23 research outputs found

    A quantitative AOP of mitochondrial toxicity based on data from three cell lines

    Get PDF
    Adverse Outcome Pathways (AOPs) are increasingly used to support the integration of in vitro data in hazard assessment for chemicals. Quantitative AOPs (qAOPs) use mathematical models to describe the relationship between key events (KEs). In this paper, data obtained in three cell lines, LHUMES, HepG2 and RPTEC/TERT1, using similar experimental protocols, was used to calibrate a qAOP of mitochondrial toxicity for two chemicals, rotenone and deguelin. The objectives were to determine whether the same qAOP could be used for the three cell types, and to test chemical-independence by cross-validation with a dataset obtained on eight other chemicals in LHUMES cells. Repeating the calibration approach for both chemicals in three cell lines highlighted various practical difficulties. Even when the same readouts of KEs are measured, the mathematical functions used to describe the key event relationships may not be the same. Cross-validation in LHUMES cells was attempted by estimating chemical-specific potency at the molecular initiating events and using the rest of the calibrated qAOP to predict downstream KEs: toxicity of azoxystrobin, carboxine, mepronil and thifluzamide was underestimated. Selection of most relevant readouts and accurate characterization of the molecular initiating event for cross-validation are critical when designing in vitro experiments targeted at calibrating qAOPs.Toxicolog

    Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks

    Get PDF
    The workshop titled “Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks” was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment. The workshop discussions were centered around three related themes: 1) assessing certainty in AOPs, 2) literature-based AOP development, and 3) integrating certainty in AOPs and non-animal evidence into decision frameworks. Several challenges, mostly related to methodology, were identified and largely determined the workshop recommendations. The workshop recommendations included the comparison and potential alignment of processes used to develop AOP and systematic review methodology, including the translation of vocabulary of evidence-based methods to AOP and vice versa, the development and improvement of evidence mapping and text mining methods and tools, as well as a call for a fundamental change in chemical risk and uncertainty assessment methodology if to be conducted based on AOPs and new approach methodologies (NAM). The usefulness of evidence-based approaches for mechanism-based chemical risk assessments was stressed, particularly the potential contribution of the rigor and transparency inherent to such approaches in building stakeholders’ trust for implementation of NAM evidence and AOPs into chemical risk assessment

    Population pharmacokinetic reanalysis of a Diazepam PBPK model: a comparison of Stan and GNU MCSim

    No full text
    The aim of this study is to benchmark two Bayesian software tools, namely Stan and GNU MCSim, that use different Markov chain Monte Carlo (MCMC) methods for the estimation of physiologically based pharmacokinetic (PBPK) model parameters. The software tools were applied and compared on the problem of updating the parameters of a Diazepam PBPK model, using time-concentration human data. Both tools produced very good fits at the individual and population levels, despite the fact that GNU MCSim is not able to consider multivariate distributions. Stan outperformed GNU MCSim in sampling efficiency, due to its almost uncorrelated sampling. However, GNU MCSim exhibited much faster convergence and performed better in terms of effective samples produced per unit of time. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
    corecore