66 research outputs found

    Development of a laser Doppler system for the detection and monitoring of atmospheric disturbances

    Get PDF
    A Scanning Laser Doppler Velocimeter System (SLDVS) capable of detecting and monitoring atmospheric disturbances, including wake vortices of landing aircraft and vertical wind profiles in the atmosphere was developed. The SLDVS is a focused, continuous wave, CO2 system that determines the line-of-sight velocities of particles in the focal volume by measuring the Doppler shift created by these particles. At present, the SLDVS is designed to have a range coverage of approximately 2000 ft with a vertical angle coverage of approximately 60 deg. It is also designed to detect Doppler velocities of up to 200 ft/sec with a velocity resolution of approximately 1.8 ft/sec. A complete velocity spectrum is provided by the SLDVS at each point in space at which it is focused. The overall operation and performance of the system and the description of its individual components and data handling capabilities were given

    MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    Get PDF
    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition

    Atmospheric effects on CO2 laser propagation

    Get PDF
    An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system

    Laser Doppler dust devil measurements

    Get PDF
    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors

    Laser Doppler technology applied to atmospheric environmental operating problems

    Get PDF
    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time

    Pulsed Doppler lidar for the detection of turbulence in clear air

    Get PDF
    A pulsed C02 Doppler lidar system is described and demonstration tests in ground-based and airborne flight operations are discussed. As a ground-based system, it can detect wind shears in thunderstorm gust fronts to a range of 6 km. When in the airborne configuration, the lidar can detect clear air turbulence in advance of the aircraft encountering clear air turbulence. The data provided by the lidar included turbulence location and intensity with intensity being indicated by the measured spectral width which is proportional to the wind gust velocity

    Focused laser Doppler velocimeter

    Get PDF
    A system for remotely measuring velocities present in discrete volumes of air is described. A CO2 laser beam is focused by a telescope at such a volume, a focal volume, and within the focusable range, near field, of the telescope. The back scatter, or reflected light, principally from the focal volume, passes back through the telescope and is frequency compared with the original frequency of the laser, and the difference frequency or frequencies represent particle velocities in that focal volume

    Technology requirements of exploration beyond Neptune by solar sail propulsion

    Get PDF
    This paper provides a set of requirements for the technology development of a solar sail propelled Interstellar Heliopause Probe mission. The mission is placed in the context of other outer solar systems missions, ranging from a Kuiper Belt mission through to an Oort cloud mission. Mission requirements are defined and a detailed parametric trajectory analysis and launch date scan performed. Through analysis of the complete mission trade space a set of critical technology development requirements are identified which include an advanced lightweight composite High-Gain Antenna, a high-efficiency Ka-band travelling-wave tube amplifier and a radioisotope thermoelectric generator with power density of approximately 12 W/kg. It is also shown that the Interstellar Heliopause Probe mission necessitates the use of a spinning sail, limiting the direct application of current hardware development activities. A Kuiper Belt mission is then considered as a pre-curser to the Interstellar Heliopause Probe, while it is also shown through study of an Oort cloud mission that the Interstellar Heliopause Probe mission is the likely end-goal of any future solar sail technology development program. As such, the technology requirements identified to enable the Interstellar Heliopause Probe must be enabled through all prior missions, with each mission acting as an enabling facilitator towards the next

    Origin of the Pseudogap in High-Temperature Cuprate Superconductors

    Full text link
    Cuprate high-temperature superconductors exhibit a pseudogap in the normal state that decreases monotonically with increasing hole doping and closes at x \approx 0.19 holes per planar CuO2 while the superconducting doping range is 0.05 < x < 0.27 with optimal Tc at x \approx 0.16. Using ab initio quantum calculations at the level that leads to accurate band gaps, we found that four-Cu-site plaquettes are created in the vicinity of dopants. At x \approx 0.05 the plaquettes percolate, so that the Cu dx2y2/O p{\sigma} orbitals inside the plaquettes now form a band of states along the percolating swath. This leads to metallic conductivity and below Tc to superconductivity. Plaquettes disconnected from the percolating swath are found to have degenerate states at the Fermi level that split and lead to the pseudogap. The pseudogap can be calculated by simply counting the spatial distribution of isolated plaquettes, leading to an excellent fit to experiment. This provides strong evidence in favor of inhomogeneous plaquettes in cuprates.Comment: 24 pages (4 pages main text plus 20 pages supplement

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
    • …
    corecore