14 research outputs found

    AÇÃO COMUNICATIVA E AÇÃO DIALÓGICA: CONTRIBUIÇÕES PARA UMA EDUCAÇÃO LIBERTADORA

    Get PDF
    O presente trabalho tem por objetivo apresentar as idéias deHabermas e Paulo Freire, demonstrando a convergência de ambas no que serefere à emancipação dos sujeitos na sociedade e na educação. Primeiramente,abordar-se-á a construção da Teoria da Ação Comunicativa de Habermas.Em seguida, serão trazidos alguns elementos do pensamento de Paulo Freire.Por fim, far-se-á uma justaposição das idéias de ambos os autores

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication

    No full text
    Corrigendum: The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication.Submitted by Sandra Infurna ([email protected]) on 2017-01-23T12:59:55Z No. of bitstreams: 1 carolina_sacramento_etal_IOC_2017.pdf: 906496 bytes, checksum: 1568349526fa6390efffaec7492e3388 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2017-01-23T13:40:44Z (GMT) No. of bitstreams: 1 carolina_sacramento_etal_IOC_2017.pdf: 906496 bytes, checksum: 1568349526fa6390efffaec7492e3388 (MD5)Made available in DSpace on 2017-01-23T13:40:44Z (GMT). No. of bitstreams: 1 carolina_sacramento_etal_IOC_2017.pdf: 906496 bytes, checksum: 1568349526fa6390efffaec7492e3388 (MD5) Previous issue date: 2017Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil ; Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil ; Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil ; Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia de Fármacos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratório e do Sarampo. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil ; Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil ; Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil ; Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia de Fármacos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Biologia. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. COPPE. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé. Macaé, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Biologia. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. COPPE. Rio de Janeiro, RJ, Brasil.Instituto D`OR de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Instituto D`OR de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Rio de Janeiro, RJ, Brasil / Instituto D`OR de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia de Fármacos. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Biologia. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. COPPE. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.BMK Consortium / Blanver Farmoquímica Ltda / Microbiológica Química e Farmacêutica / Karin Bruning & Cia Ltda. Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Instituto Nacional de Ciência e Tecnologia para Inovação em Doenças Negligenciadas. Rio de Janeiro, RJ. Brasil.Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV

    Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome - A randomized clinical trial

    No full text
    IMPORTANCE: The effects of recruitment maneuvers and positive end-expiratory pressure (PEEP) titration on clinical outcomes in patients with acute respiratory distress syndrome (ARDS) remain uncertain. OBJECTIVE: To determine if lung recruitment associated with PEEP titration according to the best respiratory-system compliance decreases 28-day mortality of patients with moderate to severe ARDS compared with a conventional low-PEEP strategy. DESIGN, SETTING, AND PARTICIPANTS: Multicenter, randomized trial conducted at 120 intensive care units (ICUs) from 9 countries from November 17, 2011, through April 25, 2017, enrolling adults with moderate to severe ARDS. INTERVENTIONS: An experimental strategy with a lung recruitment maneuver and PEEP titration according to the best respiratory-system compliance (n = 501; experimental group) or a control strategy of low PEEP (n = 509). All patients received volume-assist control mode until weaning. MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality until 28 days. Secondary outcomes were length of ICU and hospital stay; ventilator-free days through day 28; pneumothorax requiring drainage within 7 days; barotrauma within 7 days; and ICU, in-hospital, and 6-month mortality. RESULTS: A total of 1010 patients (37.5% female; mean [SD] age, 50.9 [17.4] years) were enrolled and followed up. At 28 days, 277 of 501 patients (55.3%) in the experimental group and 251 of 509 patients (49.3%) in the control group had died (hazard ratio [HR], 1.20; 95% CI, 1.01 to 1.42; P = .041). Compared with the control group, the experimental group strategy increased 6-month mortality (65.3% vs 59.9%; HR, 1.18; 95% CI, 1.01 to 1.38; P = .04), decreased the number of mean ventilator-free days (5.3 vs 6.4; difference, −1.1; 95% CI, −2.1 to −0.1; P = .03), increased the risk of pneumothorax requiring drainage (3.2% vs 1.2%; difference, 2.0%; 95% CI, 0.0% to 4.0%; P = .03), and the risk of barotrauma (5.6% vs 1.6%; difference, 4.0%; 95% CI, 1.5% to 6.5%; P = .001). There were no significant differences in the length of ICU stay, length of hospital stay, ICU mortality, and in-hospital mortality. CONCLUSIONS AND RELEVANCE: In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality. These findings do not support the routine use of lung recruitment maneuver and PEEP titration in these patients. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01374022

    Giants of the Amazon:How does environmental variation drive the diversity patterns of large trees?

    No full text
    corecore