4,284 research outputs found
Recommended from our members
Loss of Foveal Cone Structure Precedes Loss of Visual Acuity in Patients With Rod-Cone Degeneration.
PurposeTo assess the relationship between cone spacing and visual acuity in eyes with rod-cone degeneration (RCD) followed longitudinally.MethodsHigh-resolution images of the retina were obtained using adaptive optics scanning laser ophthalmoscopy from 13 eyes of nine RCD patients and 13 eyes of eight healthy subjects at two sessions separated by 10 or more months (mean 765 days, range 311-1935 days). Cone spacing Z-score measured as close as possible (average <0.25°) to the preferred retinal locus was compared with visual acuity (letters read on the Early Treatment of Diabetic Retinopathy Study [ETDRS] chart and logMAR) and foveal sensitivity.ResultsCone spacing was significantly correlated with ETDRS letters read (Ï = -0.47, 95%CI -0.67 to -0.24), logMAR (Ï = 0.46, 95%CI 0.24 to 0.66), and foveal sensitivity (Ï = -0.30, 95%CI -0.52 to -0.018). There was a small but significant increase in mean cone spacing Z-score during follow-up of +0.97 (95%CI 0.57 to 1.4) in RCD patients, but not in healthy eyes, and there was no significant change in any measure of visual acuity.ConclusionsCone spacing was correlated with visual acuity and foveal sensitivity. In RCD patients, cone spacing increased during follow-up, while visual acuity did not change significantly. Cone spacing Z-score may be a more sensitive measure of cone loss at the fovea than visual acuity in patients with RCD
Hyperon weak radiative decays in chiral perturbation theory
We investigate the leading-order amplitudes for weak radiative decays of
hyperons in chiral perturbation theory. We consistently include contributions
from the next-to-leading order weak-interaction Lagrangian. It is shown that
due to these terms Hara's theorem is violated. The data for the decays of
charged hyperons can be easily accounted for. However, at this order in the
chiral expansion, the four amplitudes for the decays of neutral hyperons
satisfy relations which are in disagreement with the data. The asymmetry
parameters for all the decays can not be accounted for without higher-order
terms. We shortly comment on the effect of the 27-plet part of the weak
interaction.Comment: 8 pages of REVTeX and using macro-package "feynman.tex" (available at
http://xxx.lanl.gov/ftp/hep-ph/papers/macros) for the 2 figure
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1â2)Ă10â12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Recommended from our members
Projected sensitivity of the LUX-ZEPLIN experiment to the 0ÎœÎČÎČ decay of Xe 136
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double ÎČ decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double ÎČ decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06Ă1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06Ă1027 years
System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS
An extensive system test of the ATLAS muon spectrometer has been performed in
the H8 beam line at the CERN SPS during the last four years. This spectrometer
will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip
Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for
triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the
end-cap region. The test set-up emulates one projective tower of the barrel
(six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC
and three TGCs). The barrel and end-cap stands have also been equipped with
optical alignment systems, aiming at a relative positioning of the precision
chambers in each tower to 30-40 micrometers. In addition to the performance of
the detectors and the alignment scheme, many other systems aspects of the ATLAS
muon spectrometer have been tested and validated with this setup, such as the
mechanical detector integration and installation, the detector control system,
the data acquisition, high level trigger software and off-line event
reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have
allowed measuring the trigger and tracking performance of this set-up, in a
configuration very similar to the final spectrometer. A special bunched muon
beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used
to study the timing resolution and bunch identification performance of the
trigger chambers. The ATLAS first-level trigger chain has been operated with
muon trigger signals for the first time
Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.
Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies
Measurement of Dijet Angular Distributions at CDF
We have used 106 pb^-1 of data collected in proton-antiproton collisions at
sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular
distributions in events with two jets in the final state. The angular
distributions agree with next to leading order (NLO) predictions of Quantum
Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at
95% confidence level (CL) a model of quark substructure in which only up and
down quarks are composite and the contact interaction scale is Lambda_ud(+) <
1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are
composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6
TeV.Comment: 16 pages, 2 figures, 2 tables, LaTex, using epsf.sty. Submitted to
Physical Review Letters on September 17, 1996. Postscript file of full paper
available at http://www-cdf.fnal.gov/physics/pub96/cdf3773_dijet_angle_prl.p
Search for charged Higgs decays of the top quark using hadronic tau decays
We present the result of a search for charged Higgs decays of the top quark,
produced in collisions at 1.8 TeV. When the charged
Higgs is heavy and decays to a tau lepton, which subsequently decays
hadronically, the resulting events have a unique signature: large missing
transverse energy and the low-charged-multiplicity tau. Data collected in the
period 1992-1993 at the Collider Detector at Fermilab, corresponding to
18.70.7~pb, exclude new regions of combined top quark and charged
Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp;
submitted to Phys. Rev.
- âŠ