
Journal of Approximation Theory 163 (2011) 49–64
www.elsevier.com/locate/jat

Computing the Hessenberg matrix associated with a
self-similar measure

C. Escribano∗, A. Giraldo, M.A. Sastre, E. Torrano
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Abstract

We introduce in this paper a method to calculate the Hessenberg matrix of a sum of measures from
the Hessenberg matrices of the component measures. Our method extends the spectral techniques used by
G. Mantica to calculate the Jacobi matrix associated with a sum of measures from the Jacobi matrices of
each of the measures.

We apply this method to approximate the Hessenberg matrix associated with a self-similar measure and
compare it with the result obtained by a former method for self-similar measures which uses a fixed point
theorem for moment matrices. Results are given for a series of classical examples of self-similar measures.

Finally, we also apply the method introduced in this paper to some examples of sums of (not self-similar)
measures obtaining the exact value of the sections of the Hessenberg matrix.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent work [8] we have obtained a method to approximate the moment matrix of a self-
similar measure using a fixed point theorem for moment matrices. The Cholesky factorization
of this moment matrix allows us to obtain an approximation of the Hessenberg matrix of the
measure.
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In this paper we introduce a new method to calculate exactly the Hessenberg matrix of a sum
of measures from the Hessenberg matrices of the component measures. This method extends the
spectral techniques used by Mantica [17] to calculate the Jacobi matrix associated with a sum of
measures from the Jacobi matrices of each of the measures (see also [5,11]).

Moreover, for the particular case of a self-similar measure µ, by iteratively applying the above
method to a suitable system of measures approximating µ, we obtain a method to approximate
the Hessenberg matrix associated with µ.

The study of the Hessenberg matrix associated with a self-similar measure might help to
understand the structure of this measure. In [8,14], it was shown how geometric transformations
of an iterated function system can be translated to transformations of moment matrices. Our
method leads to similar transformations for the associated Hessenberg matrices. Our work is
also related to the problem of Bernoulli convolutions [6,13,19].

In the first section of the paper we recall the concepts of self-similar measure and iterated
function system (IFS) and some results about moment matrices and Hessenberg matrices that we
will need in the paper.

The new methods to calculate Hessenberg matrices introduced in this paper will be presented
in Sections 2 and 3. In Section 4 we will illustrate our methods with some numerical experiments.

We thank the referee for comments and suggestions which have helped to improve the final
version of the paper.

1.1. Moments and Hessenberg matrices

Let µ(z) be a positive measure with compact support Ω in the complex plane. Let P
be the space of polynomials. Then, there exists a unique orthonormal polynomials sequence
(ONPS) {Pn(z)}∞n=0 associated with the measure µ (see [3,10] or [20]). Given two polynomials
Q(z), R(z) ∈ P , the expression

⟨Q(z), R(z)⟩µ =

∫
Supp(µ)

Q(z)R(z)dµ(z)

defines an inner product. Recall that we can define a hermitian moment matrix M = (c jk)
∞

j,k=0,

where c jk =

Ω z j zkdµ, j, k ∈ Z+.M is the matrix of the inner product in the canonical basis.

We denote by Mn = (c j,k)
n−1
j,k=0 the nth-section of the matrix M .

In the space P 2(µ), closure of the polynomials space P , we consider the multiplication by z
operator. Let D = (d jk)

∞

j,k=0 be the infinite upper Hessenberg matrix of this operator in the basis
of ONPS {Pn(z)}∞n=0, hence

z Pn(z) =

n+1−
k=0

dk,n Pk(z), n ≥ 0, (1)

with P0(z) = 1 when c00 = 1.
This Hessenberg matrix D is the natural generalization of the tridiagonal Jacobi matrix to the

complex plane. The matrices M and D are related by the formula D = T H SR T −H , where T is
the infinite matrix whose nth-section is the lower triangular matrix, with real diagonal, obtained
from the Cholesky factorization of the nth-section Mn = TnT H

n of the moment matrix M , the
superscript H applied to a matrix denotes its conjugate transpose matrix, and SR is the shift-right
matrix which is null everywhere with the exception of a subdiagonal of ones.

For more information on this subject see the books [3,20] by Chihara and Szegö, respectively.
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1.2. Self-similar measures

Given a family {ϕi }
m
i=1 of contractive maps defined on a complete metric space, there exists a

unique compactum K satisfying K =
m

i=1 ϕi (K ). This compactum is obtained as a limit in the
metric space of compacta with the Hausdorff metric, iterating the maps, taking as initial set any
compactum of the space. We call this family {ϕi }

m
i=1 an Iterated Functions System (IFS) [2]. In

all this work, the maps ϕi (i = 1, . . . , m) are contractive similarities (ϕ is a contractive similarity
when |ϕ(x)−ϕ(y)| = r |x − y|, 0 ≤ r < 1, for all x, y) and we will call it an Iterated Functions
System of Similarities (IFSS).

If we assign a probability pi > 0 to every ϕi , with
∑m

i=1 pi = 1, there exists a unique prob-
ability measure µ invariant for the Markov operator T , defined over the set of Borel regular
probability measures as T ν =

∑m
i=1 piνϕ−1

i . This measure is called the self-similar measure µ

associated with the IFSS with probabilities Φ = {ϕ1, ϕ2, . . . , ϕm; p1, p2, . . . , pm}. If we denote
by K = Supp(µ) the support of µ, we have that

µ =

m−
i=1

piµϕ−1
i ,

∫
K

f dµ =

m−
i=1

pi

∫
K

f ◦ ϕi dµ,

for any continuous function on K . Moreover, if the ϕi (K ) are disjoints sets, then the measure µ

restricted to each subset ϕi (K ) is, up to similarity, the same measure [12,15].
For more information on this subject see the books [9,18] by Falconer and Mattila,

respectively.

2. Hessenberg matrix associated with a sum of measures

Throughout this work, we will consider a family of measures {µi }
m
i=1 with compact support

Ωi ⊂ C and µi (Ωi ) = 1. Let µ be the sum measure, i.e.,

dµ =

m−
i=1

pi dµi ,

where
∑m

i=1 pi = 1 and pi ≥ 0 for all i = 1, 2, . . . , m.
Let {D(i)

}
m
i=1 be the associated Hessenberg matrices, and let D = (d jk)

∞

j,k=0 be the Hessen-

berg matrix associated with µ. We will give a technique to calculate D in terms of {D(i)
}
m
i=1.

First, note that the matrices D(i) are bounded as operators on ℓ2
= ℓ2({0, 1, 2, . . .}) because

the support of every µi is compact. Second, remark that every matrix defines a subnormal oper-
ator in ℓ2 [1,21,23]. These two properties allow us to extend Mantica’s spectral techniques [17]
to the complex plane.

We will need the following result from spectral theory for subnormal operators on l2, to
establish our main result.

Proposition 1. Let the polynomials {Pn(z)}∞n=0 satisfy the recurrence formula (1). Let S be a
bounded and subnormal operator on H = ℓ2. Then S satisfies the identity:

dn+1,n Pn+1(S) = (S − dnn I )Pn(S) −

n−1−
k=0

dk,n Pk(S), n ≥ 0. (2)
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Proof. We can express the recurrence formula (1) as follows

dn+1,n Pn+1(z) = (z − dnn)Pn(z) −

n−1−
k=0

dk,n Pk(z), n ≥ 0,

where, for n = 0, the sum
∑

−1
k=0 dk,0 Pk(z) is considered to be equal to 0.

Applying functional calculus for a normal operator N we have

dn+1,n Pn+1(N ) = (N − dnn)Pn(N ) −

n−1−
k=0

dk,n Pk(N ), n ≥ 0. (3)

The main idea of the proof is to use the minimal normal extension of S, N = mne(S) [4] (given
S, there exists a Hilbert space K ⊃ H and there exists a normal extension N : K → K such
that N |H = S). We can decompose K = H


H⊥, and the operator N can be expressed as a

2 × 2-block matrix in the following way

N =


S X
0 Y


,

where the block 0 is due to N (H) ⊂ H and N |H = S.

Therefore, we have

N j
=


S j �
0 Y j


, (4)

where the symbol � indicates some quantities that are not relevant for our goal. From identity
(3), we have

dn+1,n Pn+1


S X
0 Y


=

[
S X
0 Y


− dnn


I 0
0 I ′

]
Pn


S X
0 Y


−

n−1−
k=0

dk,n Pk


S X
0 Y


,

where I ′
: H⊥

→ H⊥ is the identity operator on the orthogonal complement space of H in K .
Taking into account (4) we obtain

dn+1,n Pn+1(S) �
0 �


=

[
S − dnn I �

0 �

]
Pn(S) �

0 �


−

n−1−
k=0


dk,n Pk(S) �

0 �


.

By taking the (1, 1) block entry of this equation, we obtain the desired result. �

Proposition 2. Let {µi }
m
i=1 be a family of measures with compact support on C and let µ be the

sum measure. Let {Pn}
∞

n=0 be the associated orthonormal polynomials sequence (ONPS) and let
D = (d jk)

∞

j,k=0 and {D(i)
}
m
i=1 be the Hessenberg matrices as above. Then

dn+1,nv
(i)
n+1 = [D(i)

− dnn I ]v(i)
n −

n−1−
k=0

dknv
(i)
k , n ≥ 0, i = 1, . . . , m (5)

dkn =

m−
i=1

pi ⟨D(i)v(i)
n , v

(i)
k ⟩, k = 0, 1, 2, . . . , n, (6)
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where

v(i)
n = Pn(D(i))e0, n ≥ 0, i = 1, . . . , m and e0 = (1, 0, 0, . . .)T

are families of vectors in ℓ2.

Proof. Note that the matrices D(i) are bounded in ℓ2 because the support of every µi is compact
and moreover every matrix defines a subnormal operator on ℓ2. As a consequence, every matrix
satisfies identity (2). Applying this identity to the vector e0 and taking into account the definition
of v

(i)
n we obtain (5).

Identity (6) is obtained from the long recurrence formula (1) as follows. If we multiply
by Pk(z) in both sides of (1), using the inner product induced by µ, since the polynomials
{Pn(z)}∞n=0 are orthonormal with respect to this measure, we obtain that

dkn = ⟨z Pn(z), Pk(z)⟩µ =

∫
Ω

Pk(z)z Pn(z)dµ, (7)

where Ω = Supp(µ).
On the other hand, we take the function Pk(z)z Pn(z) and we apply the spectral theorem for

the minimal normal extension N (i) of D(i). This yields
Pk(N (i))

H 
N (i) Pn(N (i))


=

∫
σ(N (i))

Pk(z)z Pn(z)dEµi ,

where dEµi is the spectral measure. Using the matrix expression (4) we obtain
Pk(D(i))

H 
D(i) Pn(D(i))


�

� �


=

∫
σ(N (i))

Pk(z)z Pn(z)dEµi .

Multiplying by e0 = (e0, 0), where 0 is the vector zero of (ℓ2)⊥, and taking into account that
dµi = ⟨dEµi e0, e0⟩ = ⟨dEµi e0, e0⟩, we have

Pk(D(i))
H 

D(i) Pn(D(i))


e0, e0


= ⟨D(i) Pn(D(i))e0, Pk(D(i))e0⟩

=

∫
σ(N (i))

Pk(z)z Pn(z)⟨dEµi e0, e0⟩

=

∫
σ(N (i))=Ωi

Pk(z)z Pn(z)dµi

and, since for all i = 1, 2, . . . , m,
D(i)v(i)

n , v
(i)
k


=


Pk(D(i))

H 
D(i) Pn(D(i))


e0, e0


,

we have
m−

i=1

pi ⟨D(i)v(i)
n , v

(i)
k ⟩ =

m−
i=1

pi

∫
Ωi

Pk(z)z Pn(z)dµi

=

∫
Ω

Pk(z)z Pn(z)


m−

i=1

pi dµi


= dkn . �
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Proposition 3. In the conditions of Proposition 2, the following holds,

d2
n+1,n =

m−
i=1

pi ⟨w
(i)
n+1, w

(i)
n+1⟩,

where

w
(i)
n+1 = dn+1,nv

(i)
n+1, i = 1, 2, . . . , m,

is a family of vectors in ℓ2.

Proof. Since ⟨w
(i)
n+1, w

(i)
n+1⟩ = d2

n+1,n⟨v
(i)
n+1, v

(i)
n+1⟩, using the same spectral techniques, we have

m−
i=1

pi ⟨w
(i)
n+1, w

(i)
n+1⟩ =

m−
i=1

pi d
2
n+1,n⟨v

(i)
n+1, v

(i)
n+1⟩

= d2
n+1,n

m−
i=1

pi ⟨Pn+1(D(i))e0, Pn+1(D(i))e0⟩

= d2
n+1,n

∫
Ω

|Pn+1(z)|
2dµ = d2

n+1,n . �

Theorem 4. Let the sum measure µ, the ONPS {Pn}
∞

n=0 and the Hessenberg matrices D and

{D(i)
}
m
i=1 be as above. Define the semi-infinite vector v

(i)
0 = (1, 0, 0, . . .)T for every i = 1, . . . ,

m. Then the elements of the matrix D = (d jk)
∞

j,k=0 associated with µ can be calculated

recursively from the matrices {D(i)
}
m
i=1 using the following formulas for n = 0, 1, 2, . . . .

dk,n =

m−
i=1

pi ⟨D(i)v(i)
n , v

(i)
k ⟩, k = 0, 1, . . . , n (8)

w
(i)
n+1 =


D(i)

− dnn I

v(i)

n −

n−1−
k=0

dk,nv
(i)
k , i = 1, . . . , m (9)

dn+1,n =

 m−
i=1

pi ⟨w
(i)
n+1, w

(i)
n+1⟩, (10)

v
(i)
n+1 =

w
(i)
n+1

dn+1,n
, i = 1, . . . , m. (11)

Proof. We see first how to obtain ({{v
(i)
k }

m
i=1}

n
k=0, Dn+1) by induction.

For n = 0, we know ({v
(i)
0 }

m
i=1, D1):

• v
(i)
0 = e0 for every i = 1, . . . , m, and

• D1 = (d00) where d00 =
∑m

i=1 pi ⟨D(i)e0, e0⟩ =
∑m

i=1 pi d
(i)
00 .
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Suppose that we know the value of


v
(i)
0 , v

(i)
1 , . . . , v

(i)
n

m

i=1
, Dn+1


, i.e., we have


v

(i)
0 , v

(i)
1 , . . . , v(i)

n

m

i=1
, Dn+1 =


d00 d01 . . . d0n
d10 d11 . . . d1n
...

...
...

0 0 . . . dnn

 .

We will show how to obtain


v
(i)
0 , v

(i)
1 , . . . , v

(i)
n+1

m

i=1
, Dn+2


.

Dn+1 v
(i)
0 , v

(i)
1 , . . . , v

(i)
n

❄

�
�

�✠

w
(i)
n+1 =


D(i)

− dnn I

v

(i)
n −

∑n−1
k=0 dk,nv

(i)
k , i = 1, . . . , m (9)

❄

dn+1,n =

∑m
i=1 pi ⟨w

(i)
n+1, w

(i)
n+1⟩ (10)

❄

v
(i)
n+1 =

w
(i)
n+1

dn+1,n
(11) v

(i)
0 , v

(i)
1 , . . . , v

(i)
n

❅
❅

❅
❅❅❘

✟✟
✟✟✟

✟✟✟✟✙
dk,n+1 =

∑m
i=1 pi ⟨D(i)v

(i)
n+1, v

(i)
k ⟩, k = 0, . . . , n + 1 (8)

�

Note that the above formulas can be written in a matricial form.

Corollary 5. Let V (i) denote the upper triangular matrix with the vectors v
(i)
0 , v

(i)
1 , v

(i)
2 , . . . , of

ℓ2, as columns, i.e., V (i)
= (v

(i)
0 , v

(i)
1 , v

(i)
2 , . . .). Then,

D =

m−
i=1

pi


V (i)

H
D(i)V (i).
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3. Hessenberg matrix associated with a self-similar measure

To apply the above result to self-similar measures, we will use the following result by
Torrano [22] to obtain the Hessenberg matrix of the measure µ ◦ ϕ−1 obtained from the
transformation of a measure µ by a similarity function ϕ.

Lemma 6. Let D be the Hessenberg matrix associated with a measure. If D∗ is the Hessenberg
matrix associated with the transformation of this measure by a similarity ϕ(z) = αz + β,
α, β ∈ C, then

D∗
= αU H DU + β I,

where, if α = |α|eθ i, then U =

δ jke(k−1)θ i

∞
j,k=1.

Consider a self-similar measure µ associated with an iterated functions system of similarities
(IFSS) with probabilities Φ = {ϕ1, ϕ2, . . . , ϕm; p1, p2, . . . , pm}. This measure µ satisfies

µ =

m−
i=1

piµϕ−1
i ,

i.e., µ is the sum of the transformations of itself by the similarities ϕi . Then, applying Corollary 5,
we obtain the following result.

Corollary 7. Let Φ = {ϕi (z) = αi z + βi ; pi } be an IFS of similarities with probabilities and
let µ be the corresponding self-similar measure. Then, the Hessenberg matrix D associated with
the self-similar measure µ satisfies the following equation

D =

m−
i=1

pi [V (i)
]

H

αi [U

(i)
]

H DU (i)
+ βi I


V (i),

where U (i) and αi are as in the above lemma and V (i) is as in Corollary 5 for µi = µϕ−1
i .

Definition 8. Given Φ = {ϕ1, ϕ2, . . . , ϕm; p1, p2, . . . , pm} an IFSS with probabilities as above,
we define the following transformation in the space of all Hessenberg matrices associated with a
measure by

TΦ(Dν) =

m−
i=1

pi [V (i)
]

H

αi [U

(i)
]

H DνU (i)
+ βi I


V (i),

where U (i) and αi are as in the above lemma and V (i) is as in Corollary 5 for µi = µϕ−1
i .

Remark 9. Note that the transformation TΦ is well defined because for every Hessenberg matrix
Dν associated with a measure ν, the transformation TΦ(Dν) is the Hessenberg matrix of the sum
measure

∑m
i=1 piνϕ−1

i as we proved before.

Theorem 10. Let Φ = {ϕi (z) = αi z + βi ; pi } be an IFSS with probabilities, let µ be the
corresponding self-similar measure and let TΦ be as above. Then, for every Hessenberg matrix
Dν associated with a measure ν, the sequence T n

Φ(Dν) converges element by element to the
Hessenberg matrix Dµ, where T n

Φ denotes the nth-composition of TΦ .
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Proof. For every Hessenberg matrix Dν associated with a measure ν, the sequence T n
Φ(Dν) are

the Hessenberg matrices corresponding to the moment matrices of the measures given by the
iteration of Markov operator. We proved in an earlier work [8] that this sequence of moment
matrices converges to the moment matrix of the self-similar measure µ (invariant for Markov
operator). We can see the convergence in the following diagram

ν −→ TΦ(ν) −→ T 2
Φ(ν) · · · T n

Φ(ν) −→ µ

↕ ↕ ↕ ↕ ↕

Mν −→ TΦ(Mν) −→ T 2
Φ(Mν) · · · T n

Φ(Mν) −→ Mµ

↕ ↕ ↕ ↕ ↕

Dν −→ TΦ(Dν) −→ T 2
Φ(Dν) · · · T n

Φ(Dν) −→ Dµ �

The speed of convergence and the numerical stability of the algorithm in Theorem 10 would
be addressed in a future work. Nevertheless, the speed of convergence should be at least linear,
since the order of convergence of the algorithm in [8], depending on a contractive function, is
at least linear. On the other hand, the stability of these computations could be deduced from
the stability proved in [17] of Mantica’s algorithm. These facts are observed in the experimental
results showed in the examples in the next section.

Remark 11. The above theorem allows to obtain approximate values of the sections of the
Hessenberg matrix of a self-similar measure. On the other hand, the recurrent formula for the
moments of self-similar measures given in [16] (later generalized in [7] to measures with support
in the complex plane) allow to obtain, in an exact way, the moments of self-similar measures.
Then, using Cholesky factorization we can obtain the nth-section of the desired Hessenberg
matrix.

Even though the latter method allows to obtain the exact value of the sections of the
Hessenberg matrix, to obtain the exact value, it must work symbolically and therefore it has
a high computational cost.

As an illustration, we show how to obtain the first polynomials of the Cantor measure µC
on the Cantor set C in the interval [−1, 1]. This measure is self-similar for the following IFSS

Φ =


ϕ1(z) =

1
3 z −

2
3 , ϕ2(z) =

1
3 z +

2
3 ; pi =

1
2


. Using the recurrent formula in [7],

ci, j =
1

1 −

k∑
s=1

psαi
sαs

j

k−
s=1

ps

i, j−
m=0,l=0(m,l)≠(i, j)


i

m


j

l


β i−m

s βs
j−l

αm
s αs

lcm,l ,

to compute the moments of an invariant measure for an IFSS with probabilities Φ = {ϕi =

αi z + βi ; pi }
k
i=1, we may obtain any moment si+ j = ci, j of the measure µC :

s0 = 1, s1 = 0, s2 =
1
2
, s3 = 0, s4 =

7
20

, s5 = 0, s6 =
205
728

, s7 = 0, s8 =
10241
42640

.

Using the expression for monic polynomials P̃n(z) = det(M−1
n M ′

n − z In), we can obtain in
an exact way the first monic orthogonal polynomials for Cantor measure

x,

x2
−

1
2
,

x3
−

7
10

x,
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x4
−

97
91

x2
+

333
1820

,

x5
−

1785
1517

x3
+

143833
552188

x,

x6
−

189964505
112825966

x4
+

7410073867
9251729212

x2
−

156207248595
1683814716584

,

x7
−

4548711144551
2534028699430

x5
+

6972489245973139
7481466332197132

x3
−

4855955749246420947
39876215550610713560

x .

4. Conclusions and examples

In Theorem 4 we have shown a method to obtain exactly finite sections of the Hessenberg or
Jacobi matrices associated with a sum of measures with compact support in C or R, respectively.
We can apply this method to every measure given by the Markov operator to approximate
Hessenberg or Jacobi matrices associated with self-similar measures (Theorem 10). We will call
this method Algorithm II.

On the other hand, we will call Algorithm I the iterative process for moment matrices of
self-similar measures described in [8] applying then Cholesky factorization to obtain an approx-
imation of the Jacobi or Hessenberg matrix.

We will apply these two algorithms (with ten digits of precision) to four examples of self-
similar measures. We will use different number of iterations in each case, obtaining different
degrees of approximation: for instance, in the first two examples we compute 30 iterations
while in the third example we only compute 7, due to the lack of symmetry, which increases
the computational cost.

Example I. Let L be the normalized Lebesgue measure in the interval [−1, 1]. This is a self-
similar measure for the IFSS

Φ =


ϕ1(x) =

1
2

x −
1
2
, ϕ2(x) =

1
2

x +
1
2
; p1 = p2 =

1
2


.
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Algorithm I. If we iterate the transformation TΦ(Mν) =
∑2

i=1
1
2 AH

ϕi
Mν Aϕi [8], 30 times starting

with the sixth order identity matrix, we obtain the following approximation of the 6th-section
moment matrix for the Lebesgue measure

1.0 0.0 0.33333333 0.0 0.20000000 0.0
0.0 0.33333333 0.0 0.20000000 0.0 0.14285714

0.33333333 0.0 0.20000000 0.0 0.14285714 0.0
0.0 0.20000000 0.0 0.14285714 0.0 0.11111111

0.20000000 0.0 0.14285714 0.0 0.11111111 0.0
0.0 0.14285714 0.0 0.11111111 0.0 0.09090909

 .

This matrix agrees (with ten digits of precision) with the 6th order moment matrix ML. Then,
applying Cholesky factorization, we have the following approximation of the 5th-section of
Jacobi matrix JL,5

0.0 0.5773502693 0.0 0.0 0.0
0.5773502691 0.0 0.5163977795 0.0 −0.7577722133 · 10−9

0.0 0.5163977796 0.0 0.5070925551 0.0
0.3023715782 · 10−9 0.0 0.5070925521 0.0 0.5039526136

0.0 −0.2639315569 · 10−8 0.0 0.5039526419 0.0

 .

Algorithm II. Starting with the 5th-section of the shift right matrix, and making 30 iterations of
the transformation TΦ(D) =

∑m
i=1 pi [V (i)

]
H

αi [U (i)

]
H DU (i)

+ βi I


V (i) in Theorem 10, we
obtain the following matrix

0.0 0.5773502692 0.0 −0.2133333332 · 10−9 0.0
0.5773502691 0.0 0.5163977796 0 −0.1 · 10−9

0.0 0.5163977796 0.0 0.5070925526 0.0
0.0 0.0 0.5070925529 0.0 0.5039526304
0.0 0.0 0.0 0.5039526307 0.0

 .

These two matrices agree with 6 and 9 digits of precision respectively, with the 5th order
Jacobi matrix of this measure whose diagonal is null and the sub- and superdiagonal are given
by dn+1,n = dn,n+1 =

n+1√
4(n+1)2−1

.

Example II. Let T be the Sierpinski triangle with basis on the [−1, 1] interval.
Consider the uniform measure µ, i.e., the log 3

log 2 -dimensional Hausdorff measure on T
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This is a self-similar measure for the IFSS given by

Φ =


ϕ1(z) =

z

2
−

1
2
, ϕ2(z) =

z

2
+

1
2
, ϕ3(z) =

z

2
+

1
√

3i
2

; pi =
1
3


.

Algorithm I. With 30 iterations, starting with the identity matrix, we obtain an approximation of
the 4th-section of the Hessenberg matrix of the measure:

0.5773502693i 0.3 · 10−9
−0.4182428890i −0.2457739408 · 10−8

0.6666666673 0.5773502691i 0.1267731382 · 10−8
−0.3487499915i

0 0.7888106373 0.5773502706i 0.1292460659 · 10−8

−0.406877 · 10−9 0.279363 · 10−9i 0.7737179471 0.5773502588i

 .

Algorithm II. Starting with the 4th-section of the shift right matrix, and making 20 iterations of
TΦ(D) we obtain the following matrix


0.5773497186i −0.2 · 10−9

−0.4182428884i −1.3 · 10−10
+ 2.09 · 10−43i

0.6666666668 0.5773497190i 10−9
− 5.2 · 10−43i 3.2 · 10−42

− 0.3487499858i
0 0.7888106377 −1.5 · 10−42

+ 0.5773497186i −3.3 · 10−10
− 10−41i

0 0 0.7737179434 − 3.1 · 10−54i −1.4 · 10−41
+ 0.5773497189i

 .

These two matrices agree with 8 digits of precision (Algorithm I) and 6 digits of precision
(Algorithm II) with the 4th order Jacobi matrix of this measure.

Example III. Let T be the Sierpinski triangle as above. Consider the invariant measure for the
same IFSS with probabilities p1 =

1
10 , p2 =

1
5 , p3 =

7
10

Algorithm I. Applying TΦ 7 times starting with the identity matrix we obtain an approximation
of the 4th-section of the Hessenberg matrix of the measure µ:


0.0992 + 1.2029i −0.2046 − 0.1459i −1.799 · 10−6

− 0.3176i −0.0123 + 0.0555i
0.5538 + 1.3 · 10−10i 0.1439 + 0.8415i 0.0208 − 0.0718i −0.0396 − 0.3027i

5.68 · 10−10
+ 1.7 · 10−21i 0.6848 + 5.36 · 10−10i 0.0390 + 0.7027i 0.0117 − 0.0461i

5.39 · 10−9
+ 8.09 · 10−10i 7.12 · 10−9

− 2.64 · 10−10i 0.7116 − 2.39 · 10−10i 0.07365 + 0.6745i

 .
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Algorithm II. Starting with the 4th-section of the shift right matrix, and making 7 iterations of
TΦ(D) we obtain the following matrix


0.099218 + 1.202963i −0.204629 − 0.145941i −0.0000179 − 0.317680i −0.012314 + 0.055542i

0.5538131313 0.143933 + 0.841541i 0.020889 − 0.0718614i −0.039695 − 0.302772i

0 0.684812 + 2.05958 · 10−12i 0.0390029 + 0.702786i 0.011747 − 0.046155i

0 0 0.711680 + 1.54964 · 10−12i 0.0736565 + 0.674541i

 .

In this case the precision is worse for both algorithms. It seems that it is due to the lack of
symmetry of this measure, because the probabilities are different for every similarity.

Example IV. Let C be the plane Cantor set.

Consider the uniform measure µ on this set.

This measure is self-similar for the following IFSS

Φ =


ϕ1(z) =

1
4

z +
1 + i

2
, ϕ2(z) =

1
4

z +
1 − i

2
,

ϕ3(z) =
1
4

z +
−1 + i

2
, ϕ4(z) =

1
4

z +
−1 − i

2
; pi =

1
4


Algorithm I. Applying TΦ 10 times starting with the identity matrix we obtain an approximation
of the 5th-section of the Hessenberg matrix of µ:

0 0 0 −0.5534617900 0
0.7302967432 0 0 0 −0.1728136409

0 0.7720611578 0 0 0
0 0 0.8042685429 0 0
0 0 0 0.6168489579 0

 .
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Algorithm II. Starting with the 5th-section of the shift right matrix, and making 10 iterations of
TΦ(D) we obtain the following matrix


0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i −0.5534617900 + 0.0i 0.0 + 0.0i

0.7302967435 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i −0.1728136412 + 0.0i
0.0 0.7720611574 0.0 + 0.0i 0.0 + 0.0i 4.0 × 10−11

+ 0.0i
0.0 0.0 0.8042685430 0.0 + 0.0i 0.0 + 0.0i
0.0 0.0 0.0 0.6168489588 0.0 + 0.0i

 .

These two matrices agree with 8 digits of precision with the 5th order Jacobi matrix of this
measure.

Note that both algorithms work for self-similar measures and allow to approximate the
Hessenberg or Jacobi matrix associated with such measures with similar results. Using any of
these methods we can approximate the first elements of the orthogonal polynomials sequence.

In the following two examples we consider sums of measures which are not self-similar.
The first example corresponds to a sum of shifts and the second one to the sum of Chebyshev
polynomials on different intervals. These examples serve to illustrate the algorithm in Theorem 4.

Example V. Consider µ1 the normalized Lebesgue measure on the unit circle and µ2 the
normalized Lebesgue measure on the circle of center (0, 0) and radius r . Then

D(1)
= SR and D(2)

= r SR .

Applying the algorithm in Theorem 4 to the sum measure,

µ = (1 − p)µ1 + pµ2,

we obtain the Hessenberg matrix D = (d jk)
∞

j,k=0, which turns out to be a shift matrix whose
only non-trivial entries are

dn+1,n =


1 − p + p r2(n+1)

1 − p + p r2n
, n = 0, 1, 2, 3 . . . .

In this case the auxiliary vectors which we construct in the process are

v(1)
n =

1
1 − p + p r2n

en, v(2)
n =

rn
1 − p + p r2n

en, n = 0, 1, 2, . . .

where {ek}
∞

k=0 are the vectors of the canonical basis of ℓ2.

Example VI. Let a ∈ R. Consider the Chebyshev polynomial of the second kind corresponding
to the distributions dµ1 =


1 − (x − a)2dx and dµ2 =


1 − (x + a)2dx on the intervals

[a − 1, a + 1] and [−a − 1, −a + 1], respectively. Let µ =
1
2µ1 +

1
2µ2 be the sum measure. We

can construct the corresponding Jacobi matrix.
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The 6th order Jacobi matrices are

D(1)
=



a
1
2

0 0 0 0
1
2

a
1
2

0 0 0

0
1
2

a
1
2

0 0

0 0
1
2

a
1
2

0

0 0 0
1
2

a
1
2

0 0 0 0
1
2

a


, D(2)

=



−a
1
2

0 0 0 0
1
2

−a
1
2

0 0 0

0
1
2

−a
1
2

0 0

0 0
1
2

−a
1
2

0

0 0 0
1
2

−a
1
2

0 0 0 0
1
2

−a


.

The 5th-section of the Jacobi tridiagonal of the sum measure will be


0

√
4a2 + 1

2
0 0 0

√
4a2 + 1

2
0

√
16a2 + 1

2
√

4a2 + 1
0 0

0

√
16a2 + 1

2
√

4a2 + 1
0

√
256a6 + 80a4 + 44a2 + 1

2
√

16a2 + 1
√

4a2 + 1
0

0 0

√
256a6 + 80a4 + 44a2 + 1

2
√

16a2 + 1
√

4a2 + 1
0

√
16384a8 + 6144a6 + 896a4 + 100a2 + 1

2
√

16a2 + 1
√

256a6 + 80a4 + 44a2 + 1

0 0 0

√
16384a8 + 6144a6 + 896a4 + 100a2 + 1

2
√

16a2 + 1
√

256a6 + 80a4 + 44a2 + 1
0


.

Note that the supports of the initial measures are disjoint intervals when the parameter a > 1;
when a = 0 we have the Chebyshev polynomials in the interval [−1, 1], when 0 ≤ a < 1 we
have a sum of measures with overlapping supports.
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