 0.005 0.007 0.007
C III j977 ] Lyc j973 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.009 0.007È0.20 0.011 0.014 0.019 0.036 0.042 0.038 0.036 0.027
N III j990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.011 0.013 0.005 0.006 0.006 0.007 0.006 0.006 0.009 0.007
O VI j1032 ] O VI j1037 ] Lyb j1026 . . . . . . 0.190 0.068È0.69 0.333 0.445 0.322 0.106 0.040 0.027 0.022 0.026
N V j1239 ] N V j1243 . . . . . . . . . . . . . . . . . . . . . . . . 0.110 0.069È0.099 0.008 0.022 0.049 0.030 0.013 0.012 0.011 0.006
Si IV j1394 ] Si IV j1403 ] O IV j1402 . . . . . . 0.075 0.022È0.50 0.010 0.018 0.045 0.076 0.051 0.035 0.033 0.017
C IV j1548 ] C IV j1551 . . . . . . . . . . . . . . . . . . . . . . . 0.620 0.087È0.65 0.400 0.586 0.733 0.656 0.278 0.130 0.086 0.039
He II j1640 ] O III j1663 ] Al II j1671 . . . . . . 0.068 0.013È0.14 0.128 0.122 0.128 0.136 0.097 0.126 0.237 0.303
C III j1909 ] Si III j1892 ] Al III j1859 . . . . . . 0.163 0.076È0.74 0.033 0.054 0.099 0.153 0.118 0.044 0.029 0.022
Mg II j2796 ] Mg II j2804 . . . . . . . . . . . . . . . . . . . . 0.250 0.15È0.30b 0.003 0.010 0.037 0.144 0.382 0.933 2.339 5.727
Hb j4861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.07È0.20b 0.016 0.023 0.026 0.031 0.049 0.144 0.911 3.515
EW(Lya)/1216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.076 0.03È0.20 0.031 0.053 0.065 0.073 0.069 0.033 0.009 0.004

a Density in units of cm s~3.
b Ranges for observations are from Baldwin et al. 1995.

gives the line identiÐcation. The second column gives a list
of observed values as derived from the mean quasar survey
of Zheng et al. (1997). The third column gives the observed
line blend ranges for a set of high signal-to-noise quasars
(Baldwin et al. 1995). These two columns may be compared
with the remaining columns of the table that show the
model results for di†erent densities. The equivalent width of
Lya that best matches the Zheng et al. (1997) value occurs at
a density of 1010 cm~3, for an integrated covering fraction
of 0.1.

Table 3 compares the 1010 cm~3 model with obser-
vations in greater detail. The Ðrst column of Table 3 gives
the emission-line blend. The second column shows the rela-
tive di†erence between the emission-line strengths of the
mean quasar spectrum in Zheng et al. (1997) and the model.
With the exception of the C III j977 ] Lyc j973 blend
(where the model yields values 4 times what is observed)
and the He II j1640 ] O III] j1663 ] Al II j1671 blend
(where the model yields values twice what is observed), the
predicted emission-line strengths are within the dispersion
of the mean quasar spectrum. The third column of Table 3
indicates whether the model falls within the observed range
of the Baldwin et al. (1995) data. The model reproduces
seven of the 10 lines. Of the remaining three ranges, one (Mg
II j2796 ] Mg II j2804) just misses the range. The fourth
column of Table 3 indicates whether the model is within a

factor of 2 of the mean quasar spectrum and the ranges of
the Baldwin et al. (1995) data. In all cases, except for the
C III j977 ] Lyc j973 blend, the 1010cm~3 model is within
a factor of 2 compliance with observations. We judge this to
be an adequate Ðt, given that no e†ort was made to Ðne-
tune parameters such as the continuum shape or chemical
composition to reproduce the spectrum.

5. DISCUSSION

5.1. T he Observed Spectrum
The fractal model of the AGN environment produces a

large family of possible solutions in a two-parameter phase
space (L vs. H or equivalently v vs. H). Fortunately, the
family is constrained to one parameter, the volume-Ðlling
factor v, by our requirement that the covering fraction of the
fractal be of order 0.5. The cloud column density is a
monotonic function of v, so a solution where the column
density of a BLR cloud element is equal to what is inferred
from observation (D1023.0 cm~2) is guaranteed. The
strengths of BLR emission lines and their strength relative
to Lya, however, are not guaranteed. These depend on the
di†erential covering factor, the cloud gas density, and the
properties of the continuum. Nevertheless, for a reasonable
choice of continuum, we Ðnd that BLR emission-line
strengths are close (most within a factor of 2) to those

TABLE 3

FRACTAL MODEL AT 1010 CM~3 VERSUS OBSERVATION

Emission-Line Blend (Zheng-Model)/Zheng In the Baldwin Range? Factor of 2 Compliance?

O III j835 ] O II j834 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.57 . . . Yes
C III j977 ] Lyc j973 . . . . . . . . . . . . . . . . . . . . . . . . . . [3.00 Yes No (4 times larger)
N III j990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.36 0.46a Yes
O VI j1032 ] O VI j1037 ] Lyb j1026 . . . . . . 0.44 Yes Yes
N V j1239 ] N V j1243 . . . . . . . . . . . . . . . . . . . . . . . . 0.73 No (low by 0.56) Yes
Si IV j1394 ] Si IV j1403 ] O IV j1402 . . . . . . [0.01 Yes Yes
C IV j1548 ] C IV j1551 . . . . . . . . . . . . . . . . . . . . . . . [0.06 Yes Yes
He II j1640 ] O III j1663 ] Al II j1671 . . . . . . [1.00 Yes Yes
C III j1909 ] Si III j1892 ] Al III j1859 . . . . . . 0.06 Yes Yes
Mg II j2796 ] Mg II j2804 . . . . . . . . . . . . . . . . . . . . 0.42 No (low by 0.04) Yes
Hb j4861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No (low by 0.56) Yes
EW(Lya)/1216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.04 Yes Yes

a (Baldwin-Model)/Baldwin (range is a single entry in Table 1).
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observed when the density is 1010 cm~3. Though the cloud
column density was normalized to 1023.5 cm~2 when the
density was 1010 cm~3, the fact that the depth of the ioniza-
tion front in the cloud (or rather the continuum facing cloud
elements of a cloud) is of order cm~2 implies that1022n10~1
the clouds are radiation bounded for densities from 109.25
cm~3 to the maximum density of the calculations (1014
cm~3). Thus, in this range of parameters, it is the gas density
that predominantly determines the relative emission-line
spectrum. The optimal density of 1010 cm~3 that we found
is therefore not a result of Ðne-tuning the column density.
We conclude that a fractal cloud distribution can reproduce
observations of BLR quasar emission-line strengths for
canonical values of the cloud column density.

5.2. T he Warm Absorber
The low-density fractal, which was added to mimic a

possible density-radius relationship, reproduces many of
the observed properties of the warm absorber. If we take the
density of these clouds to be D106È107 cm~3, as inferred for
WA clouds (Reynolds & Fabian 1995), and the expected
number of absorbing clouds along the line of sight to be
D30 (° 2, last paragraph), then the total integrated column
density ranges from to 1022 cm~2. This is con-NWAD 1021
sistent with WA column densities inferred from ASCA
observations by Reynolds (1997) and George et al. (1998)
for a variety of AGNs. The fractal model column densities
are also consistent with the integrated column densities
inferred for multicomponent UV absorbers detected in
Seyfert 1 galaxies (Crenshaw & Kraemer 1999 ; Mathur,
Elvis, & Wilkes 1999).

In these objects up to six distinct UV absorption com-
ponents have been observed. The fractal cloud distribution
predicts just this number. The number of clouds along the
line of sight is proportional to the radial distance through
the fractal structure, and in this model the maximum scale is
proportional to Thus, by lowering the (average)(L

b
)1@2.

luminosity, the number of line-of-sight clouds is lowered. In
this paper we took ergs s~1. If we scale to theL

b
B 1046

luminosity of a Seyfert galaxy, say NGC 5548 with L
b
B

1044.4 ergs s~1, the number of clouds along the line of sight
is reduced from 30 to roughly 30(1044.4/1046)1@2B 5, which
is consistent with observations. We point out, however, that
randomly selected fractal structures and randomly chosen
viewing angles will produce a wide range of line-of-sight
cloud counts. Nevertheless, the fact that the predicted
number of line-of-sight absorbers is within an order of mag-
nitude of observations is encouraging.

5.2.1. Implications for Variability

A fractal structure is clumpy. There are regions dense
with structure and regions void of structure. Many models
of the central activity predict that the central black hole has
a small duty cycle and is only luminous on occasions when
accreting material is within a certain radius. This accretion
radius can be taken as the radius of the region where the
EUV originates, since this must be the radius of the accre-
tion disk. We take this radius to be that given by observed
line-continuum reverberation. We scale from the well-
observed Seyfert galaxy NGC 5548, with EUV variability
timescale of the order of 1 day (Marshall et al. 1997), to a
quasar luminosity of 1046ergs s~1 by assuming, as we did
above, that the radius scales as This gives an accre-(L

b
)1@2.

tion radius of cm. The fraction ofRaccretionD 1.63] 1016

quiescent galaxies is then given by the probability that
material is not within We can estimate this prob-Raccretion.ability by calculating the likelihood that a fractal structure
of size lies a distance or more from theRaccretion Raccretioncentral black hole. To be speciÐc, we consider the model
outlined in Table 1 where D\ 2.3, H \ 11, and L \ 3.2098.
For this model is roughly six hierarchies largerRaccretionthan a cloud element or alternatively Ðve hierarchies
smaller than the maximum extent of the fractal. We there-
fore need to calculate the probability that in a fractal of
hierarchy 11 there are zero substructures of hierarchy 6
within a distance (or alternatively a distance SL 6)RmaxL ~5
of the continuum source. We symbolize this probability by

It is given iteratively viaP611(0).

P6l (0)\ [L~3P6l~1(0)] (1[ L~3)]LD (l \ 8, . . . , 11) , (45)

where

P67(0)\ (1[ L~3)LD (46)

(eqs. [45] and [46] are derived for the case LD ½ I in Appen-
dix B). The chosen values of D, H, and L yield P611(0)\ 0.99.
This result suggests that in the set of galaxies with a central
supermassive black hole roughly 1% will have nuclear
activity at any time. Our result is comparable to obser-
vation if we presume that every galaxy has a massive central
object, in which case the percentage of galaxies observed to
have nuclear activity is a little over 2% (see Table 3 of
Woltjer 1990).

5.3. Accretion Duty Cycle
If we assume that the black hole accretes with an effi-

ciency of D0.1 (Blandford 1990), then a luminosity of 1046
ergs s~1 corresponds to a mass accretion rate of about 1026
g s~1 (roughly 1.6 yr~1). Since a structure six hier-M

_archies above a cloud element has mass (LD)5McloudB 1.5
] 1033 g, the black hole will consume this structure in
1.5] 107 s, about half a year. Since AGNs are observed to
be luminous much longer than this, material must be reple-
nished. The fractal structure helps in this because of its
clumpy structure. Thus, while the chances of Ðnding
material close to the continuum source are small (one in
100), the chance of Ðnding additional material in the vicinity
of the continuum source if material is already present is
large. The time for local material to migrate to the region of
the continuum source and replenish the fuel supply can be
found by dividing the distance to the nearest neighboring
structure of hierarchy 6, in a structure of hierarchy 7, by the
magnitude of the turbulent velocity Ðeld, which we take to
be of order 2000 km s~1. The distance to the nearest neigh-
bor is estimated by assuming that the structure of hierarchy
6 that is feeding the continuum is at the center of a structure
of hierarchy 7. At increasing radius r the chances of Ðnding
another one of the LD [ 1 remaining structures of hierarchy
6 increase in proportion to the volume. The probability is
unity when 1\ (LD [ 1)[r/R(7)]3, where R(7) is the size of
a structure of hierarchy 7. For this model R(7)\
L7S B 4 ] 1016 cm. Solving for r gives r B 1016 cm, giving a
timescale of 5] 107 s. This is the same order of magnitude
as the feeding timescale. Therefore, quasi-continuous
feeding of clumps into the black hole can occur. The
observed continuum variability on the timescale of a year
may therefore be due to erratic feeding rates of material
clumped in a fractal structure.
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At an accretion rate of 1.6 yr~1 the entire fractalM
_structure will be depleted in about 2500 yr unless the central

parsec is resupplied from without. One possibility is that the
fractal structure continues to larger scales until it merges
with a molecular torus. Another possibility is that the
central parsec is relatively void of gas but occasionally
cloud fragments perturbed o† the torus migrate into the
region causing lighting up the central engine to produce a
quasar. The latter case is more consistent with our model
because the line-of-sight column densities and cloud counts
are consistent with observations when the fractal structure
terminates at 1018.64 cm (1.4 pc). If the fractal structure
continued, the integrated line-of-sight column density of
clouds would be far higher than observed.

5.4. Kinetic L uminosity
To this point we have focused on the geometric aspects of

a fractal cloud model and have not discussed dynamics.
Whatever the dynamical mechanism involved, the most
important point to be aware of is that the fractal structure
hides most of its mass. A dynamical mechanism that
requires the entire fractal to participate in a systematic
motion must be able to account for the resulting kinetic
luminosity of the shielded mass. For example, suppose the
BLR mass in our model has an average systematic velocity
of 104 km s~1. The kinetic luminosity is then L

k
\

ergs s~1. This is compara-1.5MBLR V 3RBLR~1 B 1.25] 1046
ble to the luminosity of a typical quasar. Therefore, unless
only part of the fractal is being driven, radiation pressure
may be energetically insufficient.

6. CONCLUSIONS

We Ðnd that a fractal description of the distribution of
material in the central parsec of an AGN is capable of
explaining a wide variety of phenomena associated with
observations of AGNs. The chief successes are the follow-
ing :

1. The BLR spectrum is consistent with formation in a
chaotic mix of clouds with various properties, along with
the selection e†ects introduced by the atomic physics

(Baldwin et al. 1995). A fractal geometry can result from
large-scale chaos and may be inevitable if the region is in
magnetic equipartition.

2. The observed emission-line spectrum is consistent
with formation in a fractal geometry. This geometry is
simultaneously consistent with the covering factor, density,
column density, BLR emission-line strengths, and BLR line
ratios, as deduced from observations of BLR emission lines.

3. A considerable fraction of the BLR clouds are predict-
ed to lie in shadows cast by interior clusters of clouds. As a
result, the total mass is predicted to be much larger than the
ionized mass detected by emission lines. This has obvious
consequences on the energetics.

4. Absorption properties of the fractal model are found
to be consistent with the integrated line-of-sight column
density as determined from observations of X-ray absorp-
tion. When the model is scaled to a Seyfert galaxy, we Ðnd
that the number of line-of-sight clouds is consistent with the
number of multiple UV absorption components observed in
them.

5. Rough estimates show that about one in 100 of the
galaxies that harbor a supermassive black hole will show
activity, assuming that material needs to be present within
its EUV continuum emitting radius for activity to occur.
This is close to the observationally determined duty cycle.

6. Stochastic feeding of the central engine of fractal cloud
distribution of material may account for continuum varia-
tions and long-term activity.

7. A fractal cloud distribution may or may not be part of
additional dynamical processes such as in a disk, a line-
driven wind, or a systematic MHD Ñow. If it does partici-
pate, care must be taken to include the kinetic luminosity of
all the fractal mass and turbulent energy.

This work was supported by the NSF through grant
AST-0071180 and by NAS through its LTSA program. We
thank Kirk Korista, Jack Baldwin, and Bruce Elmegreen
for a thorough reading of the manuscript and many helpful
comments.

APPENDIX A

A DIRECT METHOD OF ESTIMATING THE COVERING FRACTION

In this appendix an approximate method for determining as a scale-free function of H and L is derived. We start at af (Rmax)structure one hierarchy larger than individual BLR cloud elements (i.e., at level H [ 1, or equivalently, at the scale of a single
cloud). We assume for this derivation that SL /R> 1.0 so light from the continuum source passes through the structure along
nearly parallel rays. Cloud elements on the continuum side of the structure obscure cloud elements on the far side of the
structure.

The di†erential area of the cloud elements, per unit area of cross section, dA, projected along parallel rays on andA
c
,

imaginary plane behind the structure including cloud elementÈtoÈcloud element obscuration is given by

dA
c

dA
\ 1 [ exp ([n

c
nS2*X) , (A1)

where the cloud element number density not including obscuration, is given by and X is the distancen
c
, n

c
\ LD/[4/3n(L S)3]

through the structure along a ray centered on dA. The total projected cloud area due to a spherical structure of size L S is thus

A
c
(H, 1) \

P
0

SL
2nr[1[ exp (n

c
nS22X)]dr \

P
0

SL
2nX[1[ exp (n

c
nS22X)]dX , (A2)
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where X2] r2\ (SL )2 and the argument (H, 1) has been added to emphasize that this calculation applies to a substructure, in
a fractal of hierarchy H, one hierarchy larger than a cloud element. Integration gives

A
c
(H, 1) \ n(SL )2] 2n(SL )2

(2nn
c
S3L )2 [(2nn

c
S3L ] 1) exp ([2nn

c
S3L ) [ 1] . (A3)

The e†ective number of cloud elements in the structure is 1) divided by the cross-sectional area of a single cloud element.A
c
(H,

We therefore have

Neff(H, 1) \ A
c
(H, 1)
nS2 . (A4)

We note that this equation is approximate because it does not account for additional area of cloud elements that project
area onto the plane outside of the projected sphere of radius L S. This contribution to the projected area is expected to be
comparatively small, however (visually compare, in Fig. 1a, the projected areas of cloud elements outside of, but still
associated with, the structures corresponding to spheres 1, 2, and 3 to the projected area of the cloud elements within them), so
we neglect it in our calculations.

The above method is now applied to structure with scale SL 2. Since there are LD substructures of size SL in a structure of
size SL 2, the density of the substructures two levels less than the maximum hierarchy H is and then

s
(2)\ LD/[4/3n(SL2)3]

e†ective cross-sectional area of a substructure is 1). Thus, 2) is obtained by replacing and nS2 with andA
c
(H, A

c
(H, n

c
n
s
(2)

1), respectively, in equation (A2). This givesA
c
(H,

A
c
(H, 2) \ n(SL2)2] 2n(SL2)2

Q(H, 2)2 M[Q(H, 2) ] 1] exp [[Q(H, 2)][ 1N , (A5)

where

Q(H, 2) \ 2n
s
(2)A

c
(H, 1)SL2 . (A6)

In general,

A
c
(H, i)\ n(SLi)2

A
1 ] 2M[Q(i) ] 1] exp [[Q(i)][ 1N

Q(i)2
B

, (A7)

where

Q(H, i) \ 2n
s
(i)A

c
(H, i [ 1)SLi (A8)

and

n
s
(i) \ LD

(4/3)n(SLi)3 . (A9)

An example of the progression of i)/n(SLi)2 for i \ 0È11, L \ 3.0, and L \ 3.2098 is shown in Figure 5a. The e†ectiveA
c
(H,

cloud number i hierarchies larger than a cloud element is thus

Neff(H, i) \ A
c
(H, i)
nS2 . (A10)

Equation (A10) assumes that the continuum source is on one side of the fractal substructure under consideration. It cannot
be utilized to calculate H) and thereby determine because, in this last case, the continuum source is embeddedNeff(H, f (Rmax)within the fractal. Instead, H) is approximated by assuming that there is no signiÐcant cloud-to-cloud obscurationNeff(H,
between structures of hierarchy H [ 1 because a line of sight from the continuum traverses only half of the fractal. This means
that H) is given by H [ 1) times the number of substructures having H [ 1), so we haveNeff(H, Neff(H, Neff(H, Neff(H, H)B

Since we haveNeff(H, H[ 1)LD. Rmax \SLH,

f (Rmax)B
3
4

Neff(H, H [ 1)LD
A S
Rmax

B2 \ 3
4

Neff(H, H [ 1)LD~2H . (A11)

This shows that since D is Ðxed the covering fraction is a function of two free parameters (L and H) and (as expected) is scale
free.

Values of corresponding to fractals with L \ 3.0 (the Ðducially chosen value ; see ° 2) and L \ 3.2098 (the physicallyf (Rmax)constrained value ; see ° 3) are shown in Figure 5b. Because H) does not take into account structure overlap of theNeff(H,
largest substructures, the calculation slightly overpredicts the covering fraction. The values at H \ 0, where the error will be
the least accurate, are too large by 4%È7%. In the Ðgure, the horizontal solid line is at a covering fraction of 0.5 and the
dashed lines indicate a ^10% range. Note that for L near 3.0 there are about seven or eight possible solutions within this
range. Further physical constraints and restrictions of the covering factor (see the main text for details) narrow the set possible
solutions.
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FIG. 5.È(a) Projected area of various substructures of hierarchy h in a fractal of hierarchy 11. The decreasing values illustrate that clouds ““ hide ÏÏ behind
other clouds so there is less and less available surface-projected surface area as h gets larger. (b) Covering fraction as a function of hierarchy. Note that for
L \ 3.20898 and h \ 11 the covering fraction is close to 0.5 (solid line). Dashed lines show 10% ranges.

APPENDIX B

DERIVATION OF AN ESTIMATE FOR P611(0)

We wish to calculate the probability that there will be zero structures of hierarchy 6 (or smaller) within a distance of SL 6 of
the center of the EUV region that resides in a fractal of hierarchy 11. We consider the case in which the number of
substructures in a structure LD is an integer. The derivation is an approximation because it assumes that all substructures
associated with a structure lie within the characteristic radius of the structure. Figure 1a shows that this is mostly the case but
not always. A small portion of substructure associated with each structure (the circles labeled 1, 2, and 3) lies outside the
characteristic structure radius. Making this approximation introduces the error that a structure with hierarchy h becomes
denser with substructures of hierarchy h [ 2 or less than it would otherwise be. If the EUV region lies inside such a structure,
the probability of not Ðnding material in it is decreased. On the other hand, with this same approximation, if the EUV region
is just outside the characteristic radius of a structure, the probability of not Ðnding material in it is enhanced. The approx-
imation therefore makes small, somewhat o†setting errors. In a similar approximation we assume that the EUV region either
is contained entirely within a larger structure or is outside of it. This avoids the mathematically messy and geometry-
dependent details of calculating probabilities when the EUV region lies near the boundary of a structure. As in the case of the
earlier assumption, this approximation introduces small, partially o†setting errors. The probability of not Ðnding material in
the EUV region is decreased if it is within the characteristic radius of the structure and enhanced if it is without.

Suppose the EUV region is within a structure of hierarchy 7. The probability that any one of the LD substructures ofp67hierarchy 6 is a distance greater than SL 6 from the center of the EUV region is given by

p67\ 1 [ (4/3)n(SL6)3
(4/3)n(SL7)3\ 1 [ 1

L3 , (B1)

and the probability, that none of the substructures of hierarchy 6 are closer than SL 6 to the center of the EUV region isP67(0),

P67(0)\ (1[ L~3)LD (B2)

(this is eq. [46] of the text). An expression for the probability that when the EUV region is interior to a structure ofP68(0),
hierarchy 8 there are no structures of hierarchy 6 within a distance SL 6 of it, is given by

P68(0)\ ;
k/0

LD
P78(k)[P67(0)]k . (B3)

Here we are adding a series of conditional probabilities. The term is the probability that if the center of the EUVP78(k)[P67(0)]k
region simultaneously lies within k of the LD substructures of hierarchy 7 [the expression then no substructures ofP78(k)],
hierarchy 6, within those substructures of hierarchy 7, will be any closer than SL 6 to the center of the EUV region. Since P67(0)
is independent of each of the k substructures of hierarchy 7, the expression must be multiplied by The choice ofP78(k) [P67(0)]k.
k out of LD indistinguishable substructures means that the probability distribution for is binomial. Thus,P78(k)

P78(k) \(
t
:

LD
k
)
t
;
(p)k(1[ p)LD~k , (B4)

where p, the probability that the center of the EUV region is found within a substructure of hierarchy 7, is given by

p \ (4/3)n(SL7)3
(4/3)n(SL8)3\ L~3 . (B5)
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as a function of l. (dashed line) when l\ 11.FIG. 6.ÈP6l (0) P6l (0)B 0.99

Combining equations (B3), (B4), and (B5) together gives

P68(0)\ ;
k/0

LD
(

t

:

LD
k
)
t
;
[L~3P67(0)]k(1[ L~3)LD~k \ [P67(0)L~3 ] (1[ L~3)]LD . (B6)

Equation (B5) applies to all cases in which the substructure under consideration is one less than the fractal. This means
equation (B6) is generalized by replacing the superscripts 7 and 8 with l and l [ 1. This gives

P6l (0)\ [L~3P6l~1(0)] (1[ L~3)]LD , (B7)

establishing equation (46) in the text. Figure 6 shows a plot of as a function of l for L \ 3.2098 and D\ 2.3. Note thatP6l (0)
when l\ 11, we have close to 0.99 (horizontal dashed line).P611(0)
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