86 research outputs found

    Impact of rifaximin on the frequency and characteristics of spontaneous bacterial peritonitis in patients with liver cirrhosis and ascites

    Get PDF
    BACKGROUND: Rifaximin is a non-absorbable antibiotic used to prevent relapses of hepatic encephalopathy which may also be a candidate for prophylaxis of spontaneous bacterial peritonitis (SBP). AIM: To detect the impact of rifaximin on the occurrence and characteristics of SBP. METHODS: We prospectively studied all hospitalized patients that underwent a diagnostic paracentesis in our department from March 2012 to April 2013 for SBP and recorded all clinical data including type of SBP prophylaxis, prior use of rifaximin, concomitant complications of cirrhosis, as well as laboratory results and bacteriological findings. Patients were divided into the following three groups: no antibiotic prophylaxis, prophylaxis with rifaximin or with systemically absorbed antibiotic prophylaxis. RESULTS: Our study cohort comprised 152 patients with advanced liver cirrhosis, 32 of whom developed SBP during the study period. As expected, our study groups differed regarding a history of hepatic encephalopathy and SBP before inclusion into the study. None of the 17 patients on systemic antibiotic prophylaxis developed SBP while 8/27 patients on rifaximin and 24/108 without prophylaxis had SBP (pβ€Š=β€Š0.02 and pβ€Š=β€Š0.04 versus systemic antibiotics, respectively). In general, episodes of SBP were similar for patients treated with rifaximin and those without any prophylaxis. However, Escherichia coli and enterococci were dominant in the ascites of patients without any prophylaxis, while mostly klebsiella species were recovered from the ascites samples in the rifaximin group. CONCLUSION: Rifaximin pretreatment did not lead to a reduction of SBP occurrence in hospitalized patients with advanced liver disease. However, the bacterial species causing SBP were changed by rifaximin

    TLR1/2, TLR7, and TLR9 Signals Directly Activate Human Peripheral Blood Naive and Memory B Cell Subsets to Produce Cytokines, Chemokines, and Hematopoietic Growth Factors

    Get PDF
    Recently, it has been reported that using multiple signals, murine and human B cells secrete several cytokines with pro-inflammatory and immunoregulatory properties. We present the first comprehensive analysis of 24 cytokines, chemokines, and hematopoietic growth factors production by purified human peripheral blood B cells (CD19+), and naive (CD19+CD27-) and memory (CD19+CD27+) B cells in response to direct and exclusive signaling provided by toll-like receptor (TLR) ligands Pam3CSK (TLR1/TLR2), Imiquimod (TLR7), and GpG-ODN2006 (TLR9). All three TLR ligands stimulated B cells (CD19+) to produce cytokines IL-1Ξ±, IL-1Ξ², IL-6, TNF-Ξ±, IL-13, and IL-10, and chemokines MIP-1Ξ±, MIP-1Ξ², MCP-1, IP-10, and IL-8. However, GM-CSF and G-CSF production was predominantly induced by TLR2 agonist. Most cytokines/chemokines/hematopoietic growth factors were predominantly or exclusively produced by memory B cells, and in general, TLR2 signal was more powerful than signal provided viaTLR7 and TLR9. No significant secretion of eotaxin, IFN-Ξ±, IFN-Ξ³, IL-2, IL-3, IL-4, IL-5, IL-7, IL-15, IL-17, IL-12p40, IL-12p70, and TNF-Ξ² (lymphotoxin) was observed. These data demonstrate that human B cells can be directly activated viaTLR1/TLR2, TLR7, and TLR9 to induce secretion of cytokines, chemokines, and hematopoietic growth factors and suggest a role of B cells in immune response against microbial pathogenesis and immune homeostasis

    Decreased Toll-like receptor 8 expression and lower TNF-alpha synthesis in infants with acute RSV infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs) are part of the innate immune system, able to recognize pathogen-associated molecular patterns and activate immune system upon pathogen challenge. Respiratory syncytial virus (RSV) is a RNA virus particularly detrimental in infancy. It could cause severe lower respiratory tract disease and recurrent infections related to inadequate development of anti-viral immunity. The reason could be inadequate multiple TLRs engagement, including TLR8 in recognition of single-stranded viral RNA and diminished synthesis of inflammatory mediators due to a lower expression.</p> <p>Methods</p> <p>Intracellular TLR8 expression in peripheral blood monocytes from RSV-infected infants was profiled and compared to healthy adults and age matched controls. Whether the observed difference in TLR8 expression is a transitory effect, infants in convalescent phase (4-6 weeks later) were retested. Specific TLR8-mediated TNF-Ξ± production in monocytes during an acute and convalescent phase was analyzed.</p> <p>Results</p> <p>RSV-infected and healthy infants had lower percentage of TLR8-expressing monocytes than healthy adults whereas decreased of TLR8 protein levels were detected only for RSV-infected infant group. Lower protein levels of TLR8 in monocytes from RSV-infected infants, compared to healthy infants, negatively correlated with respiratory frequency and resulted in lower TNF-Ξ± synthesis upon a specific TLR8 stimulation. In the convalescent phase, levels of TLR8 increased, accompanied by increased TNF-Ξ± synthesis compared to acute infection.</p> <p>Conclusions</p> <p>Lower TLR8 expression observed in monocytes, during an acute RSV infection, might have a dampening impact on early anti-viral cytokine production necessary to control RSV replication, and subsequently initiate an adaptive Th1 type immune response leading to severe disease in infected infants.</p

    IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease

    Get PDF
    We thank Dr. Haohua Qian and Yichao Li (Visual function core, NEI, NIH) for technical assistance with OCT; Phyllis Silver (NEI, NIH) for EAU scoring of the eyes; Rashid Mahdi. M.J.M. for technical assistance with western blot analyses and Rafael Villasmil (NEI FLOW Cytometry Core facility) for assistance with FACS analysis.Peer reviewedPublisher PD

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcΞ³RIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology

    Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital Cytomegalovirus (CMV) infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB) vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines.</p> <p>Results</p> <p>We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs) in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA) and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time.</p> <p>Conclusions</p> <p>These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.</p

    Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response

    Get PDF
    The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested

    R-848 triggers the expression of TLR7/8 and suppresses HIV replication in monocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLR) 7 and 8 are important in single-stranded viral RNA recognition and may play a role in HIV infection and disease progression. We analyzed TLR7/8 expression and signaling in monocytes from HIV-infected and uninfected subjects to investigate a pathway with new potential for the suppression of HIV replication.</p> <p>Methods</p> <p>Eighty-one HIV-infected and uninfected subjects from Liaoning and Henan provinces in China participated in this study. Monocytes were isolated from subjects' peripheral blood mononuclear cells by magnetic bead selection. TLR7 and TLR8 mRNA was measured using quantitative real-time reverse transcriptase PCR. R-848 (resiquimod) was used as a ligand for TLR7 and TLR8 in order to 1) assess TLR7/8-mediated monocyte responsiveness as indicated by IL-12 p40 and TNF-Ξ± secretion and 2) to examine HIV replication in cultured monocytes in the presence of R-848.</p> <p>Results</p> <p>We found that expression of TLR7/8 mRNA in peripheral blood monocytes decreased with disease progression. TLR7 expression was decreased with stimulation with the TLR7/8 agonist, R-848, in vitro, whereas TLR8 expression was unaffected. Following R-848 stimulation, monocytes from HIV-infected subjects produced significantly less TNF-Ξ± than those from uninfected subjects, but trended towards greater production of IL-12 than stimulated monocytes from uninfected subjects. R-848 stimulation also suppressed HIV replication in cultured monocytes.</p> <p>Conclusions</p> <p>Our study provides evidence that the TLR7 and TLR8 triggering can suppress HIV replication in monocytes and lead to postpone HIV disease progression, thereby offering novel targets for immunomodulatory therapy.</p

    Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB. Yaa Mice

    Get PDF
    IL6 is a multifunctional cytokine that drives terminal B cell differentiation and secretion of immunoglobulins. IL6 also cooperates with IL21 to promote differentiation of CD4(+) T follicular helper cells (TFH). Elevated serum levels of IL6 correlate with disease flares in patients with systemic lupus erythematosus (SLE). We previously reported that IL21 produced by T-FH plays a critical role in the development of the SLE-like disease of BXSB. Yaa mice. To examine the possible contributions of IL6 to disease, we compared disease parameters in IL6-deficient and IL6-competent BXSB. Yaa mice. We report that survival of IL6-deficient BXSB. Yaa mice was significantly prolonged in association with significant reductions in a variety of autoimmune manifestations. Moreover, B cells stimulated by co-engagement of TLR7 and B cell receptor (BCR) produced high levels of IL6 that was further augmented by stimulation with Type I interferon (IFN1). Importantly, the frequencies of T-FH and serum levels of IL21 were significantly reduced in IL6-deficient mice. These findings suggest that high-level production of IL6 by B cells induced by integrated signaling from the IFN1 receptor, TLR7 and BCR promotes the differentiation of IL21-secreting T-FH in a signaling sequence that drives the lethal autoimmune disease of BXSB. Yaa mice.Peer reviewe
    • …
    corecore