53 research outputs found

    Increasing densities of an invasive polychaete enhance bioturbation with variable effects on solute fluxes

    Get PDF
    Bioturbation is a key process affecting nutrient cycling in soft sediments. The invasive polychaete genus Marenzelleria spp. has established successfully throughout the Baltic Sea increasing species and functional diversity with possible density-dependent effects on bioturbation and associated solute fluxes. We tested the effects of increasing density of M. arctia, M. viridis and M. neglecta on bioturbation and solute fluxes in a laboratory experiment. Benthic communities in intact sediment cores were manipulated by adding increasing numbers of Marenzelleria spp. The results showed that Marenzelleria spp. in general enhanced all bioturbation metrics, but the effects on solute fluxes varied depending on the solute, on the density and species identity of Marenzelleria, and on the species and functional composition of the surrounding community. M. viridis and M. neglecta were more important in predicting variation in phosphate and silicate fluxes, whereas M. arctia had a larger effect on nitrogen cycling. The complex direct and indirect pathways indicate the importance of considering the whole community and not just species in isolation in the experimental studies. Including these interactions provides a way forward regarding our understanding of the complex ecosystem effects of invasive species.Peer reviewe

    A Tri-Oceanic Perspective: DNA Barcoding Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes

    Get PDF
    Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested.Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas.Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation. This study highlights the value of DNA barcoding for providing rapid insights into species distributions and biogeographic patterns in understudied groups

    Interspecific Hybridization and Mitochondrial Introgression in Invasive Carcinus Shore Crabs

    Get PDF
    Interspecific hybridization plays an important role in facilitating adaptive evolutionary change. More specifically, recent studies have demonstrated that hybridization may dramatically influence the establishment, spread, and impact of invasive populations. In Japan, previous genetic evidence for the presence of two non-native congeners, the European green crab Carcinus maenas and the Mediterranean green crab C. aestuarii, has raised questions regarding the possibility of hybridization between these sister species. Here I present analysis based on both nuclear microsatellites and the mitochondrial cytochrome C oxidase subunit I (COI) gene which unambiguously argues for a hybrid origin of Japanese Carcinus. Despite the presence of mitochondrial lineages derived from both C. maenas and C. aestuarii, the Japanese population is panmictic at nuclear loci and has achieved cytonuclear equilibrium throughout the sampled range in Japan. Furthermore, analysis of admixture at nuclear loci indicates dramatic introgression of the C. maenas mitochondrial genome into a predominantly C. aestuarii nuclear background. These patterns, along with inferences drawn from the observational record, argue for a hybridization event pre-dating the arrival of Carcinus in Japan. The clarification of both invasion history and evolutionary history afforded by genetic analysis provides information that may be critically important to future studies aimed at assessing risks posed by invasive Carcinus populations to Japan and the surrounding region

    The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    Get PDF
    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species

    Status of Biodiversity in the Baltic Sea

    Get PDF
    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity

    The role of elongation factors in protein synthesis rate variation in white teleost muscle

    No full text
    • …
    corecore