77 research outputs found
Liver disease detection using machine learning techniques
Around a million deaths occur due to liver diseases globally. There are several traditional methods to diagnose liver diseases, but they are expensive. Early prediction of liver disease would benefit all individuals prone to liver diseases by providing early treatment. As technology is growing in health care, machine learning significantly affects health care for predicting conditions at early stages. This study finds how accurate machine learning is in predicting liver disease. This present study introduces the liver disease prediction (LDP) method in predicting liver disease that can be utilised by health professionals, stakeholders, students and researchers. Five algorithms, namely Support Vector Machine (SVM), Naïve Bayes, K-Nearest Neighbors (K-NN), Linear Discriminant Analysis (LDA), and Classification and Regression Trees (CART), are selected. The accuracy is compared to uncover the best classification method for predicting liver disease using R and Python. From the results, K-NN obtains the best accuracy with 91.7%, and the autoencoder network achieved 92.1% accuracy, which is above the acceptable level of accuracy and can be considered for liver disease prediction.tru
Transient dynamics of a superconducting nonlinear oscillator
We investigate the transient dynamics of a lumped-element oscillator based on
a dc superconducting quantum interference device (SQUID). The SQUID is shunted
with a capacitor forming a nonlinear oscillator with resonance frequency in the
range of several GHz. The resonance frequency is varied by tuning the Josephson
inductance of the SQUID with on-chip flux lines. We report measurements of
decaying oscillations in the time domain following a brief excitation with a
microwave pulse. The nonlinearity of the SQUID oscillator is probed by
observing the ringdown response for different excitation amplitudes while the
SQUID potential is varied by adjusting the flux bias. Simulations are performed
on a model circuit by numerically solving the corresponding Langevin equations
incorporating the SQUID potential at the experimental temperature and using
parameters obtained from separate measurements characterizing the SQUID
oscillator. Simulations are in good agreement with the experimental
observations of the ringdowns as a function of applied magnetic flux and pulse
amplitude. We observe a crossover between the occurrence of ringdowns close to
resonance and adiabatic following at larger detuning from the resonance. We
also discuss the occurrence of phase jumps at large amplitude drive. Finally,
we briefly outline prospects for a readout scheme for superconducting flux
qubits based on the discrimination between ringdown signals for different
levels of magnetic flux coupled to the SQUID.Comment: 15 pages, 9 figure
State encoding for low power
In this thesis, methods are proposed to minimize power consumption in mutilevel logic implementations of FSMs during the state encoding step. Information theoretic measures are used to model the power consumption in the circuit. It is shown that the power measure can be reduced by introducing a skew in the probability of state bits. The states are partitioned into groups to introduce skew and then an area measure based maximum matching technique is applied to keep the area down. The use of non-minimal length encoding to further reduce power is investigated. The results indicate that non-minimal length encoding is good for power reduction in most cases. They also prove that entropy based power measures can be used to model power in multi-level logic circuits
Microstrip superconducting quantum interference device amplifiers with submicron Josephson junctions: enhanced gain at gigahertz frequencies
We present measurements of an amplifier based on a dc superconducting quantum
interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The
small junction size reduces their self-capacitance and allows for the use of
relatively large resistive shunts while maintaining nonhysteretic operation.
This leads to an enhancement of the SQUID transfer function compared to SQUIDs
with micron-scale junctions. The device layout is modified from that of a
conventional SQUID to allow for coupling signals into the amplifier with a
substantial mutual inductance for a relatively short microstrip coil.
Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.Comment: Version with high resolution figures at:
http://physics.syr.edu/~bplourde/bltp-publications.ht
Integrating nanoionics concepts in micro solid oxide fuel cells
[spa] La Nanoiónica se ha convertido en un campo cada vez más prometedor para el futuro desarrollo de dispositivos avanzados de conversión y almacenamiento de energía, tales como baterías, pilas de combustible y supercondensadores. En particular, los materiales nanoestructurados ofrecen propiedades únicas o combinaciones de propiedades en electrodos y electrolitos en una gama de dispositivos de energía. Sin embargo, la mejora de las propiedades de transporte de masa a nivel nano, a menudo se ha encontrado que son difíciles de implementar en nonoestructuras. En esta tesis, se investigó el transporte de iones oxígeno en cátodos tipo perovskita-conductor mixto iónico y electrónico (MIEC) de capa delgada (grosor < 200nm) con una estructura nonoestructurada, con el objetivo de correlacionar el transporte de iones oxígeno con la estructura del film a nivel de grano interior y límite de grano. El trabajo desarrollado en esta tesis se ha dividido en seis partes. El primer capítulo, introduce los conceptos básicos de las pilas de combustible de óxido sólido, la importancia de los cátodos de película delgada y el concepto de nanoiónica. El segundo capítulo explica el principio y el funcionamiento de todas las técnicas experimentales empleadas en esta tesis para la caracterización microestructural y funcional de los cátodos de película delgada. Los siguientes capítulos contienen el trabajo principal de la tesis. Las condiciones de deposición y estudios de optimización microestructural realizados mediante PLD para fabricar cátodos de película delgada se compilan en el capítulo tres. Las propiedades de transporte de iones de oxígeno del La0.8Sr0.2MnO3+δ (LSM) de películas delgadas se estudian en el capítulo cuatro. Además, en el capítulo cinco se presenta una nueva metodología de proyección de materiales, para celdas de combustible de óxido sólido (SOFC). La metodología se basa en una deposición combinatoria de La0.8Sr0.2Mn1-xCoxO3±δ (LSMC) por PLD en una oblea de silicio de 4 pulgadas que permite la generación de un diagrama binario completo de composiciones, incluso para óxidos complejos. El capítulo seis se dedica a los estudios funcionales del sistema binario LSMC La técnica de intercambio de isotopos en perfiles profundos combinada con la espectroscopia iónica de masas (IEDP-SIMS) se empleó en el rango de temperatura de 500°C a 800°C para la evaluación de las propiedades de transporte de masa de oxígeno del LSM y el sistema binario LSMC. Además, las propiedades de transporte de masa de oxígeno del LSM se estudió mediante Espectroscopia de Impedancia Electroquímica (EIS).[eng] Fuel cells are one of the promising technology at present to meet the growing demand of clean energy and technology. Among the different varieties of fuel cells, Solid Oxide Fuel Cell (SOFC) research is advancing towards the device miniaturization (called “micro-SOFC” with thin film components) with the operation temperature in the range ≈ 500°C to 700°C for portable device application. In SOFC components, cathode causes major polarization loss due to the sluggishness of oxygen reduction reaction (ORR) at low operating temperature that would affect the device efficiency. To rectify this there are various groups working towards the enhancement of cathode functionality at low operating temperature. Generally, the functionality of cathode can be enhanced by two ways i) improving the intrinsic properties of existing cathode materials by making modifications in the cathode microstructure ii) search for the new cathode materials. The thin film cathodes studied in this thesis are La0.8Sr0.2MnO3+δ (LSM), La0.8Sr0.2CoO3-δ (LSC) and La0.8Sr0.2Mn1-xCoxO3±δ (LSMC; from x=0 to 1) a pseudo-binary system, which are Mixed Ionic Electronic Conductors (MIEC) conduct both ions and electrons. The aforementioned two ways are followed in this thesis to enhance the cathode functionality by implementing nanoionics concept. The behavior of ionic conduction in nano-regime (<100nm) is totally different than bulk and the study of such ionic transport in nanoscale is the field of nanoionics. Especially, the interfaces such as space-charge layer and grain boundaries act as a highway for fast oxygen ion conduction that can enhance the overall charge transport in the nanostructures. In this thesis, oxygen mass transport properties are studied in cathodes in thin film form by making modifications in the thin film nanostructure in order to observe and enhance the charge transport along the interface of grain boundaries as well as to understand the fast ionic transport in such interfaces. Generally, the thin film nanostructure offered by Pulsed Laser Deposition (PLD) exhibit columnar grains that can act as a highway for ionic conduction and suitable for the proposed work. Therefore PLD is used as a tool to study the ionic transport in the interfaces. Further, LSM/LSC multilayer deposition studies are conducted in PLD to find out the optimum thickness for the fabrication of a combinatorial LSMC pseudo-binary system without any parasitic phases. Among the cathode materials studied in this thesis, LSM is a classical and well-studied cathode material. The functional properties i.e. oxygen mass transport properties (oxygen self-diffusion and surface exchange coefficients, D^*and k^*, respectively) of LSM thin film cathodes are studied by Isotope Exchange depth Profiling using Secondary ion Mass Spectroscopy (IEDP-SIMS) and Electrochemical Impedance Spectroscopy (EIS) techniques in the temperature range 500°C to 700°C. In the study on LSMC pseudo-binary, a novel (new) methodology is presented for the screening of materials for SOFC application. The methodology is based on a combinatorial deposition of thin films by PLD on 4-inch silicon wafers, further it is possible to predict the thickness and compositional map of LSMC binary using this methodology. The proposed methodology can be extended for generating full range binary and ternary diagrams of compositions even for very complex oxides (due to an excellent transfer of the stoichiometry). IEDP-SIMS is carried out for evaluating oxygen mass transport properties of LSMC system in the compositions with cobalt content x ≈ 0.04 to 0.85 in the temperature range 600°C to 800°C. This thesis is divided into six chapters and a short summary to each chapter is given below including appendix. Chapter 1: An introduction to the scope of the thesis. Chapter 2: An introduction to the experimental method employed in this thesis. Chapter 3: Parent materials (LSM and LSC) microstructural optimization in PLD. Chapter 4: Oxygen ion transport study in LSM thin film cathodes. Chapter 5: Fabrication and microstructural characterization of LSMC thin film pseudo-binary system. Chapter 6: Oxygen ion transport study in LSMC thin film system. Appendix A: Introduction to Two-slab model. Appendix B: Fabrication of LSM-LSC-LSF pseudo-ternary syste
Ultrasound attenuation and a P-B-T phase diagram of superfluid 3He in 98% aerogel
Longitudinal sound attenuation measurements in superfluid 3He in 98% aerogel
were conducted at pressures between 14 and 33 bar and in magnetic fields up to
4.44 kG. The temperature dependence of the ultrasound attenuation in the A-like
phase was determined for the entire superfluid region exploiting the field
induced meta-stable A-like phase at the highest field. In the lower field, the
A-B transition in aerogel was identified by a smooth jump in attenuation on
both cooling and warming. Based on the transitions observed on warming, a phase
diagram as a function of pressure (P), temperature (T) and magnetic field (B)
is constructed. We find that the A-B phase boundary in aerogel recedes in a
drastically different manner than in bulk in response to an increasing magnetic
field. The implications of the observed phase diagram are discussed.Comment: 9 pages, 13 figures, accepted to PR
Cognitive Radio Networks: Realistic or Not?
A large volume of research has been conducted in the cognitive radio (CR)
area the last decade. However, the deployment of a commercial CR network is yet
to emerge. A large portion of the existing literature does not build on real
world scenarios, hence, neglecting various important interactions of the
research with commercial telecommunication networks. For instance, a lot of
attention has been paid to spectrum sensing as the front line functionality
that needs to be completed in an efficient and accurate manner to enable an
opportunistic CR network architecture. This is necessary to detect the
existence of spectrum holes without which no other procedure can be fulfilled.
However, simply sensing (cooperatively or not) the energy received from a
primary transmitter cannot enable correct dynamic spectrum access. For example,
the low strength of a primary transmitter's signal does not assure that there
will be no interference to a nearby primary receiver. In addition, the presence
of a primary transmitter's signal does not mean that CR network users cannot
access the spectrum since there might not be any primary receiver in the
vicinity. Despite the existing elegant and clever solutions to the DSA problem
no robust, implementable scheme has emerged. In this paper, we challenge the
basic premises of the proposed schemes. We further argue that addressing the
technical challenges we face in deploying robust CR networks can only be
achieved if we radically change the way we design their basic functionalities.
In support of our argument, we present a set of real-world scenarios, inspired
by realistic settings in commercial telecommunications networks, focusing on
spectrum sensing as a basic and critical functionality in the deployment of
CRs. We use these scenarios to show why existing DSA paradigms are not amenable
to realistic deployment in complex wireless environments.Comment: Work in progres
Chronic rheumatic heart disease and congenital heart disease complicating pregnancy: a study of the cardiac events, the maternal and perinatal outcome during 2011-2013 at tertiary care centre
Background: Objective of this study was to assess the prevalence of chronic rheumatic heart disease and congenital heart disease complicating pregnancy, study the maternal and perinatal outcome, and indications for termination of pregnancy.Methods: Preconception counseling, antenatal care by pregnancy heart team as per protocol. One 2nd gravida (G2A1) with 26 weeks gestation, underwent mitral valve replacement during 26th week gestation i/v/o infective endocarditis associated with severe mitral regurgitation.Results: Authors had CRHD: CHD = 29:21, out of 50 cases, the ratio was 1.3:1 in this study. Atrial septal defect (ASD) was the predominant lesion in this study -29% ASD alone and 9% associated with pulmonary artery hypertension. Eisenmenger's syndrome, was associated with ASD in three and VSD in two. Corrected lesions were 24%. In the rheumatic heart disease, mitral stenosis was the predominant lesion and PBMV was done in four (13.7%) cases. In CRHD cases, surgically corrected by prosthetic heart valve were -11 (37.9%). In CRHD total corrected cases, by prosthetic heart valve and percutaneous balloon mitral valvotomy (PBMV) account for 51.7%. One patient had PBMV procedure during 5th month of present pregnancy i/v/o severe mitral stenosis with mitral valve area -0.8 cm2 and another patient had PBMV during her first pregnancy. In this study 42% were in NYHA class I. 14% were in NYHA class IV. CHF was seen in 10%. Termination of pregnancy was necessary in 6 with CHD and 5 with CRHD. There were 39 deliveries with one set of twins. All the babies were alive. Maternal mortality was confirmed in one case with Eisenmenger’s syndrome + HELLP syndrome. Live birth rate was higher in cases with NYHA class I/II than in those with NYHA class III/IV (82.8% versus 66.60%).Conclusions: Management by a pregnancy heart team as per guidelines would reduce mortality
- …