28 research outputs found

    Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    Get PDF
    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.This work was supported by the Biotechnology and Biological Sciences Research Council (grant numbers S18103 and BB/H01697X/1).This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013611

    Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C

    Get PDF
    Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKC delta C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain - targeted isophthalates and characterize their binding affinities to the PKC alpha isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKC alpha compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.Peer reviewe

    Investigations of Proneural Glioblastoma to Identify Novel Therapeutic Targets

    No full text
    Malignant glioma is a highly lethal and destructive disease with no proper cure. We have investigated some of the hallmarks of cancer in connection to glioma and found ways to disrupt these and prevent tumor growth. The work is done within the context of a glioma subtype distinguished by activation of PDGF signaling termed the proneural subtype. In two of the studies we have investigated mechanisms regulating the glioma cells themselves, and in the other two we have focused on the tumor stroma. In the first study, glioma-initiating cells were isolated in defined serum free culture medium from PDGF-B driven murine glioma and shown to be independent of EGF and FGF2 for self-renewal and proliferation. When cultured in serum the GICs displayed an aberrant differentiation pattern that was reversible. Specific depletion of the transduced PDGF-B caused a loss of self-renewal and tumorigenicity and induced oligodendrocyte differentiation. The transcription factor S-SOX5 has previously been shown to have a tumor suppressive effect on PDGF-B induced murine glioma, and to induce cellular senescence in PDGF-B stimulated cells in vitro. We found that S-SOX5 had a negative effect on proliferation of newly established human glioma cells cultured under stem cell conditions. We also revealed a connection between alterations causing up-regulation of SOX5 with the proneural subgroup and a tendency towards co-occurrence with PDGFRA alterations. Angiogenesis, the formation of new blood vessels from existing ones, is an important hallmark for glioma malignancy. We found that the anti-angiogenic protein HRG had a negative effect on glioma progression in PDGF-B induced experimental tumors and that HRG was able to completely prevent formation of glioblastomas. Subsequently it was shown that HRG could skew pro-tumorigenic tumor associated macrophages into an anti-tumorigenic phenotype. Stromal cells had not previously been fully investigated in gliomas. We observed a correlation between tumor malignancy and increased numbers of tumor-associated macrophages as well as pericytes in PDGF-B induced gliomas. There was also a correlation between tumor grade and vessel functionality that had not previously been shown. Our results offer further understanding of gliomagenesis and present possible future therapies

    Pihtalajien tunnistus RAPD-tekniikalla.

    No full text

    Biomekaniska simuleringar av resistansgivande svänghjulsbaserad träningsutrustning i tyngdlöshet

    No full text
    Bone loss and muscle atrophy are two main physiological conditions affecting astronauts while being in space. In order to counteract the effects, at least two hours of aerobic and resistant countermeasure exercise is scheduled into their working day, seven days a week. Yoyo Technology AB has developed a resistance exercise device based on the flywheel principle, providing a load independent of gravity. However, there is no biomechanical research done on the efficiency of the device in microgravity, from a human movement point of view using simulation software. The aim of this thesis was to evaluate the effects of performing a leg press on the flywheel exercise device in a microgravity environment. Simulations of performing a flywheel leg press in earth gravity, microgravity and performing a conventional squat were done. The evaluated parameters were reaction forces, joint angles, joint moments, joint powers and muscle recruitment in the lower extremities. The simulations were done using a biomechanical simulation software based on a motion capture data collection. From the results two conclusions were proposed. Performing a flywheel leg press in microgravity environment or on earth provides at least as much peak moment as a body weighted squat performed on earth. Furthermore, performing a flywheel leg press in microgravity will induce a higher activity level among hip extensors and knee flexors compared to performing a flywheel leg press on earth.

    Biomekaniska simuleringar av resistansgivande svänghjulsbaserad träningsutrustning i tyngdlöshet

    No full text
    Bone loss and muscle atrophy are two main physiological conditions affecting astronauts while being in space. In order to counteract the effects, at least two hours of aerobic and resistant countermeasure exercise is scheduled into their working day, seven days a week. Yoyo Technology AB has developed a resistance exercise device based on the flywheel principle, providing a load independent of gravity. However, there is no biomechanical research done on the efficiency of the device in microgravity, from a human movement point of view using simulation software. The aim of this thesis was to evaluate the effects of performing a leg press on the flywheel exercise device in a microgravity environment. Simulations of performing a flywheel leg press in earth gravity, microgravity and performing a conventional squat were done. The evaluated parameters were reaction forces, joint angles, joint moments, joint powers and muscle recruitment in the lower extremities. The simulations were done using a biomechanical simulation software based on a motion capture data collection. From the results two conclusions were proposed. Performing a flywheel leg press in microgravity environment or on earth provides at least as much peak moment as a body weighted squat performed on earth. Furthermore, performing a flywheel leg press in microgravity will induce a higher activity level among hip extensors and knee flexors compared to performing a flywheel leg press on earth.

    PDGF-B Can Sustain Self-renewal and Tumorigenicity of Experimental Glioma-Derived Cancer-Initiating Cells by Preventing Oligodendrocyte Differentiation12

    Get PDF
    According to the cancer stem cell (CSC)/cancer-initiating cell hypothesis, glioma development is driven by a subpopulation of cells with unique tumor-regenerating capacity. We have characterized sphere-cultured glioma-derived cancer-initiating cells (GICs) from experimental gliomas induced by platelet-derived growth factor-B (PDGF-B) in neonatal Gtv-a Arf-/- mice. We found that the GICs can maintain their stem cell-like characteristics in absence of exogenous epidermal growth factor and fibroblast growth factor 2 and that this culture condition was highly selective for tumor-initiating cells where as few as five GICs could induce secondary tumor formation after orthotopic transplantation. Addition of FBS to the medium caused the GICs to differentiate into cells coexpressing glial fibrillary acidic protein and Tuj1, and this differentiation process was reversible, suggesting that the GICs are highly plastic and able to adapt to different environments without losing their tumorigenic properties. On inhibition of virally transduced PDGF-B by small interfering RNA treatment, the GICs stopped proliferating, lost their self-renewal ability, and started to uniformly express CNPase, a marker of oligodendrocyte precursor cells and mature oligodendrocytes. Most importantly, PDGF-B depletion completely abrogated the tumor-initiating capacity of the GICs. Our findings suggest that interfering with PDGF-controlled differentiation could be a therapeutic avenue for patients diagnosed with the PDGF-driven proneural subtype of human glioblastoma
    corecore