16 research outputs found
Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 Gene Leads to Cytochrome c Oxidase Depletion and Reorchestrated Respiratory Metabolism in Arabidopsis
Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis
The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair
In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent
Crop domestication as a step towards reproductive isolation
International audienceSpeciation, Darwin’s mystery of mysteries, is a continuous process that results in genomic divergence accompanied by the gradual increment of reproductive barriers between lineages. Since the beginning of research on the genetics of speciation, several questions have emerged such as: What are the genetic bases of incompatibilities? How many loci are necessary to prevent hybridization and how are they distributed along genomes? Can speciation occur despite gene flow and how common is ecological speciation? Early stages of divergence are key to understand the ecology and genetics of speciation, and semi-isolated species where hybrids can still be produced are particularly relevant
Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple ( Malus sylvestris (L.) Mill.), a wild relative of the cultivated apple
Characterizing the phenotypic and genetic variation among populations of crop wild relatives help understanding the ecological and evolutionary processes involved in population divergence, and better harness their diversity to mitigate the impact of climate change on crops. We assessed genetic and phenotypic diversity of the European crabapple, Malus sylvestris , a main contributor to the cultivated apple genome ( Malus domestica ), and investigated for ecological divergence. We assessed variation in growth rate and traits related to carbon uptake between seedlings measured in a common garden, and related it to the genetic ancestry of the seedlings, assessed using 13 microsatellite loci and Bayesian clustering method. The occurrence of patterns of isolation-by-distance, -by-climate and -by-adaptation that might have caused genetic and phenotypic differentiation among M. sylvestris populations was also tested. Seedlings belonged to seven M. sylvestris populations in Europe, with 11.6% of seedlings introgressed by M. domestica . Significant trait variation among M. sylvestris populations was observed, which for some was of moderate to high heritability. Lack of association between trait and genetic divergence suggests that this significant phenotypic variation is not adaptive, but strong association between genetic variation and the climate during the last glacial maximum suggests local adaptation of M. sylvestris to past climates. This study provides an insight into the ecological and evolutionary drivers of phenotypic and genetic differentiation among populations of a wild apple species and relative of cultivated apples, which is a starting point for future breeding programs. Societal impact Statement Apple is a major fruit crop worldwide and a model species for understanding the evolutionary processes underlying perennial crop domestication. Several wild species have contributed to the genetic make-up of the cultivated apple, yet phenotypic and genetic diversity data across their natural distribution is lacking. This study revealed phenotypic variation between populations of the European crabapple, and showed that both geography, and surprisingly, past but not current climate, shaped its genetic structure. We provide a starting point for harnessing wild apple diversity for apple breeding programs to mitigate the impact of climate change on this perennial crop
Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [ Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple
International audienceAbstract Background and Aims Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. Methods Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. Key Results A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop–wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. Conclusions This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding
Large-scale geographic survey provides insights into the colonization history of a major aphid pest on its cultivated apple host in Europe, North America and North Africa
With frequent host shifts involving the colonization of new hosts across large geographical ranges, crop pests are good models for examining the mechanisms of rapid colonization. The microbial partners of pest insects may be involved or affected by colonization, which has been little studied so far. We investigated the demographic history of the rosy apple aphid, Dysaphis plantaginea, a major pest of the cultivated apple (Malus domestica) in Europe, North Africa and North America, as well as the diversity of its endosymbiotic bacterial community. We genotyped a comprehensive sample of 714 colonies from Europe, Morocco and the US using mitochondrial (CytB and CO1), bacterial (16s rRNA and TrnpB), and 30 microsatellite markers. We detected five populations spread across the US, Morocco, Western and Eastern Europe, and Spain. Populations showed weak genetic differentiation and high genetic diversity, except the Moroccan and the North American that are likely the result of recent colonization events. Coalescent-based inferences releaved high levels of gene flow among populations during the colonization, but did not allow determining the sequence of colonization of Europe, America and Morroco by D. plantaginea, likely because of the weak genetic differentiation and the occurrence of gene flow among populations. Finally, we found that D. plantaginea rarely hosts any other endosymbiotic bacteria than its obligate nutritional symbiont Buchnera aphidicola. This suggests that secondary endosymbionts did not play any role in the rapid spread of the rosy apple aphid. These findings have fundamental importance for understanding pest colonization processes and implications for sustainable pest control programs