We present measurements of an amplifier based on a dc superconducting quantum
interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The
small junction size reduces their self-capacitance and allows for the use of
relatively large resistive shunts while maintaining nonhysteretic operation.
This leads to an enhancement of the SQUID transfer function compared to SQUIDs
with micron-scale junctions. The device layout is modified from that of a
conventional SQUID to allow for coupling signals into the amplifier with a
substantial mutual inductance for a relatively short microstrip coil.
Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.Comment: Version with high resolution figures at:
http://physics.syr.edu/~bplourde/bltp-publications.ht