2,386 research outputs found

    Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    Get PDF
    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports \u3e40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ~18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes

    The influence of spatiotemporally decoupled land use on honey bee colony health and pollination service delivery

    Get PDF
    Societal dependence on insects for pollination of agricultural crops has risen amidst concerns over pollinator declines. Habitat loss and lack of forage have been implicated in the decline of both managed and native pollinators. Land use changes in the Northern Great Plains of the US, a region supporting over 1 million honey bee colonies annually, have shifted away from historical grassland ecosystems bees rely on for forage toward landscapes dominated by corn, soybeans, and other row crops. We investigated how land use impacts honey bee colony population size during the growing season and subsequent colony population size for almond pollination in central California the following February.We provide estimates of how land use affects beekeeper economics by linking summer habitat with pollination service payments and later production of new colonies. Our results demonstrate that a greater presence of non-bee foraged agricultural crops surrounding apiaries in the summer results in smaller colonies by the end of the growing season. Apiaries with colonies exhibiting smaller population size in the autumn were also smaller during almond pollination the following spring; impacting the beekeeper with a reduced per-colony rental fee for pollination services and reduced potential for creating new spring colonies, based on prior growing season land use. This study highlights the downstream effects of factors driving land use decisions on the ability of beekeepers to provide robust honey bee colonies to support the pollination industry on a national scale. It also demonstrates the direct linkages between habitat in the Northern Great Plains, bee health, and pollination services rendered elsewhere in the US

    Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    Get PDF
    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports \u3e40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ~18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes

    Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    Get PDF
    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports \u3e40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ~18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes

    Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution

    Get PDF
    Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core regions. Phylogenetic analyses clearly show that P. vivax-like parasites form a genetically distinct clade from P. vivax. Concerning the relative divergence dating, we show that the evolution of P. vivax in humans did not occur at the same time as the other agents of human malaria, thus suggesting that the transfer of Plasmodium parasites to humans happened several times independently over the history of the Homo genus. We further identify several key genes that exhibit signatures of positive selection exclusively in the human P. vivax parasites. Two of these genes have been identified to also be under positive selection in the other main human malaria agent, P. falciparum, thus suggesting their key role in the evolution of the ability of these parasites to infect humans or their anthropophilic vectors. Finally, we demonstrate that some gene families important for red blood cell (RBC) invasion (a key step of the life cycle of these parasites) have undergone lineage-specific evolution in the human parasite (e.g., reticulocyte-binding proteins [RBPs])

    Past role and future outlook of the Conservation Reserve Program for supporting honey bees in the Great Plains

    Get PDF
    Human dependence on insect pollinators continues to grow even as pollinators face global declines. The Northern Great Plains (NGP), a region often referred to as America’s last honey bee (Apis mellifera) refuge, has undergone rapid land-cover change due to cropland expansion and weakened land conservation programs. We conducted a trend analysis and estimated conversion rates of Conservation Reserve Program (CRP) enrollments around bee apiaries from 2006 to 2016 and developed models to identify areas of habitat loss. Our analysis revealed that NGP apiaries lost over 53% of lands enrolled in the CRP, and the rate of loss was highest in areas of high apiary density. We estimated over 163,000 ha of CRP lands in 2006 within 1.6 km of apiaries was converted to row crops by 2012. We also evaluated how alternative scenarios of future CRP acreage caps may affect habitat suitability for supporting honey bee colonies. Our scenario revealed that a further reduction in CRP lands to 7.7 million ha nationally would reduce the number of apiaries in the NGP that meet defined forage criteria by 28% on average. Alternatively, increasing the national cap to 15 million ha would increase the number of NGP apiaries that meet defined forage criteria by 155%. Our scenarios also show that strategic placement of CRP lands near existing apiaries increased the number of apiaries that meet forage criteria by 182%. Our research will be useful for informing the potential consequences of future US farm bill policy and land management in the epicenter of the US beekeeping industry

    Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria

    Get PDF
    Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking copy number and structural variations were observed within gene families and one, stevor, shows a host-specific sequence pattern. The complete genome sequence of the closest ancestor of P. falciparum enables us to estimate the timing of the beginning of speciation to be 40,000–60,000 years ago followed by a population bottleneck around 4,000–6,000 years ago. Our data allow us also to search in detail for the features of P. falciparum that made it the only member of the Laverania able to infect and spread in humans

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe

    The Florida pancreas collaborative next-generation biobank: Infrastructure to reduce disparities and improve survival for a diverse cohort of patients with pancreatic cancer

    Get PDF
    Background: Well-annotated, high-quality biorepositories provide a valuable platform to support translational research. However, most biorepositories have poor representation of minority groups, limiting the ability to address health disparities. Methods: We describe the establishment of the Florida Pancreas Collaborative (FPC), the first state-wide prospective cohort study and biorepository designed to address the higher burden of pancreatic cancer (PaCa) in African Americans (AA) compared to Non-Hispanic Whites (NHW) and Hispanic/Latinx (H/L). We provide an overview of stakeholders; study eligibility and design; recruitment strategies; standard operating procedures to collect, process, store, and transfer biospecimens, medical images, and data; our cloud-based data management platform; and progress regarding recruitment and biobanking. Results: The FPC consists of multidisciplinary teams from fifteen Florida medical institutions. From March 2019 through August 2020, 350 patients were assessed for eligibility, 323 met inclusion/exclusion criteria, and 305 (94%) enrolled, including 228 NHW, 30 AA, and 47 H/L, with 94%, 100%, and 94% participation rates, respectively. A high percentage of participants have donated blood (87%), pancreatic tumor tissue (41%), computed tomography scans (76%), and questionnaires (62%). Conclusions: This biorepository addresses a critical gap in PaCa research and has potential to advance translational studies intended to minimize disparities and reduce PaCa-related morbidity and mortality
    corecore