42 research outputs found

    Finite Element Time-Domain Body-of-Revolution Maxwell Solver based on Discrete Exterior Calculus

    Full text link
    We present a finite-element time-domain (FETD) Maxwell solver for the analysis of body-of-revolution (BOR) geometries based on discrete exterior calculus (DEC) of differential forms and transformation optics (TO) concepts. We explore TO principles to map the original 3-D BOR problem to a 2-D one in the meridian plane based on a Cartesian coordinate system where the cylindrical metric is fully embedded into the constitutive properties of an effective inhomogeneous and anisotropic medium that fills the domain. The proposed solver uses a TE/TM field decomposition and an appropriate set of DEC-based basis functions on an irregular grid discretizing the meridian plane. A symplectic time discretization based on a leap-frog scheme is applied to obtain the full-discrete marching-on-time algorithm. We validate the algorithm by comparing the numerical results against analytical solutions for resonant fields in cylindrical cavities and against pseudo-analytical solutions for fields radiated by cylindrically symmetric antennas in layered media. We also illustrate the application of the algorithm for a particle-in-cell (PIC) simulation of beam-wave interactions inside a high-power backward-wave oscillator.Comment: 42 pages, 19 figure

    Throughput Performance Evaluation of Multiservice Multirate OCDMA in Flexible Networks

    Get PDF
    \u3cp\u3eIn this paper, new analytical formalisms to evaluate the packet throughput of multiservice multirate slotted ALOHA optical code-division multiple-access (OCDMA) networks are proposed. The proposed formalisms can be successfully applied to 1-D and 2-D OCDMA networks with any number of user classes in the system. The bit error rate (BER) and packet correct probability expressions are derived, considering the multiple-access interference as binomially distributed. Packet throughput expressions, on the other hand, are derived considering Poisson, binomial, and Markov chain approaches for the composite packet arrivals distributions, with the latter defined as benchmark. A throughput performance evaluation is carried out for two distinct user code sequences separately, namely, 1-D and 2-D multiweight multilength optical orthogonal code (MWML-OOC). Numerical results show that the Poisson approach underestimates the throughput performance in unacceptable levels and incorrectly predicts the number of successfully received packets for most offered load values even in favorable conditions, such as for the 2-D MWML-OOC OCDMA network with a considerably large number of simultaneous users. On the other hand, the binomial approach proved to be more straightforward, computationally more efficient, and just as accurate as the Markov chain approach.\u3c/p\u3

    Spatial resolution effect of light coupling structures

    Get PDF
    This research project was founded by the National Council for Scientific and Technological Development (CNPq) of Brazil (302397/2014-0), by the National Natural Science Foundation of China (11204386, 11411130117, 11334015), by the Open research project of the State Key Laboratory of Optoelectronic Materials and Technologies, Sun-Yat Sen University of China (OEMT-2015-KF-12, OEMT-2015-KF-13) and by EPSRC of U.K. under grant EP/J01771X/1 (Structured Light). Kezheng Li is also supported by the aboard exchange scholar and international doctoral cooperative project of Sun Yat-sen University.The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as "coupling surfaces", are required, which are often difficult to realise technologically. We identify general design rules based on the Fourier properties of the coupling surface and show how they can be used to determine the spatial resolution required for the coupler's fabrication. To our knowledge, this question has not been previously addressed, but it is important for the understanding of diffractive nanostructures and their technological realisation. We exemplify our insights with solar cells and UV photodetectors, where high-performance nanostructures that can be realised cost-effectively are essential.Publisher PDFPeer reviewe

    Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation

    Get PDF
    \u3cp\u3eIn this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.\u3c/p\u3

    On Metalenses with Arbitrarily Wide Field of View

    Get PDF
    Metalenses are nanostructured surfaces that mimic the functionality of optical elements. Many exciting demonstrations have already been made, for example, focusing into diffraction-limited spots or achromatic operation over a wide wavelength range. The key functionality that is yet missing, however, and that is most important for applications such as smartphones or virtual reality, is the ability to perform the imaging function with a single element over a wide field of view. Here, by relaxing the constraint on diffraction-limited resolution, we demonstrate the ability of single-layer metalenses to perform wide field of view (WFOV) imaging while maintaining high resolution suitable for most applications. We also discuss the WFOV physical properties and, in particular, we show that such a WFOV metalens mimics a spherical lens in the limit of infinite radius and infinite refractive index. Finally, we use Fourier analysis to explain the dependence of the FOV on the numerical aperture

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore