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A B S T R A C T   

Adverse Outcome Pathways (AOPs) are increasingly used to support the integration of in vitro data in hazard 
assessment for chemicals. Quantitative AOPs (qAOPs) use mathematical models to describe the relationship 
between key events (KEs). In this paper, data obtained in three cell lines, LHUMES, HepG2 and RPTEC/TERT1, 
using similar experimental protocols, was used to calibrate a qAOP of mitochondrial toxicity for two chemicals, 
rotenone and deguelin. The objectives were to determine whether the same qAOP could be used for the three cell 
types, and to test chemical-independence by cross-validation with a dataset obtained on eight other chemicals in 
LHUMES cells. Repeating the calibration approach for both chemicals in three cell lines highlighted various 
practical difficulties. Even when the same readouts of KEs are measured, the mathematical functions used to 
describe the key event relationships may not be the same. Cross-validation in LHUMES cells was attempted by 
estimating chemical-specific potency at the molecular initiating events and using the rest of the calibrated qAOP 
to predict downstream KEs: toxicity of azoxystrobin, carboxine, mepronil and thifluzamide was underestimated. 

Selection of most relevant readouts and accurate characterization of the molecular initiating event for cross- 
validation are critical when designing in vitro experiments targeted at calibrating qAOPs.   

1. Introduction 

Adverse outcome pathways (AOPs) have become an organizing 
framework to facilitate the development and integration of alternative 
test methods for assessing hazard of chemicals to human health and the 
environment. A dedicated program is currently running under the aus
pices of the Organisation for Economic Co-operation and Development 
(OECD) (Organisation for Economic Co-operation and Development 
(OECD), 2021). AOPs are intended to represent critical in vivo phe
nomena by capturing the essential elements of the perturbations of a 
biological system with a simple linear model (Organisation for Eco
nomic Co-operation and Development (OECD), 2016). Practically, an 
AOP is a chemical-independent description of a linear or branching path 

from a molecular initiating event (MIE) to an eventual adverse outcome 
(AO) at the organism or population level (Villeneuve et al., 2014). In 
between, there can be any number of intermediate critical and 
measurable key events (KEs) connected by key event relationships 
(KERs) (LaLone et al., 2017;Organisation for Economic Co-operation 
and Development (OECD), 2018) 

AOPs are useful for hazard assessment as they describe mechanism of 
action. AOPs can support the development of integrated testing strate
gies (ITS) and their application in risk assessment (Leist et al., 2017; 
Vinken, 2013). In case of ITS building, the data generated by alternative 
methods (i.e., in silico, in vitro), when combined with existing animal 
data, are used and assessed by means of a fixed data interpretation 
procedure (Sachana and Leinala, 2017). For this purpose, quantitative 
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AOPs (qAOPs) that provide dose-response and time-course predictions 
(Conolly et al., 2017; Spinu et al., 2019) are likely to be more valuable 
for ITS construction than qualitative AOPs. 

qAOPs are built by modeling key event relationships of a qualitative 
AOP with mathematical equations, based on available data, including 
specially produced experimental data (Zgheib et al., 2019) or data 
collected from the literature (Burgoon et al., 2020; Foran et al., 2019). 
Several methods have been used to quantify AOPs, based either on 
categorical Bayesian decision trees or networks (Jaworska et al., 2015; 
Rovida et al., 2015), or on continuous models ranging from dose 
response models (Hassan et al., 2017), up to systems toxicology models 
(Conolly et al., 2017). Categorical Bayesian decision trees or networks 
predict hazard in the form of probabilities of being non-toxic, weakly 
toxic, strongly toxic etc. The underlying distributions are multinomial 
and continuous test responses are discretized to fit in the multinomial 
framework. Such decision trees have already been applied to AOPs in the 
area of skin sensitization (Jaworska et al., 2015). They facilitate potency 
assessment for classification purposes and inform hazard characteriza
tion in a semi-quantitative way. A larger number of continuous qAOPs 
models have been developed using dose-response models (Hassan et al., 
2017; Zgheib et al., 2019), dynamic Bayesian networks (Zgheib et al., 
2019), systems biology or systems toxicology models (Conolly et al., 
2017; Zgheib et al., 2019). qAOPs need to be calibrated by fitting the 
KER to data, setting parameters to their best estimates, or, in a Bayesian 
approach, to their posterior distributions. KER parameter estimates can 
be obtained by estimating each dose-response relationship separately, or 
by fitting the entire dataset simultaneously (Villeneuve et al., 2014). In 
theory, once the data for a single chemical has been modelled by a 
qAOP, the set of equations developed should help better understand how 
KEs are related. It should also be usable to predict responses at con
centration levels or for chemicals that have not been tested (chemical- 
independence) (Perkins et al., 2019). However, we have little evidence 

that the continuous qAOPs developed so far are chemical-independent. 
Mitotoxicity-induced cell death has been described by an AOP enti

tled “Inhibition of the mitochondrial complex I of nigro-striatal neurons 
leads to parkinsonian motor deficits” in the AOPWiki (https://aopwiki. 
org/aops/3). Its molecular initiating event (MIE) is the binding of an 
inhibitor to NADH-ubiquinone oxidoreductase (complex I), which leads 
successively to inhibition of Complex I, mitochondrial dysfunction, 
impaired proteostasis, a combination of neuroinflammation and 
degeneration of DA neurons of the nigrostriatal pathway, and finally to 
Parkinsonian motor deficits. The AOP was developed using two 
stressors, rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP/MPP+). 

The objectives of this research were to:  

- Check whether a quantitative version of the above mitotoxicity AOP, 
calibrated using in vitro experimental data on rotenone and deguelin 
in Lund human mesencephalic (LHUMES) neuronal cells, HepG2 
liver cells, and RPTEC/TERT1 renal cells, could be developed using 
the same structural equations in the three cell types (cell-type in
dependence) and for both chemicals (chemical-independence).  

- Further check chemical-independence by predictive cross-validation 
with a MIE activation and AO dataset obtained on eight other 
chemicals (antimycin A, azoxystrobin, carboxine, fenpyroximate, 
mepronil, pyraclostrobin, pyrimidifen, and thifluzamide) in 
LHUMES cells.  

- Identify challenges and practical difficulties in development and 
calibration of qAOPs, in order to a) help increase relevance of design 
of experiments aimed at calibrating and validating qAOPs, and b) 
provide working examples of quantitative models of KERs can be 
combined to form a qAOP. 

2. Material and methods 

The workflow followed for qAOP calibration and subsequent cross- 
validation is shown in Fig. 1. 

2.1. Structure of the AOP 

The mitotoxicity-induced cell death AOP is based on the first parts of 
the “Inhibition of the mitochondrial complex I of nigro-striatal neurons 
leads to parkinsonian motor deficits” AOP described in AOPWiki 
(https://aopwiki.org/aops/3). We investigated mitochondrial complex I 
inhibition-induced mitotoxicity in vitro in neuronal cells, renal cells and 
hepatocytes. Therefore, we adapted the existing AOP so that the KEs 
were representative of events observed in the three cell types (e.g. DA 
neurons degeneration was translated as cell death for liver and renal 
cells). The various in vitro readouts were then mapped to the KEs of this 
adapted AOP (Fig. 2). For technical reasons, the readouts for the various 
KEs were not exactly the same for the three cell types. A larger set of 
readouts was obtained for the kidney and liver cells compared to neu
rons. While mitochondrial respiration was measured in neuronal cells, 
mitochondrial dysfunction per se was not assessed. The actual neuronal 
qAOP therefore included a reduced set of KEs. Conversely, the MIE was 
not measured in kidney cells. See Table 1 and precise AOP structures for 
each type of cell in Fig. S1, S2, and S3 in Supplemental Materials. 

2.2. Data 

2.2.1. In vitro data in hepatic cells 
Effects of rotenone and deguelin in HepG2 cells were quantified 

based on four readouts: Mitochondrial respiration (in intact or per
meabilized cells), mitochondrial membrane potential, lactate concen
trations and resazurin conversion. All data were expressed as percentage 
of DMSO control. 

Mitochondrial respiration: Decrease in mitochondrial respiration 
was and measured using an Agilent® Seahorse OCR equipment. 

Fig. 1. Workflow for calibrating the qAOP with a reference chemical and 
applying it to a new chemical. 
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Mitochondrial respiration is based on the oxygen consumption rate and 
is assessed directly (within 15–30 min) after exposure. Several features 
can be extracted from this measurement, including basal and maximal 
respiration. The full method description can be found in (van der Stel 
et al., 2020). As the aim was a comparison of the effect of chemicals on a 
single cell line, the maximal respiration was used as a readout rather 
than the difference between basal and maximal respiration. 

Lactate concentrations: Lactate production was measured using a 
colorimetric assay capturing the conversion of pyruvate to lactate by 
lactate dehydrogenase (LDH) enzyme. The presence of lactate was 
monitored in the supernatant after 24 h of chemical exposure. The data 
and method description can be found in (van der Stel et al., 2020). 

Mitochondrial membrane potential: Mitochondrial dysfunction was 
quantified based on the loss of mitochondrial membrane potential 
(MMP) using the potential sensitive Rhodamine123 dye. The data and 
method description can be found in (van der Stel et al., 2020). 

Resazurin concentration: Cells’ viability was measured based on 
their capacity to reduce resazurin after 24 h chemical exposure. The 
reduction of resazurin to resorufin results in the increase of fluorescence 
signal around 580 nm. This increase in resorufin was measured after 24 
h chemical exposure. The data and method description can be found in 
(van der Stel et al., 2020). 

2.2.2. In vitro data in renal cells 
Methods were as for hepatocytes, except that inhibition of mito

chondrial Complex I, the MIE, was not measured in RPTEC/TERT1 cells. 
Lactate production and resazurin reduction were measured in three 
(rotenone) or four (deguelin) experiments with two technical replicates 
each. MMP was measured in three experiments with two technical 
replicates each. 

2.2.3. In vitro data in neuronal cells 
Complex I inhibition and mitochondrial respiration were measured 

as in HepG2 cells. Two readouts were specific to the AOP applied to 
neuronal cells: impaired proteostasis was measured via proteasomal 
activity, neuronal degeneration was measured via an estimation of their 
neurites’ area. 

Complex I activity was measured using in proliferating LHUMES 
cells. Mitochondrial respiration and proteasomal activity were 
measured using the same cells at a stage of neurite growth (day 3 of 
differentiation). 

The proteasomal function of cells was assessed at 24 h after toxicant 
exposure by a fluorogenic substrate that increases in fluorescence when 
the proteasome is active (Delp et al., 2021). 

Neurite area was measured using LHUMES cells at a stage of neurite 
growth (day 2 of differentiation). The neurite areas (which serves as 
indirect measurement of neuronal interconnectivity) of stained differ
entiating neurons, as well as cellular viability are measured simulta
neously at 24 h after toxicant exposure using high content imaging. The 
processes of neurite outgrowth and cell death are measured. 

2.2.4. Tested chemicals 
Rotenone, deguelin, antimycin A, azoxystrobin, carboxine, fenpyr

oximate, mepronil, pyraclostrobin, pyrimidifen, and thifluzamide were 
obtained from Merck and distributed to the different sites by the JRC 
(Ispra, Italy). Their chemical structures are shown in Table 2. The test 
concentrations are given in see Tables S1 to S7 of the Supplemental 
Materials. Chemical purity was greater than 95% for rotenone, 97% for 
thifluzamide and 98% for other chemicals except for antimycin A 
(undetermined). 

Fig. 2. Complex I inhibition-induced mitotoxicity AOP for dopaminergic (DA) neurons, kidney and liver. The readouts are in yellow. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
List of the mitotoxicity AOP readouts studied. All are expressed in percentage of 
DMSO control.  

Readout 
abbreviation 

Description Position in 
AOP 

Cell lines 

CI Complex I specific 
mitochondrial respiration 

MIE Neuronal, 
hepatic 

LC Lactate concentration KE1 Hepatic, renal 
MR Mitochondrial respiration KE1 All 
PT Proteasomal activity KE2 Neuronal 
MMP Mitochondrial membrane 

potential 
KE2 Hepatic, renal 

NR Neurite Area KE3 Neuronal 
RZ Resazurin reduction KE3 Hepatic, renal  

C. Tebby et al.                                                                                                                                                                                                                                   
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2.3. Calibration of quantitative AOPs 

2.3.1. Models of KER 
Each KER was modelled using one of the three functions defined 

hereafter and represented in Fig. 3. Model A is a 4-parameter log-logistic 
function f (Eq.1), which is a sigmoid when x is on a logarithmic scale, 

where ymax is the response at high dose of KEx levels, ymin is the response 
at low dose levels, k is a slope parameter, and EC50 is the inflexion point 
of the sigmoid on a log scale: 

f (KEx) = ymin +
ymax − ymin

1 + exp( − k(log(KEx) − log(EC50) ) )
(1) 

Model B is a linear function g (Eq. 2) with slope β and intercept β0. 

g(KEx) = β×KEx + β0 (2) 

Model C is a regression function which increases and has a horizontal 
asymptote and a shift on the x-axis (Eq. 3), where ymax is the response at 
high KEx levels, k is a slope parameter and xmin is a KEx threshold below 
which the next KE is equal to 0. 

h(KEx) = ymax
(
1 − e− k(KEx − xmin)

)
if KEx > xmin, 0 otherwise. (3) 

The general behaviour of those functions is illustrated in Fig. 3. 

2.3.2. KER model selection 
The qAOPs for rotenone and deguelin were calibrated in a stepwise 

approach, starting by plotting the first KER (relationship between MIE 
and KE1) to determine visually the most appropriate dose-response 
model, calibrating the first KER, and predicting KE1 at the concentra
tion levels where KE2 was measured. These predictions were used to plot 
the second KER (between predicted KE1 and observed KE2) to determine 

Table 2 
Chemical structure of the chemicals tested on neurons for the development of the complex I inhibition-induced mitotoxicity AOP. 

Rotenone Deguelin Antimycin Azoxystrobin Carboxine 

Fenpyroximate Mepronil Pyraclostrobin Pyrimidifen Thifluzamide 

Fig. 3. Graphical representation of the three KER functions: A) log-logistic, B) 1st order linear, C) asymptotic with horizontal shift.  

Table 3 
List of models used to represent KERs in each type of cell. The seven KE readouts are 
coded as: CI (complex I activity), LC (lactate production), MR (mitochondrial 
respiration), MMP (mitochondrial membrane potential), PR (proteasomal ac
tivity), and NR (neurite area), RZ (resazurin level).  

KER Neuronal cells Liver cells Renal cells 

Dose → CI Log-logistic a Log-logistic  
Dose → LC   Log-logistic 
CI → MR Linear b Asymptotic c  

CI → LC  Linear  
Dose → logMR   Log-logistic 
MR → PR Asymptotic   
MR × PR → NR Asymptotic d   

MR + LC → logMMP  Linear e  

logMR + LC → logMMP   Linear f 

logMMP → RZ  Log-logistic Log-logistic 

a See Eq. 1; b See Eq. 2; c See Eq. 3; d See Eq. 6; e See Eq. 4; f See Eq. 5. 

C. Tebby et al.                                                                                                                                                                                                                                   
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visually the most appropriate model for the second KER. The first two 
KERs were then calibrated together and the predictions (for the MIE, 
KE1, and KE2) were checked against the observations etc. 

In cases where several models could be used, the final models were 
selected by comparing the results of leave-one-out cross-validation 

(Vehtari et al., 2017) using Pareto-smoothed importance sampling 
(PSIS) by calculating the pointwise likelihood of the data given each of 
the tested models. 

Fig. 4. Predicted and observed dose-response relationships in the mitotoxicity qAOP in neurons for each readout (complex I inhibition, mitochondrial respiration 
inhibition, proteasomal activity, neurite area. Red line: predictions obtained with the maximum posterior parameter values. Grey lines: predictions obtained with 30 
random parameter vectors drawn from their joint posterior distribution. Dots: experimental data. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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2.3.3. Models for multiple readouts 
In the liver and renal qAOPs, lactate production (LC) and decreased 

mitochondrial respiration (MR) were readouts for the same KE, decrease 
in mitochondrial respiration (KE1). The two readouts were expressed as 
percent absolute change to control and averaged when entered in the 
linear relationship with KE2 (Eq. 4). In the renal qAOP, MR was log- 
transformed (Eq. 5). The transformation into percent change to con
trol ensures that changes occur in the same direction (in the raw data, 
lactate concentration increases with dose whereas resazurin decreases), 
and avoids negative values. 

KE2 = g
(

LCcontrol/LC + MR/MRcontrol

2
× 100

)

(4)  

KE2 = g
(

LCcontrol/LC + logMR/logMRcontrol

2
× 100

)

(5) 

In Eq. 4 and Eq. 5, LC is the measured lactate production (increasing 

with dose), LCcontrol is the mean lactate production in controls estimated 
by the model, MR is the measured mitochondrial respiration (decreasing 
with dose), and MRcontrol is the mean mitochondrial respiration in con
trols estimated by the model. 

In the neuronal cells qAOP, two KEs lead to KE3: mitochondrial 
dysfunction (readout MR) causes impaired proteostasis (readout PR) and 
neuron degeneration (readout NR), while impaired proteostasis also 
causes neuron degeneration. This AOP is therefore not strictly linear and 
NR was modelled as the product of two functions of MR and PR (Eq. 6) 
under the assumption that both KEs acted independently on it: 

KE3 = h
(

MR
MRcontrol

)

× h
(

PR
PRcontrol

)

(6) 

Which can be rewritten as in Eq. 7:   

Where ymaxNRMR = ymaxNRPR = 1, kNRMR and kNRPR are the slope 
parameters. 

Table 4 
Parameter estimates of the neuronal cells mitotoxity qAOP (maximum posterior values and 95% credibility interval) for rotenone and deguelin.  

KER Function Parameter Rotenone Deguelin 

Concentration → CI Log-logistic yminCI (%) 8.24 [0.345; 13.6] 9.09 [0.176; 12.1]  
(Eq. 1) ymaxCI (%) 103 [95.8; 117] 102 [93.6; 112]   

kCI − 1.13 [− 1.23; − 0.783] − 1.1 [− 1.37; − 0.722]   
EC50 (nM) 18.8 [12.5; 29.9] 62.3 [48.9; 109]   
σCI 6.54 [4.77; 13.6] 7.15 [4.95; 14.7] 

CI → MR Linear βMR 0.883 [0.715; 1.17] 0.876 [0.736; 1.08]  
(Eq. 2) β0MR 8.31 [− 7.04; 20.2] 5.84 [− 7.31; 14.5]   

σMR 19.1 [13.5; 28.7] 10.9 [8.8; 18.1] 
MR → PR Asymptotic ymaxPR (%) 95.1 [91.4; 103] 99.5 [95.3; 104]  

(Eq. 3) kPR 6.29 [0.463; 8.67] 2.31 [0.37; 6.19]   
xminPR (%) 15.5 [2.91; 23.6] 13.7 [0.65; 17.2]   
σPR 13.6 [11.1; 18.5] 8.92 [7.56; 12.3]] 

MR × PR → NR Asymptotic kNRMR 0.0773 [0.043; 0.101] 0.856 [0.191; 1.6]  
(Eq. 7) xminNRMR (%) 12.4 [0.356; 21.2] 13.6 [0.647; 17.1]   

kNRPR 0.0837 [0.0537; 0.927] 0.058 [0.0362; 0.693]   
xminNRPR (%) 37.3 [2.89; 59.2] 35.7 [2.6; 55.1]   
σNR 11.7 [10.5; 14.3] 11.9 [10.9; 14.1]  

Fig. 5. Equations for the qAOP calibrated in neuronal cells for rotenone. The parameter values in the equations are the MPV estimates. All readouts are expressed in 
percentage (%) and concentration C is nanomolar (nM). 

KE3 = ymaxNRMR

(

1 − e
− kNRMR

(

MR
MRcontrol

− xminNRMR

)
)

× ymaxNRPR

(

1 − e
− kNRPR

(

PR
PRcontrol

− xminNRPR

)
)

if MR > xminNRMR and PR > xminNRPR, 0 otherwise (7)   
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Fig. 6. Predicted and observed dose-response relationships in the mitotoxicity qAOP in liver cells for each readout (complex I inhibition, mitochondrial respiration 
inhibition, proteasomal activity, neurite area. Red line: predictions obtained with the maximum posterior vector. Grey lines: predictions obtained with 30 random 
parameter vectors drawn from their joint posterior distribution. Dots: experimental data. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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2.3.4. Statistical modeling 
The qAOP developed can be understood as Bayesian networks (BNs) 

with continuous random variables. Modeling KEs as continuous vari
ables increases relevance of the qAOP for risk assessment since ulti
mately the AO is quantitatively related to the exposure concentration 
level. In typical AOP diagrams, KEs are represented by boxes and KERs 
by single one-directional arrows connecting them. The path linking the 
various KEs should not form loops (feedback or feed-forward loops be
tween two consecutive KEs can simply be indicated by a symbol and 
included in the KER). Thus, according to graph theory, in the absence of 
loops, AOPs are acyclic directed graphs (Pavlopoulos et al., 2011). BNs 
use acyclic directed graphs as their organizational structure (Oates and 
Mukherjee, 2012). The links between their nodes correspond to statis
tical dependencies. 

As explained above, the model was calibrated in a stepwise approach 
to identify each KER model sequentially. At each step, the model was 
calibrated using four Hamiltonian MCMC (HMCMC) run in parallel with 
at least 10,000 iterations (up to 50,000 for the whole AOP), keeping the 
last 5000 iterations. A total of 17 parameters (4 KERs) were estimated in 
the neuronal and renal cell qAOPs; 20 parameters (5 KERs) were esti
mated in the liver cell qAOP. Prior distributions of parameters were 
uniform or log-uniform with wide bounds, as reported in the Supple
mental Materials, section 4.1. The data likelihood of each point was 

calculated according to Eq.8. 

L(θ) ∼
∏

i
Normal df (CIi|f (conc) ,σCI)×

∏

j
Normal df

(
MRj|g(CI) ,σMR

)

×
∏

k
Normal df (PRk|h(MR) ,σPR)×

∏

l
Normal df

(

NRl|

(

h
(

MR
MRcontrol

)

× h
(

PR
PRcontrol

))

, σNR

)

(8) 

Where Ɵ is the vector of parameters, CIi are the data for Complex I 
inhibition i ∈ {1,…,ni}, MRi are the data for mitochondrial respiration j 
∈ {1,…,nj}, PRk are the data for proteostasis k ∈ {1,…,nk}, NRl are the 
data for neurite area l ∈ {1,…,nl}, g(CI) is the predicted value of CI at the 
concentrations where MR was measured. 

L(θ) ∼
∏

i

∏

j
Normal df

(
KEi,j|KERi− 1,i(KEi− 1) , σKEi

)
(9)  

where. 
where KEi,j is the jth observation of KEi, KERi-1,i is the KER 

describing the relationship between KEi-1 and KEi and is one of the 
functions described in Eqs. 1 to 6. A different standard deviation was 
estimated for each KE. σCI, σLC, σMR, σPR, σNR σMMP, σRZ; measurement 
error was assumed to be normally distributed, except for MR in renal 
cells and for MMP, where it was assumed to be log-normally distributed. 

Throughout the AOPs, the error structure that may have arisen from 
reproduction of the experiments and replicates within experiment was 
not taken into account: pointwise errors were considered independent, 
including in the case of lactate and resazurin production, which were 
measured during the same assays. 

Parameter estimates in the qAOP calibrated for rotenone and 
deguelin were compared by identifying overlap in the 95% credibility 
interval. 

2.4. Predictions based on calibrated qAOPs 

The predictive performance of the neuronal qAOP calibrated with 
rotenone and deguelin data was checked on eight other chemicals 
(antimycin A, azoxystrobin, carboxine, fenpyroximate, mepronil, pyr
aclostrobin, pyrimidifen, and thifluzamide) by predicting all KEs 
including neurite area, given the MIE (Fig. 2). In this validation dataset, 
complex I inhibition and mitochondrial respiration were only measured 
at one concentration level for each chemical, between 12.5 and 100 μM, 
whereas proteasomal activity and neurite area were measured at over 10 
concentration levels over at least a 1000-fold range of concentration 
levels. First, the EC50’s of the MIE were estimated for each chemical 
using Eq. 1. The values of the maximum, minimum and slope of those 
dose-response, and all other KER parameters were set to those of the 
reference chemical (either rotenone or deguelin). 

2.5. Software 

Calculations were performed using R version 3.6.1 (R Core Team, 
2019) with packages loo (Vehtari et al., 2020), tidyverse (Wickham et al., 
2019), and rstan (Stan Development Team, 2020), which called the Stan 
HMCMC software (Carpenter et al., 2017). An example of code for the 
calibration of the liver qAOP for deguelin is provided in Supplementary 
Materials, section 6, and working examples for rotenone in liver and 
neuronal cells are provided at DOI https://doi.org/10.5281/zenodo. 
5549495. 

3. Results 

3.1. Calibration of qAOPs 

The qAOP were successfully calibrated for the three cell lines by 
choosing appropriate models for the KERs and calibrating these models 

Table 5 
Parameter estimates in the liver cells mitotoxity qAOP (maximum posterior 
values and 95% posterior distribution).  

KER Function Parameter Rotenone Deguelin 

Conc → CI 
Log-logistic 
(Eq. 1) yminCI (%) 13.8 [3; 23.9] 

22.4 [12.3; 
27.6]   

ymaxCI (%) 117 [103; 152] 
95.4 [75.9; 
116]   

kCI 

− 0.725 
[− 0.979; 
− 0.515] 

− 1.07 [− 1.35; 
− 0.744]   

EC50CI 

(nM) 
16.3 [5.28; 
29.2] 

60.5 [31.6; 
197]   

σCI 

8.52 [6.12; 
15.5] 

5.36 [4.26; 
13.6] 

CI → LC Linear (Eq. 2) βLC 

− 0.274 
[− 0.385; 
− 0.13] 

− 0.404 
[− 0.63; 
− 0.277]   

β0LC 136 [128; 144] 
134 [125; 
143]   

σLC 

12.1 [9.84; 
16.9] 

9.17 [7.44; 
13] 

CI → MR Asymptotic ymaxMR (%) 125 [98.3; 191] 88.7 [77.9; 
167]  

(Eq. 3) kMR 

0.0178 
[0.0077; 
0.0344] 

0.0643 
[0.0114; 
0.128]   

xminMR (%) 
11.3 [0.806; 
21.2] 

20.1 [7.15; 
26.1]   

σMR 

13.8 [11.8; 
20.2] 

17.9 [12.9; 
22.6] 

MR + LC → 
logMMP Linear (Eq. 4) βMMP 

0.0783 
[0.0642; 
0.115] 

0.0729 
[0.0617; 0.11]   

β0MMP 

− 2.65 [− 4.49; 
− 1.76] 

− 2.63 [− 4.07; 
− 1.57]   

σMMP 

0.423 [0.363; 
0.539] 

0.473 [0.382; 
0.556] 

logMMP → 
RZ 

Log-logistic 
(Eq. 1) yminRZ (%) 

19.1 [1.56; 
67.8] 

35.4 [1.74; 
78.2]   

ymaxRZ 

(%) 96.6 [94; 100] 103 [99; 134]   

kRZ 

3.13 [1.45; 
9.02] 

0.792 [0.226; 
3.26]   

EC50RZ 

(%) 
1.60 [1.15; 
3.20] 

1.12 [0.236; 
12.3]   

σRZ 

4.94 [4.27; 
7.48] 

5.05 [3.92; 
6.91]  
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based on the dose-response relationships measured for each readout. 
Table 3 lists the functions used to model the KERs in each cell line. 

None of the KERs are comparable between all three cell lines due to 
differences in readouts available. However, the concentration-response 
relationships for the MIE were always modelled as loglogistic, thus 
inducing sigmoidal concentration-response relationships in subsequent 
KERs, which were, in all cases, linear between the first few KEs and with 
more complex KERs models between the last KEs. MR was log- 
transformed in the renal cell qAOP. MMP, in the liver and renal cell 
AOPs, was log-transformed. 

The predicted concentration-response relationships resulting from 
the calibration of the KER are represented for each cell line in the 
following sections. The predicted and observed KERs are provided in SI: 
observed KERs are obtained by predicting the KEn-1 at the concentration 
levels where KEn was measured and plotting these values against the 

observations of KEn. 

3.1.1. Neuronal cells 
The fit of the model after calibration with the rotenone and deguelin 

data on complex I inhibition, mitochondrial respiration inhibition, and 
impairment of proteostasis is shown in Fig. 4. In all cases the fits are 
acceptable: all data points are within a 3-fold factor of the maximum 
likelihood prediction, all but 5 are within a 2-fold factor. The shape of 
the model for the last KE, NR, with an intermediate plateau for rotenone, 
is due to the combined effects of the two precursor KEs: Impaired pro
teostasis compounds the effect of mitochondrial respiration inhibition at 
high effect levels. 

Table 4 gives a summary of the posterior parameter distributions 
obtained by MCMC sampling for rotenone and deguelin in neuronal 
cells. The overlap of parameter distributions for both rotenone and 

Fig. 7. Predicted and observed dose-response relationships in the mitotoxicity qAOP in renal cells for each readout (complex I inhibition, mitochondrial respiration 
inhibition, proteasomal activity, neurite area. Red line: predictions obtained with the maximum posterior vector. Grey lines: predictions obtained with 30 random 
parameter vectors drawn from their joint posterior distribution. Dots: experimental data. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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deguelin is strong, apart from the potencies of the chemicals (EC50CI) 
and the slope of the relationship between PR and NR (kNRPR). Since there 
is a difference in shape of the KER in the final step of the qAOP (kNRPR), 
the difference in potency observed at the MIE is not the same as at NR, 
the final outcome of the AOP. Mitochondrial respiration inhibition ap
pears to be more determinant in neurite area reduction with rotenone 
than with deguelin. 

Modelled KERs are shown in the Supplemental Material (Fig. S16). 
For both rotenone and deguelin, the shape of the modelled KER implied 
that, at the lowest tested concentration levels, decrease in neurite area 
(NR) was caused by MR mostly, since kNRPR was much greater than kPR 
whereas at higher concentration levels, PR started to cause NR as well. 
The qAOP equations calibrated for rotenone are represented in Fig. 5 
(see Fig. S19 for deguelin), based on the maximum posterior values 

(MPV), which are the most likely or equivalently best fit estimates given 
the uniform priors used. 

3.1.2. Liver cells 
The mean responses of each KE in liver cells were accurately pre

dicted for both rotenone and deguelin (Fig. 6) (all but one data points 
were within a 3-fold factor of the maximum likelihood prediction, and 
all but seven were within a 2-fold factor). KEs up to MMP have similar 
EC50 levels. Strong non-linearity of the KER occurs between MMP and 
RZ (Fig. S17): the EC50 is around 100-fold higher for RZ than for MMP. 

Parameter distributions overlapped between rotenone and deguelin 
(Table 5), apart from the EC50 of the MIE concentration-response, which 
points only to a difference in potency between the two chemicals. 

3.1.3. Renal cells 
The predicted dose response relationships of each readout for rote

none and deguelin are shown in Fig. 7. MR data was log transformed 
before analysis since this improved the fit according to LOO validation. 
Variability was larger than in the same readouts measured in liver cells, 
for example the estimate of σCI was less than 10% in liver cells and over 
40% in renal cells. This resulted in a larger number of data points that 
were not well predicted: 10 data points were not within a three-fold 
factor of the predictions that maximized likelihood, 21 were not 
within a two-fold factor. In particular, measurements of resazurin levels 
were highly variable: high levels measured in some replicates at high 
doses implied that resazurin levels were not modelled as decreasing at 
high doses (Fig. 7). All parameter distributions overlapped strongly 
between rotenone and deguelin apart from the EC50 of the 
concentration-LC relationship (Table 6). The uncertainty on ymaxRZ and 
xminRZ is likely due to the fact that the high effect plateau of RZ is not 
well characterized by the data, and results in uncertainty on the KER 
between MMP and RZ and a high value of σRZ (see also Fig. S18). The 
high values of σRZ and σCI reflect the fact that most RZ and CI mea
surements do not reach low levels. 

3.2. Predictions based on calibrated qAOPs 

As a predictive check, the qAOP calibrated with rotenone or deguelin 
data in neuronal cells was used to predict the concentration-AO re
lationships for antimycin A, azoxystrobin, carboxine, fenpyroximate, 
mepronil, pyraclostrobin, pyrimidifen, and thifluzamide. 

The estimated EC50 of the MIE (complex I inhibition) concentration- 
response relationship are reported in Table 7. These were obtained by 
setting ymaxCI, yminCI, and kCI to the values obtained with rotenone (see 
Table S11 for EC50CI obtained by setting ymaxCI, yminCI, and kCI to the 
values obtained with deguelin). When the observed responses were 
either low or high (close to zero or full complex I inhibition), the EC50 
could not be accurately estimated, which is the case for antimycin A, 
fenpyroximate, pyraclostrobin and pyrimidifen. Calibrated dose re
sponses for the MIE are represented in Fig. 8 (see Fig. S26 for those based 
on the deguelin AOP). 

The distributions of all other parameters were then set to the pos
terior distributions obtained for rotenone and for deguelin separately. 
Predicted dose-responses for neurite area obtained with the qAOP cali
brated for rotenone and chemical-specific EC50CI are represented in 
Fig. 9. Supplemental Material Figs. S24 and S25 show the intermediate 
KEs. Based on the MPV, all predictions were within a 3-fold factor for 
complex I inhibition which suggests the values of ymaxCI, yminCI, kCI 
obtained for rotenone are suitable for other chemicals too. Predictions 
were not always accurate for the chemicals for which an EC50 of the MIE 
dose-response could be estimated (azoxystrobin, carboxine, mepronil 
and thifluzamide). The decrease in neurite area occurred at concentra
tion levels approximately 10 times smaller than those predicted to 
azoxystrobin, carboxine and mepronil, and 1000 times smaller than 
those predicted for thifluzamide. For the other chemicals, neurite area 
can be predicted by the qAOP, although with large uncertainty: the data 

Table 6 
Parameter estimates in the renal cells mitotoxicity qAOP in (maximum posterior 
values and 95% interval of posterior distribution).  

KER Function Parameter Rotenone Deguelin 

Conc. → LC 
Loglogistic 
(Eq. 1) yminCI (%) 

117 [56.4; 
156] 

126 [104; 
164]   

ymaxCI (%) 302 [279; 341] 
323 [292; 
351]   

kCI 

1.48 [0.463; 
9.48] 2 [1.3; 88]   

EC50CI 

(nM) 
53.1 [18.6; 
114] 

140 [85.9; 
374]   

σCI 42.2 [36.4; 56] 
46.4 [43.3; 
67.3] 

Conc. → 
logMR 

Loglogistic 
(Eq. 1) 

yminMR 

(%) 
1.73 [1.48; 
2.12] 

1.88 [1.65; 
2.05]   

ymaxMR 

(%) 
4.62 [4.42; 
4.81] 

4.55 [4.42; 
4.68]   

kMR 

− 1.18 [− 1.93; 
− 0.742] 

− 1.63 [− 2.38; 
− 1.04]   

EC50MR 

(nM) 256 [149; 366] 
231 [184; 
331]   

σMR 

0.311 [0.243; 
0.41] 

0.193 [0.169; 
0.295] 

logMR + LC 
→ logMMP Linear (Eq. 1) βMMP 

0.0114 
[0.00449; 
0.0188] 

0.00816 
[0.0065; 
0.0122]   

β0MMP 

3.31 [2.72; 
3.82] 

3.5 [3.17; 
3.65]   

σMMP 

0.543 [0.474; 
0.728] 

0.235 [0.193; 
0.301] 

logMMP → 
RZ 

Loglogistic 
(Eq. 1) yminRZ (%) 

21.5 [2.07; 
79.7] 

21.1 [2.54; 
82.4]   

ymaxRZ 

(%) 97 [67.3; 135] 
108 [70.6; 
135]   

kRZ 

4.43 [0.119; 
73.1] 

0.884 [0.116; 
76.8]   

EC50RZ 

(%) 
40.2 [10.6; 
58.2] 

31.3 [10.5; 
57.2]   

σRZ 

46.6 [42.9; 
66.9] 

40.1 [34; 
54.9]  

Table 7 
Maximum posterior values and 95% interval of posterior distri
bution of the EC50 for each chemical when the other parameters of 
the concentration-response relationship (yminCI, ymaxCI, kCI) are set 
to the rotenone values.  

Chemical Estimated EC50CI (μM) 

Antimycin A 0.0219 [6.06e-05; 10.3] 
Azoxystrobin 26.7 [0.00148; 52.6] 
Carboxine 360 [219; 19,200] 
Fenpyroximate 0.074 [6.18e-05; 11.4] 
Mepronil 149 [98.1; 2290] 
Pyraclostrobin 6.06 [6.27e-05; 12.2] 
Pyrimidifen 0.123 [6.25e-05; 13.5] 
Thifluzamide 468 [224; 19,300]  
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measured at the MIE only provide a limited amount of information. The 
entire AOP is represented for two chemicals in Fig. 10. 

Supplemental Material Figs. S27, S28, S29 show all predictions ob
tained using the qAOP calibrated for deguelin and chemical-specific 
EC50CI. The results do not differ markedly from the results obtained 
with the rotenone-calibrated qAOP. 

4. Discussion 

The AOP for complex I inhibition-induced mitotoxicity was suc
cessfully modelled and calibrated using three cell lines for rotenone and 
deguelin, based on an extensive dataset of readout dose-responses of 
each KE. Comparison of the results obtained for rotenone and deguelin 
suggested chemical independence to a certain extent. However, appli
cation of the calibrated qAOP in neuronal cells to other chemicals 
showed that, in cases where the MIE response could be modelled, neurite 
area decreased at concentrations smaller than predicted by the qAOP. 

4.1. Experimental data 

The experimental data used to calibrate the mitotoxicity qAOP was 
obtained as part of a case study of the EU-ToxRisk project. The data for 
each of the three cell types was produced in one laboratory within a 
short time span, which can be considered to be the ideal type of data for 
calibrating qAOPs and provides an opportunity to model KERs precisely, 
since variability was reduced to measurement and replicate effects 
(Spinu, 2021). For technical reasons, the readouts for the various KEs 
were not identical for the three cell types and all readouts were not 
measured during the same assay. This adds inter-assay and inter- 

readouts variability and complicates quantitative analysis. The 
Bayesian methods used here can integrate variability and uncertainty in 
the data into predicted uncertainty on outcomes which are useful in risk 
assessment (Spinu, 2021) but sources of variability which are poorly 
understood and quantified cannot be taken into account. Modeling 
would benefit from all readouts being measured during the same 
experiment, for example in homogeneous systems like micro-chips 
(Ramme et al., 2019). However, differences in time scales between 
KEs and, even more so, between readouts of KEs, may prevent easy 
analysis of experimental data. 

The qAOP developed in this paper is based only on molecular and 
cellular events; relationships with organism-level events may occur at 
very different time-scales (Spinu, 2021). In case in vivo data is included 
as the adverse outcome, one cannot expect uncertainty to be any smaller 
than the variability and uncertainty observed in in vivo studies, where 
confidence intervals around reference doses can reach several orders of 
magnitude (Ly Pham et al., 2020). 

4.2. Model building 

Model specification is the main challenge in calibrating quantitative 
AOPs, as the model should describe correctly the mean response. PSIS 
diagnostics based on data likelihood did not reveal any severe model 
miss-specification, which suggests that the choice of three simple models 
for KER that we suggest (log-logistic, linear, asymptotic) was sufficient 
for this dataset. Modeling attempts with other KER functions even 
showed that some freedom is allowed regarding the choice of link 
functions. In liver cells for example, between complex I inhibition (CI) 
and MR, the linear function was preferred over the asymptotic 

Fig. 8. Modelled dose-responses of complex I inhibition for each validation chemical, when (yminCI, ymaxCI, kCI) are set to the rotenone values. Red line uses the 
chemical-specific EC50CI MPV and other qAOP parameters set to the rotenone MPV. Grey lines: 30 samples from the posterior distribution of chemical-specific EC50CI 
each combined with one sample from the posterior distribution of the other qAOP parameters calibrated on rotenone. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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regression for the sake of parsimony and taking into account the PSIS 
diagnostics. 

However, in some cases such as multiple readouts, strong non- 
linearities of the KER, separating branches in the AOP, modeling the 
KER or how the various KERs must be combined can be complex. Strong 
non-linearity of the KER occurs when the EC50 is vastly different be
tween two adjacent KEs. For example, in the relationship between MMP 
and RZ in liver cells (Fig. 11), although strong effects were observed on 
MMP (responses close to 0), RZ was only mildly decreased, at higher 
concentration levels, in particular for rotenone. As a result, the most- 
complex of our three KER models had to be used, with a steep slope. 

Multiple readouts for one KE represent another challenge in 
modeling. In liver and renal cells, decrease in mitochondrial respiration 
had two readouts (LC and MR): consequently, MPP was modelled as a 
function of the sum of both readouts, assuming that they provide similar 
information on the same underlying biological event. The qAOP in liver 
cells were also separately calibrated without MR data and without LC 
data (results not shown), resulting in slightly larger prediction intervals, 
and in some cases, increased data likelihood. However, with our 
approach, the AOP could even be simplified by leaving out KEs, as a 
response-response relationship would then be defined between two non- 
adjacent KEs. Including all available information provides a better un
derstanding of the mechanism of action, quantified relationships be
tween new dose-response data obtained at any level of the AOP and a 
potential outcome, and in the present case, allows us to further study 
chemical and cell-type independence. Defining the KE may not be crit
ical compared to identification of reliable, widely-used biomarkers as 
read-outs. 

In the AOP for neuronal cells, one KE is directly linked to two of the 

subsequent KEs: the AO (NR) is affected directly by two readouts (MR 
and PR). We assumed that the effect on NR resulted from the multipli
cation of the effects of MR and PR, a standard assumption of indepen
dent action in mixture dose-response modeling. Modeling NR as a 
weighted sum of MR and PR required a larger number of parameters 
without any significant improvement in adjustment (results not shown). 

While the original AOP dissociates altered mitochondrial respiration 
and mitochondrial dysfunction, the latter was not measured in neuronal 
cells, although it might have helped better understand the specificity of 
neurons’ response to rotenone. Furthermore, additional data charac
terizing the MIE dose response in the validation set might have reduced 
the mismatch between observations and predictions: only the EC50 was 
estimated because CI was measured at only one concentration. 

The statistical component of models fitted to data depends on how 
the data has been normalized. The data was expressed as percentage of 
control in each replicate. Prior parameter distributions are therefore 
unit-independent and easier to define, and modeling replicate effects is 
not as critical. However, choosing a measurement error model for 
normalized data is not straightforward. For example, the ratio of two 
normally distributed measurements is not normally distributed and 
could be modelled using Chi-square, gamma, or Rayleigh distributions. 
However, as the choice of equations and accurate modeling of the mean 
response was our main concern, a standard Gaussian likelihood was 
selected. Replicate effects are still visible, for example with PR activity, 
and could be modelled in a multilevel statistical framework (Wilson 
et al., 2014). 

Fig. 9. Predicted dose-responses of neurite area for each validation chemical, when (yminCI, ymaxCI, kCI) are set to the rotenone values. Red line uses the MPV for 
chemical-specific EC50 and qAOP parameters. Grey lines: 30 samples from the posterior distribution of EC50 each combined with a sample from the posterior 
distribution of the qAOP calibrated on rotenone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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4.3. Are the qAOPs built chemical-independent? 

KER forms were the same and parameter estimates were similar for 
rotenone and deguelin within a given cell type. In the liver and neuronal 
cells qAOPs, small differences in potency were modelled between the 
two chemicals at different steps of the AOP. These differences in cur
vature of some KERs may be attributable to uncertainties in the data. As 
expected, the main, consistent, difference between the two chemicals 
was the EC50 for the MIE, rotenone being more potent than deguelin. 

However, in neuronal cells, the particular shape of the dose-response 
curves for neurite area (Fig. 4) and the very different parameter esti
mates between rotenone and deguelin (Table 4) suggest a difference in 
the interplay between mitochondrial respiration (MR), proteasomal 
activity (PR), which are concurrent processes toward neurite area. With 
rotenone, it seems that, as MR shuts down, cell death increases pro
gressively and when MR is low enough, impaired proteostasis gives 
abruptly a final blow to cell survival (Fig. 4). With deguelin, neurite area 
decreases at higher effect levels compared to MR. Additional 

Fig. 10. Predicted dose-responses of each KE for antimycin A and azoxystrobine, when (yminCI, ymaxCI, kCI) are set to the rotenone values. Red line uses the chemical- 
specific EC50CI MPV and other qAOP parameters set to the rotenone MPV. Grey lines: 30 samples from the posterior distribution of chemical-specific EC50CI each 
combined with one sample from the posterior distribution of the other qAOP parameters calibrated on rotenone. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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mechanisms of action for rotenone might help explain the difference 
between deguelin and rotenone actions toward decreased MR. 

Predictivity of the neuronal cells qAOP, calibrated with either rote
none or deguelin, was checked in a validation exercise with data on 
eight other chemicals: if the qAOP is chemical-independent, inputting 
chemical-specific MIE activation potencies in the qAOP should lead to a 
correct prediction of the AO. However, for four of these chemicals 
(antimycin A, fenpyroximate, pyraclostrobin and pyrimidifen), potency 
at activating the MIE was uncertain since only an upper bound could be 
reliably evaluated. Consequently, predicted effects on MR and PR were 
acceptable but highly uncertain, and the predicted neurotoxicity, even 
more uncertain, tended to overestimate their toxicity. In a risk assess
ment context, those chemicals would be flagged as suspect and begging 
for more data collection about MIE activation. The MIE of the four 
remaining chemicals (azoxystrobin, carboxine, mepronil, and thi
fluzamide) was relatively precisely estimated, and their effect on MR 
was well predicted. However, their effect on PR and the AO were largely 
underestimated, with over-confidence. In a risk assessment context, 
these chemicals might be wrongly classified as safe. Lack of validity of 
the calibrated qAOP in azoxystrobin, carboxine, mepronil, and thi
fluzamide may be due to differences in mode of action or related to the 
fact that deguelin and rotenone, the reference chemicals, were active at 
exposure levels several orders of magnitude lower. 

4.4. Are the qAOP built cell-type independent? 

The models used for the same KERs across cell-lines were mostly the 
same, except that, in renal cells, MR had to be log-transformed. The 
parameters of the calibrated KERs, however, differed between cell types 
due to differences in KEs studied, differences in readouts, and differ
ences in overall potency, which could reflect differences in organ or cell- 
type sensitivity or in vitro kinetics. The same readouts were measured in 
the liver and renal cells, apart from CI which was not measured in renal 
cells. The measurements, in particular LC and RZ, displayed more un
certainty in renal cells, and caused difficulties in modeling RZ. In liver or 
neuronal cells, the same readout of the MIE was measured, and the 
potencies were similar. This indicates that, for either rotenone or 
deguelin, the liver cell qAOP could be used to predict neuronal toxicity, 
or vice versa. This may not work with the kidney cell qAOP, and in liver 
and kidney cells cell-type independence was not investigated at this 
stage. 

Since rotenone and deguelin are neurotoxicants, neuronal cells could 
be expected to be more sensitive than liver or kidney cells at equal in
ternal exposure levels. Indeed, although MMP was a sensitive readout in 
liver and kidney cells (and not measured in neuronal cells), the final 

readout in liver and kidney cells, RZ, was not as sensitive as neurite area, 
NR. However, internal exposure levels depend on the toxicokinetics of 
the chemicals and may differ between organs and chemicals. 

4.5. Perspectives 

Risk assessment could benefit from the combination of the qAOP 
with an exposure model relating external exposure scenarios to internal 
exposure levels in the target organ cells. Although qAOP based solely on 
in vitro data do not provide readily usable output for risk assessment, 
quantitative understanding of the KER increase confidence in AOP 
(Organisation for Economic Co-operation and Development (OECD), 
2018). However, a validation process for qAOPs should be defined, in 
particular for the definition of their domain of validity. Furthermore, 
even without modeling additional, in vivo, data, PBPK models could be 
used to predict internal concentration levels and historical in vivo dose- 
response data could then be used to check the overall link between 
cytotoxicity at the organ level and adverse outcome (El-Masri et al., 
2016). 

A qAOP can also help designing experiments relevant to use in risk 
assessment. For example, our results point to the importance of char
acterization of the potency at inducing the MIE. At the same time, 
quantitative information should be gathered quite uniformly along the 
chain of KEs, but this is difficult to design a priori, given the differences 
in readouts and methods involved. Added-value of information methods 
(Hammitt and Shlyakhter, 1999; Yokota et al., 2004) could be applied to 
a preliminary qAOP to help inform efficient designs. There is a large 
statistical scientific literature on causality and intervention design using 
Bayesian networks, and it might be worth exploring its applicability to 
the experimental analysis of complex toxicity mechanisms. 

5. Conclusion 

We have developed and demonstrated the use of Bayesian networks 
(BNs) to AOP quantification. In our hands, BNs required manual deter
mination of the KERs, like in standard dose-response models. The choice 
of KER model at each step required careful observation of the data, in an 
iterative procedure. Moreover, it is not always clear which model is best 
when several readouts of the same KE are available, or when the AOP is 
strongly nonlinear. Selecting the most biologically relevant readout of 
each KE may help to simplify qAOP modeling, which could also be 
improved by computer-assisted determination of the best KER models to 
use. 

To avoid pitfalls in qAOP development, we suggest taking two ap
proaches in parallel: first, a mechanistic modeling path, able to help test 

Fig. 11. Predicted and observed relationships between MMP and resazurin in the mitotoxicity qAOP in liver cells, for rotenone and deguelin. Red line: predictions 
obtained with the maximum posterior vector. Grey lines: predictions obtained with 30 random parameter vectors drawn from their joint posterior distribution. Dots: 
observations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hypotheses, design experiments and deeply understand the results; 
second, because we cannot always wait to have a fully mechanistic 
model developed, a lighter statistical approach, such as dose-response 
based modeling or Bayesian networks. 

With the chemicals and cell types studied here, it is not clear whether 
a qAOP calibrated with data from a particular type of cell could be used 
to predict accurately the toxicity in another type of cells. The qAOPs for 
neuronal cells, hepatocytes and kidney cells showed only small differ
ences, but we developed them only for two chemicals and cannot make a 
general claim of cell-type independence. As to chemical-independence, 
the validation exercise first shows that it is important to characterize 
the concentration-response relationship of the MIE accurately, as it is a 
major input into a qAOP. Ideally, activation of the MIE should be simple 
and quick to assess; its dose-response relationship should be well 
documented experimentally. Second, the under-prediction of toxicity, 
and over-confidence, observed for half of the validation chemicals 
suggests that one should be cautious when using a qAOP parameterized 
with only one or a small set of chemicals, and that qAOPs may not be 
fully chemical-independent if they do not include all the possible 
mechanisms of action relevant to activation of the AO. 

Funding 

This project has received funding from the European Union’s Hori
zon 2020 research and innovation programme under grant agreement 
No. 681002 (EU-ToxRisk) and from the French Ministry in charge of 
Ecology within Programme 191. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.tiv.2022.105345. 

References 

Burgoon, L.D., Angrish, M., Garcia-Reyero, N., Pollesch, N., Zupanic, A., Perkins, E., 
2020. Predicting the probability that a chemical causes steatosis using adverse 
outcome pathway Bayesian networks (AOPBNs). Risk Anal. 40, 512–523. https:// 
doi.org/10.1111/risa.13423. 

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., 
Brubaker, M., Guo, J., Li, P., Riddell, A., 2017. Stan: a probabilistic programming 
language. J. Stat. Softw. 76 https://doi.org/10.18637/jss.v076.i01. 

Conolly, R.B., Ankley, G.T., Cheng, W., Mayo, M.L., Miller, D.H., Perkins, E.J., 
Villeneuve, D.L., Watanabe, K.H., 2017. Quantitative adverse outcome pathways and 
their application to predictive toxicology. Environ. Sci. Technol. 51, 4661–4672. 
https://doi.org/10.1021/acs.est.6b06230. 

Delp, J., Cediel-Ulloa, A., Suciu, I., Kranaster, P., van Vugt-Lussenburg, B.M., Munic 
Kos, V., van der Stel, W., Carta, G., Bennekou, S.H., Jennings, P., van de Water, B., 
Forsby, A., Leist, M., 2021. Neurotoxicity and underlying cellular changes of 21 
mitochondrial respiratory chain inhibitors. Arch. Toxicol. 95, 591–615. https://doi. 
org/10.1007/s00204-020-02970-5. 

El-Masri, H., Kleinstreuer, N., Hines, R.N., Adams, L., Tal, T., Isaacs, K., Wetmore, B.A., 
Tan, Y.-M., 2016. Integration of life-stage physiologically based pharmacokinetic 
models with adverse outcome pathways and environmental exposure models to 
screen for environmental hazards. Toxicol. Sci. Off. J. Soc. Toxicol. 152, 230–243. 
https://doi.org/10.1093/toxsci/kfw082. 

Foran, C.M., Rycroft, T., Keisler, J., Perkins, E.J., Linkov, I., Garcia-Reyero, N., 2019. 
A modular approach for assembly of quantitative adverse outcome pathways. ALTEX 
36, 353–362. https://doi.org/10.14573/altex.1810181. 

Hammitt, J.K., Shlyakhter, A.I., 1999. The expected value of information and the 
probability of surprise. Risk Anal. 19, 135–152. 

Hassan, I., El-Masri, H., Kosian, P.A., Ford, J., Degitz, S.J., Gilbert, M.E., 2017. 
Neurodevelopment and thyroid hormone synthesis inhibition in the rat: quantitative 
understanding within the adverse outcome pathway framework. Toxicol. Sci. 160, 
57–73. https://doi.org/10.1093/toxsci/kfx163. 

Jaworska, J.S., Natsch, A., Ryan, C., Strickland, J., Ashikaga, T., Miyazawa, M., 2015. 
Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a 

decision support system for quantitative weight of evidence and adaptive testing 
strategy. Arch. Toxicol. 89, 2355–2383. https://doi.org/10.1007/s00204-015-1634- 
2. 

LaLone, C.A., Ankley, G.T., Belanger, S.E., Embry, M.R., Hodges, G., Knapen, D., 
Munn, S., Perkins, E.J., Rudd, M.A., Villeneuve, D.L., Whelan, M., Willett, C., 
Zhang, X., Hecker, M., 2017. Advancing the adverse outcome pathway framework- 
an international horizon scanning approach. Environ. Toxicol. Chem. 36, 
1411–1421. https://doi.org/10.1002/etc.3805. 

Leist, M., Ghallab, A., Graepel, R., Marchan, R., Hassan, R., Bennekou, S.H., 
Limonciel, A., Vinken, M., Schildknecht, S., Waldmann, T., Danen, E., van 
Ravenzwaay, B., Kamp, H., Gardner, I., Godoy, P., Bois, F.Y., Braeuning, A., Reif, R., 
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