57 research outputs found

    Developing a competence framework for nurses in pharmaceutical care: A Delphi study

    Get PDF
    Background: Nurses play an important role in pharmaceutical care. They are involved in: detecting clinical change; communicating/discussing pharmacotherapy with patients, their advocates, and other healthcare professionals; proposing and implementing medication-related interventions; and ensuring follow-up of patients and medication regimens. To date, a framework of nurses' competences on knowledge, skills, and attitudes as to interprofessional pharmaceutical care tasks is missing. Objectives: To reach agreement with experts about nurses' competences for tasks in interprofessional pharmaceutical care. Methods: A two-phase study starting with a scoping review followed by five Delphi rounds was performed. Competences extracted from the literature were assessed by an expert panel on relevance by using the RAND/UCLA method. The experts (n = 22) involved were healthcare professionals, nurse researchers, and educators from 14 European countries with a specific interest in nurses' roles in interprofessional pharmaceutical care. Descriptive statistics supported the data analysis. Results: The expert panel reached consensus on the relevance of 60 competences for 22 nursing tasks. 41 competences were related to 15 generic nursing tasks and 33 competences were related to seven specific nursing tasks. Conclusions: This study resulted in a competence framework for competency-based nurse education. Future research should focus on imbedding these competences in nurse education. A structured instrument should be developed to assess students' readiness to achieve competence in interprofessional pharmaceutical care in clinical practice.The research was supported by the Erasmus+ Programme of the European Union (grant number 2018–1-BE02-KA203–046861) and MDMJ accountants, an accountancy service in Belgium that financially supported the Belgian authors, without any conflicts of interest

    Nurse students’ competences in interprofessional pharmaceutical care in Europe: cross-sectional evaluation

    Get PDF
    Background: Safe pharmaceutical care requires competent nurses with specific knowledge, skills and attitudes. It is unclear whether nursing students are adequately prepared to perform pharmaceutical care in practice. Mapping their pharmaceutical care competences can lead to a better understanding of the extent to which curricula fit expectations of the labour market. Objectives: To assess pharmaceutical care competences of final-year nursing students of different educational levels. Design: A cross-sectional survey design. Settings: In 14 European countries, nursing schools who offer curricula for level 4 to 7 students, were approached. Participants: Through convenience sampling 1741 final-year student nurses of level 4 to 7 were included. Sampling strategies were country-specific. Methods: A web-platform was developed with an assessment of the level in which students mastered pharmaceutical care competences. Knowledge questions, case studies (basic/advanced level), self-reported practical skills and attitudes were evaluated. Results: Mean scores for knowledge questions differed significantly (p<0.001) between level 5 (56/100), level 6 (68/100) and level 7 students (72/100). For basic cases level 5 students reached lower scores (64/100) compared with level 6 (71/100) and level 7 (72/100) students (p=0.002 and p=0.005). For more advanced cases no difference between levels was observed (overall mean 61/100). Most students (63-90%) considered themselves skilled to perform pharmaceutical care and had positive attitudes towards their participation in pharmaceutical care (65-97%). Conclusions: Relatively low knowledge scores were calculated for final-year student nurses. In some domains, lower levels of students might be insufficiently prepared to take up responsibilities in pharmaceutical care. Our assessment can be used as a tool for educators to evaluate how prepared nursing students are for pharmaceutical care. Its further implementation for students of different educational levels will allow benchmarking between the levels, both within and between countries.This work was supported by the Erasmus+ Programme of the European Union [grant number 2018-1-BE02-KA203-046861] and Consensus accountants, an accountancy service in Belgium that financially supported the Belgian authors, without any conflicts of interest

    Photochemically-produced SO2_2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Recent observations from the JWST Transiting Exoplanet Early Release Science Program found a spectral absorption feature at 4.05 μ\mum arising from SO2_2 in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ_J) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of \sim1100 K. The most plausible way of generating SO2_2 in such an atmosphere is through photochemical processes. Here we show that the SO2_2 distribution computed by a suite of photochemical models robustly explains the 4.05 μ\mum spectral feature identified by JWST transmission observations with NIRSpec PRISM (2.7σ\sigma) and G395H (4.5σ\sigma). SO2_2 is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H2_2S) is destroyed. The sensitivity of the SO2_2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of \sim10×\times solar. We further point out that SO2_2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur

    Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    Full text link
    Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R\sim600) transmission spectrum of an exoplanet atmosphere between 3-5 μ\mum covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2_2 (28.5σ\sigma) and H2_2O (21.5σ\sigma), and identify SO2_2 as the source of absorption at 4.1 μ\mum (4.8σ\sigma). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2_2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    Full text link
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 μ\mum, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H2_2O in the atmosphere and place an upper limit on the abundance of CH4_4. The otherwise prominent CO2_2 feature at 2.8 μ\mum is largely masked by H2_2O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100×\times solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte

    Early Release Science of the exoplanet WASP-39b with JWST NIRISS

    Full text link
    Transmission spectroscopy provides insight into the atmospheric properties and consequently the formation history, physics, and chemistry of transiting exoplanets. However, obtaining precise inferences of atmospheric properties from transmission spectra requires simultaneously measuring the strength and shape of multiple spectral absorption features from a wide range of chemical species. This has been challenging given the precision and wavelength coverage of previous observatories. Here, we present the transmission spectrum of the Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS instrument on the JWST. This spectrum spans 0.62.8μ0.6 - 2.8 \mum in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, as well as signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favoring a heavy element enhancement ("metallicity") of 1030×\sim 10 - 30 \times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur

    A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

    Get PDF
    Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot Jupiters'') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble and Spitzer Space Telescopes. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The data span 0.85 to 2.85 μ\mum in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >>6σ\sigma confidence) and evidence for optical opacity, possibly due to H^-, TiO, and VO (combined significance of 3.8σ\sigma). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy element abundance (''metallicity'', M/H = 1.030.51+1.11_{-0.51}^{+1.11} ×\times solar), and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the sub-stellar point that decreases steeply and symmetrically with longitude toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2 proposals. Manuscript under review. 50 pages, 14 figures, 2 table

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Get PDF
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)
    corecore