210 research outputs found

    When the working day is through: The end of work as identity?

    Get PDF
    This article seeks to present a counter-case to the ‘end of work thesis’ advocated by writers such as Beck, Sennett and Bauman. It argues that work remains a significant locus of personal identity and that the depiction by these writers of endemic insecurity in the workplace is inaccurate and lacks empirical basis. The article draws upon case study data to illustrate how, across a range of workplaces, work remains an importance source of identity, meaning and social affiliation

    The magnetic field along the jets of NGC 4258 as deduced from high frequency radio observations

    Full text link
    We present 2.4" resolution, high sensitivity radio continuum observations of the nearby spiral galaxy NGC 4258 in total intensity and linear polarization obtained with the Very Large Array at 3.6 cm (8.44 GHz). The radio emission along the northern jet and the center of the galaxy is polarized and allows investigation of the magnetic field. Assuming energy-equipartition between the magnetic field and the relativistic particles and distinguishing between (1) a relativistic electron-proton jet and (2) a relativistic electron-positron jet, we obtain average magnetic field strengths of about (1) 310\muG and (2) 90\muG. The rotation measure is determined to range from -400 to -800 rad/m^2 in the northern jet. Correcting the observed E-vectors of polarized intensity for Faraday rotation, the magnetic field along the jet turns out to be orientated mainly along the jet axis. An observed tilt with respect to the jet axis may indicate also a toroidal magnetic field component or a slightly helical magnetic field around the northern jet.Comment: 9 pages with 9 figures. Accepted for publication in A&

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    Evaluation of Quantitative EEG by Classification and Regression Trees to Characterize Responders to Antidepressant and Placebo Treatment

    Get PDF
    The study objective was to evaluate the usefulness of Classification and Regression Trees (CART), to classify clinical responders to antidepressant and placebo treatment, utilizing symptom severity and quantitative EEG (QEEG) data. Patients included 51 adults with unipolar depression who completed treatment trials using either fluoxetine, venlafaxine or placebo. Hamilton Depression Rating Scale (HAM-D) and single electrodes data were recorded at baseline, 2, 7, 14, 28 and 56 days. Patients were classified as medication and placebo responders or non-responders. CART analysis of HAM-D scores showed that patients with HAM-D scores lower than 13 by day 7 were more likely to be treatment responders to fluoxetine or venlafaxine compared to non-responders (p=0.001). Youden’s index γ revealed that CART models using QEEG measures were more accurate than HAM-D-based models. For patients given fluoxetine, patients with a decrease at day 2 in θ cordance at AF2 were classified by CART as treatment responders (p=0.02). For those receiving venlafaxine, CART identified a decrease in δ absolute power at day 7 at the PO2 region as characterizing treatment responders (p=0.01). Using all patients receiving medication, CART identified a decrease in δ absolute power at day 2 in the FP1 region as characteristic of nonresponse to medication (p=0.003). Optimal trees from the QEEG CART analysis primarily utilized cordance values, but also incorporated some δ absolute power values. The results of our study suggest that CART may be a useful method for identifying potential outcome predictors in the treatment of major depression

    An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein

    Get PDF
    Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread

    Study protocol for a type III hybrid effectiveness-implementation trial of strategies to implement firearm safety promotion as a universal suicide prevention strategy in pediatric primary care

    Get PDF
    BACKGROUND: Insights from behavioral economics, or how individuals\u27 decisions and behaviors are shaped by finite cognitive resources (e.g., time, attention) and mental heuristics, have been underutilized in efforts to increase the use of evidence-based practices in implementation science. Using the example of firearm safety promotion in pediatric primary care, which addresses an evidence-to-practice gap in universal suicide prevention, we aim to determine: is a less costly and more scalable behavioral economic-informed implementation strategy (i.e., Nudge ) powerful enough to change clinician behavior or is a more intensive and expensive facilitation strategy needed to overcome implementation barriers? METHODS: The Adolescent and child Suicide Prevention in Routine clinical Encounters (ASPIRE) hybrid type III effectiveness-implementation trial uses a longitudinal cluster randomized design. We will test the comparative effectiveness of two implementation strategies to support clinicians\u27 use of an evidence-based firearm safety practice, S.A.F.E. Firearm, in 32 pediatric practices across two health systems. All pediatric practices in the two health systems will receive S.A.F.E. Firearm materials, including training and cable locks. Half of the practices (k = 16) will be randomized to receive Nudge; the other half (k = 16) will be randomized to receive Nudge plus 1 year of facilitation to target additional practice and clinician implementation barriers (Nudge+). The primary implementation outcome is parent-reported clinician fidelity to the S.A.F.E Firearm program. Secondary implementation outcomes include reach and cost. To understand how the implementation strategies work, the primary mechanism to be tested is practice adaptive reserve, a self-report practice-level measure that includes relationship infrastructure, facilitative leadership, sense-making, teamwork, work environment, and culture of learning. DISCUSSION: The ASPIRE trial will integrate implementation science and behavioral economic approaches to advance our understanding of methods for implementing evidence-based firearm safety promotion practices in pediatric primary care. The study answers a question at the heart of many practice change efforts: which strategies are sufficient to support change, and why? Results of the trial will offer valuable insights into how best to implement evidence-based practices that address sensitive health matters in pediatric primary care. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04844021 . Registered 14 April 2021

    Uncertainty Compensation in Human Attention: Evidence from Response Times and Fixation Durations

    Get PDF
    BACKGROUND: Uncertainty and predictability have remained at the center of the study of human attention. Yet, studies have only examined whether response times (RT) or fixations were longer or shorter under levels of stimulus uncertainty. To date, no study has examined patterns of stimuli and responses through a unifying framework of uncertainty. METHODOLOGY/PRINCIPAL FINDINGS: We asked 29 college students to generate repeated responses to a continuous series of visual stimuli presented on a computer monitor. Subjects produced these responses by pressing on a keypad as soon a target was detected (regardless of position) while the durations of their visual fixations were recorded. We manipulated the level of stimulus uncertainty in space and time by changing the number of potential stimulus locations and time intervals between stimulus presentations. To allow the analyses to be conducted using uncertainty as common description of stimulus and response we calculated the entropy of the RT and fixation durations. We tested the hypothesis of uncertainty compensation across space and time by fitting the RT and fixation duration entropy values to a quadratic surface. The quadratic surface accounted for 80% of the variance in the entropy values of both RT and fixation durations. RT entropy increased as a function of spatial and temporal uncertainty of the stimulus, alongside a symmetric, compensatory decrease in the entropy of fixation durations as the level of spatial and temporal uncertainty of the stimuli was increased. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that greater uncertainty in the stimulus leads to greater uncertainty in the response, and that the effects of spatial and temporal uncertainties are compensatory. We also observed compensatory relationship across the entropies of fixation duration and RT, suggesting that a more predictable visual search strategy leads to more uncertain response patterns and vice versa
    corecore