1,540 research outputs found

    On Quantum Iterated Function Systems

    Full text link
    Quantum Iterated Function System on a complex projective space is defined by a family of linear operators on a complex Hilbert space. The operators define both the maps and their probabilities by one algebraic formula. Examples with conformal maps (relativistic boosts) on the Bloch sphere are discussed.Comment: Latex, 12 pages, 3 figures. Added plot of numerical estimate of the averaged contraction parameter fro quantum octahedron over the whole range of the fuzziness parameter. Added a theorem and proof of the uniqueness of the invariant measure. At the very end added subsection on "open problems

    Approximation of Rough Functions

    Get PDF
    For given p[1,]p\in\lbrack1,\infty] and gLp(R)g\in L^{p}\mathbb{(R)}, we establish the existence and uniqueness of solutions fLp(R)f\in L^{p}(\mathbb{R)}, to the equation f(x)af(bx)=g(x), f(x)-af(bx)=g(x), where aRa\in\mathbb{R}, bR{0}b\in\mathbb{R} \setminus \{0\}, and ab1/p\left\vert a\right\vert \neq\left\vert b\right\vert ^{1/p}. Solutions include well-known nowhere differentiable functions such as those of Bolzano, Weierstrass, Hardy, and many others. Connections and consequences in the theory of fractal interpolation, approximation theory, and Fourier analysis are established.Comment: 16 pages, 3 figure

    Differentiability of fractal curves

    Full text link
    While self-similar sets have no tangents at any single point, self-affine curves can be smooth. We consider plane self-affine curves without double points and with two pieces. There is an open subset of parameter space for which the curve is differentiable at all points except for a countable set. For a parameter set of codimension one, the curve is continuously differentiable. However, there are no twice differentiable self-affine curves in the plane, except for parabolic arcs

    Equilibrium states and invariant measures for random dynamical systems

    Full text link
    Random dynamical systems with countably many maps which admit countable Markov partitions on complete metric spaces such that the resulting Markov systems are uniformly continuous and contractive are considered. A non-degeneracy and a consistency conditions for such systems, which admit some proper Markov partitions of connected spaces, are introduced, and further sufficient conditions for them are provided. It is shown that every uniformly continuous Markov system associated with a continuous random dynamical system is consistent if it has a dominating Markov chain. A necessary and sufficient condition for the existence of an invariant Borel probability measure for such a non-degenerate system with a dominating Markov chain and a finite (16) is given. The condition is also sufficient if the non-degeneracy is weakened with the consistency condition. A further sufficient condition for the existence of an invariant measure for such a consistent system which involves only the properties of the dominating Markov chain is provided. In particular, it implies that every such a consistent system with a finite Markov partition and a finite (16) has an invariant Borel probability measure. A bijective map between these measures and equilibrium states associated with such a system is established in the non-degenerate case. Some properties of the map and the measures are given.Comment: The article is published in DCDS-A, but without the 3rd paragraph on page 4 (the complete removal of the paragraph became the condition for the publication in the DCDS-A after the reviewer ran out of the citation suggestions collected in the paragraph

    Quantum Iterated Function Systems

    Full text link
    Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.Comment: 12 pages, 1 figure include

    Computing the Hessenberg matrix associated with a self-similar measure

    Get PDF
    We introduce in this paper a method to calculate the Hessenberg matrix of a sum of measures from the Hessenberg matrices of the component measures. Our method extends the spectral techniques used by G. Mantica to calculate the Jacobi matrix associated with a sum of measures from the Jacobi matrices of each of the measures. We apply this method to approximate the Hessenberg matrix associated with a self-similar measure and compare it with the result obtained by a former method for self-similar measures which uses a fixed point theorem for moment matrices. Results are given for a series of classical examples of self-similar measures. Finally, we also apply the method introduced in this paper to some examples of sums of (not self-similar) measures obtaining the exact value of the sections of the Hessenberg matrix

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures νλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures νλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of νλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure

    A representative sample of Be stars V. H alpha variability

    Get PDF
    Aims. We attempt to determine if a dependency on spectral subtype or vsin i exists for stars undergoing phase-changes between B and Be states, as well as for those stars exhibiting variability in Hα emission. Methods. We analysed the changes in Hα line strength for a sample of 55 Be stars of varying spectral types and luminosity classes using five epochs of observations taken over a ten year period between 1998 and 2010. Results. We find i) that the typical timescale between which full phase transitions occur is most likely of the order of centuries, although no dependency on spectral subtype or vsin i could be determined due to the low frequency of phase-changing events observed in our sample; ii) that stars with earlier spectral types and larger values of vsin i show a greater degree of variability in Hα emission over the timescales probed in this study; and iii) a trend of increasing variability between the shortest and longest baselines for stars of later spectral types and with smaller values of vsin i

    Multifractal analysis of the metal-insulator transition in anisotropic systems

    Full text link
    We study the Anderson model of localization with anisotropic hopping in three dimensions for weakly coupled chains and weakly coupled planes. The eigenstates of the Hamiltonian, as computed by Lanczos diagonalization for systems of sizes up to 48348^3, show multifractal behavior at the metal-insulator transition even for strong anisotropy. The critical disorder strength WcW_c determined from the system size dependence of the singularity spectra is in a reasonable agreement with a recent study using transfer matrix methods. But the respective spectrum at WcW_c deviates from the ``characteristic spectrum'' determined for the isotropic system. This indicates a quantitative difference of the multifractal properties of states of the anisotropic as compared to the isotropic system. Further, we calculate the Kubo conductivity for given anisotropies by exact diagonalization. Already for small system sizes of only 12312^3 sites we observe a rapidly decreasing conductivity in the directions with reduced hopping if the coupling becomes weaker.Comment: 25 RevTeX pages with 10 PS-figures include
    corecore