287 research outputs found

    Multifragmentation of non-spherical nuclei

    Get PDF
    The shape influence of decaying thermalized source on various characteristics of multifragmentation as well as its interplay with effects of angular momentum and collective expansion are first studied and the most pertinent variables are proposed. The analysis is based on the extension of the statistical microcanonical multifragmentation model.Comment: 5 pages, 4 figure

    Anomalous radial expansion in central heavy-ion reactions

    Get PDF
    The expansion velocity profile in central heavy-ion reactions in the Fermi energy domain is examined. The radial expansion is non-hubblean and in the surface region it scales proportional to a higher exponent (α>1\alpha > 1) of the radius. The anomalous expansion velocity profile is accompanied by a power law nucleon density profile in the surface region. Both these features of central heavy-ion reactions disappear at higher energies, and the system follows a uniform Hubble expansion (α≃1\alpha \simeq 1)

    Mechanical and chemical spinodal instabilities in finite quantum systems

    Get PDF
    Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears that instabilities are reduced by finite size effects. The role of surface and volume instabilities is discussed. It is indicated that the important chemical effects associated with mechanical disruption may lead to isospin fractionation.Comment: 4 pages, 4 figure

    Critical Temperature for the Nuclear Liquid-Gas Phase Transition

    Full text link
    The charge distribution of the intermediate mass fragments produced in p (8.1 GeV) + Au collisions is analyzed in the framework of the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition TcT_c as a free parameter. It is found that Tc=20±3T_c=20\pm3 MeV (90% CL).Comment: 4 pages, 3 figures, published in Phys. Rev.

    Thermal and Chemical Freeze-out in Spectator Fragmentation

    Full text link
    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as suggested by the editors and referee

    Influence of Neutron Enrichment on Disintegration Modes of Compound Nuclei

    Full text link
    Cross sections, kinetic energy and angular distributions of fragments with charge 6≀\leZ≀\le28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influence of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models.Comment: 8 pages, 1 figure, paper presented at the First Workshop on "State of the Art in Nuclear Cluster Physics" 13-16 May, 2008, at Strasbourg, France (SOTANCP2008) and accepted for publication at International Journal of Modern Physics E (Special Issue), Proceedings of SOTANCP2008 (to be published

    Isotope correlations as a probe for freeze-out characterization: central 124Sn+64Ni, 112Sn+58Ni collisions

    Full text link
    124Sn+64Ni and 112Sn+58Ni reactions at 35 AMeV incident energy were studied with the forward part of CHIMERA multi-detector. The most central collisions were selected by means of a multidimensional analysis. The characteristics of the source formed in the central collisions, as size, temperature and volume, were inspected. The measured isotopes of light fragments (3 <= Z <=8) were used to examine isotope yield ratios that provide information on the free neutron to proton densities.Comment: 4 pages, Contribution to 8th International Conference on Nucleus-Nucleus Collisions, Moscow 200

    Projected Quasi-particle Perturbation theory

    Full text link
    The BCS and/or HFB theories are extended by treating the effect of four quasi-particle states perturbatively. The approach is tested on the pairing hamiltonian, showing that it combines the advantage of standard perturbation theory valid at low pairing strength and of non-perturbative approaches breaking particle number valid at higher pairing strength. Including the restoration of particle number, further improves the description of pairing correlation. In the presented test, the agreement between the exact solution and the combined perturbative + projection is almost perfect. The proposed method scales friendly when the number of particles increases and provides a simple alternative to other more complicated approaches
    • 

    corecore