
Northern Michigan University
NMU Commons

Journal Articles FacWorks

2017

A Novel Method to Factor Cubic Polynomials
Amy Barnsley
Northern Michigan University, abarnsle@nmu.edu

M. McCormick

D. Rowe

M. Smith

Follow this and additional works at: https://commons.nmu.edu/facwork_journalarticles

This Journal Article is brought to you for free and open access by the FacWorks at NMU Commons. It has been accepted for inclusion in Journal
Articles by an authorized administrator of NMU Commons. For more information, please contact kmcdonou@nmu.edu,bsarjean@nmu.edu.

Recommended Citation
Barnsley, Amy; McCormick, M.; Rowe, D.; and Smith, M., "A Novel Method to Factor Cubic Polynomials" (2017). Journal Articles.
375.
https://commons.nmu.edu/facwork_journalarticles/375

https://commons.nmu.edu?utm_source=commons.nmu.edu%2Ffacwork_journalarticles%2F375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.nmu.edu/facwork_journalarticles?utm_source=commons.nmu.edu%2Ffacwork_journalarticles%2F375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.nmu.edu/facworks?utm_source=commons.nmu.edu%2Ffacwork_journalarticles%2F375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.nmu.edu/facwork_journalarticles?utm_source=commons.nmu.edu%2Ffacwork_journalarticles%2F375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.nmu.edu/facwork_journalarticles/375?utm_source=commons.nmu.edu%2Ffacwork_journalarticles%2F375&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kmcdonou@nmu.edu,bsarjean@nmu.edu


A Novel Method to Factor Cubic Polynomials: The ad-Method 

Amy Barnsley, Megan McCormick, Daniel Rowe, and Molly Smith, Northern Michigan 

University 

 

My colleague and new faculty member, Daniel Rowe, observed me as I taught an intermediate 

algebra class about the ac-method of factoring quadratics. Published in 1979, by Autrey and 

Austin, the ac-method has gained popularity in textbooks and mathematics instruction. Having 

never seen this method, Rowe was fascinated, which lead to his own investigation of the ac-

method. He shared his proof and the idea of extending this process to higher-degree 

polynomials. Our explorations have led to a new method for factoring cubic polynomials, 

which we will call the ad-method. There are several widespread methods for factoring 

polynomials. However, in practice, these methods do not generalize to factoring higher-degree 

polynomials. Often, the rational roots theorem is employed to determine whether a polynomial 

has any rational roots, and then polynomial division is used. The division algorithm however, has 

very little connection to a student’s prior learning, and is not structurally analogous to the ac-

method of factoring quadratics. 

Our method of factoring cubic polynomials, the ad-method, uses the ideas from the ac-

method as scaffolding and, as a result, may lead to a deeper understanding of factoring 

polynomials (see Sidney & Alibali, 2015). This allows for premier teaching opportunities to 

introduce new concepts and knowledge to students with firmly established or growing algebraic 

foundations. Using the ad-method to teach factoring of cubic polynomials has turned out to be 

some of the most satisfying and exciting days in my teaching career. 

To demonstrate this satisfaction and excitement, an example is now provided that introduces 

the ad-method. Afterwards, a proof and a series of more intricate examples are presented to 

illuminate the subtleties of the ad-method. 

 

Introductory example 

Factor 3 2( ) 2 9 10 3.p x x x x= + + +  

 

Like the ac-method, we can decompose the middle terms, except we will decompose each 

middle term into three summands instead of two: 

 
2 2 2 29 2 6

10 6 3 .

x x x x

x x x x

= + +

= + +
 

 

Later, we will discuss the origin of these summands. Next, we rearrange the terms and factor by 

grouping. For clarity, the groups are color coded: 
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Notice that once we factor out the common linear term, the remaining quadratic polynomial is 

ready to be factored by grouping: 

 

( )
( )

2( ) (2 1)

(2 1) ( 1) ( 1)

(2 1)( 1)( 3)

3

3

.

3p x x

x x

x

x

x x

x

x

x

x= + +

= + + + +

= + + +

+ +

 

 

In the previous example, we merely demonstrated how similar it is to the ac-method for 

quadratics; however, to fully comprehend the choices for the summands, we proceed to the 

proof. 

 

Proof of the ad-method 

Let 
3 2ax bx cx d+ + +  be a cubic polynomial with integer coefficients, where gcd( , , , ) 1.a b c d =  

Suppose that it has a factorization into three linear terms ( )( )( )Ax B Cx D Ex F+ + +  where

, , , , ,  and A B C D E F  are integers. We have the following expression of the polynomial: 

 
3 2( )

     ( ) .

ACEx ACF ADE BCE x

ADF BCF BDE x BDF

+ + +

+ + +
 

 

Consider the two triples of integers: 

 

( )

( )
1 2 3

1 2 3

, , : ( , , )

, , : ( , , ).

X X X ACF ADE BCE

Y Y Y BDE BCF ADF

=

=
 

 

It is important to note that the pairs ( )1 1, ,X Y  ( )3 3,X Y  are dual divisors of each other relative to 

the number ad. In other words, 1 1 ,X Y ad=  2 2 ,X Y ad=  and 3 3 .X Y ad=  

Additionally, notice the following equations: 

 



1 2 3

2

1 2 3

1 2 3

2

1 2 3 .

X X X b

X X X a d

Y Y Y c

YY Y ad

+ + =

=

+ + =

=

 

 

The last equation, 
2

1 2 3 ,YY Y ad=  in fact follows from the second, 
2

1 2 3 .X X X a d=  This is because 

 

( )
3

2

1 2 3 2

1 2 3

.
adad ad ad

YY Y ad
X X X a d

=   = =  

 

Conversely, the collections  1 2 3, ,X X X  and  1 2 3, ,Y Y Y  are uniquely determined by the 

previous conditions. 

 

Example 1 

Factor 3 2( ) 2 9 10 3.p x x x x= + + +  

 

Recall that our goal is to factor by grouping, analogously to the ac-method. 

Our ad-method requires us to find a solution to the following criteria: 9b =  must 

decompose into three summands (that are factors of 6),ad =  whose product is 

2 12,a d =  and simultaneously, the dual divisors of those terms (relative to 6)ad =  

must sum to 10c =  and multiply to 
2 18.ad =  

 

Note that it is the factors of ad that will drive the work to be done, 

analogously to the ac-method. For clarity, we write out the pertinent items: 

 

2 2

2 2

6 2 3

12 2 3

18 2 3 .

ad

a d

ad

= = 

= = 

= = 

 

 

We seek three factors ( )1 2 3, ,X X X  of 6ad =  such that 1 2 3 9X X X b+ + = =  and 

2

1 2 3 12.X X X a d= =  We also seek three factors ( )1 2 3, ,Y Y Y  of 6ad =  such that 

1 2 3 10Y Y Y c+ + = =  and 
2

1 2 3 18.Y Y Y a d= =  

While it is true that we seek solutions to both pairs of previous equations, we search for a 

solution to only one of the pairs, and then verify that the other pair of equations is satisfied. It is 

better to work with the first equation if 
2a d  has fewer prime factors (counting multiples) than 



2.ad  It is better to work with the second equation if 
2ad  has fewer prime factors (counting 

multiples) than 
2 .a d  In this case, they each have three prime factors (counting multiples), and so 

we will work with the first set of criteria, since 12 is smaller than 18. 

To find the numbers 1 2 3, ,  and X X X  systematically, we start by listing all factors of 

 6: 6,3,2,1 .ad =  These are the only numbers (positive or negative) we can use in determining 

the values of 1 2 3, ,  and .X X X  

We check the factors in descending order, as the larger factors are often ruled out quickly. 

Creating a table helps organize our systematic approach (see Table 1). 

The first column lists the factor of ad we are considering. The second column writes the 

factor in terms of its primes to help with visualizing the process. The third column lists the 

remaining primes of 2 ,a d  since we must use all of them when creating our triple ( )1 2 3, , .X X X  

The fourth column lists the possible triples that multiply to 
2 .a d  It is important to remember 

that the elements of the triple must be factors of ad. After a possible triple has been listed once, 

it is not necessary to list it again in lower rows of the table. In the last column, we consider 

whether or not the three numbers (possibly using negatives) can sum to b. 

In this example, we happen to obtain a viable triple in the first row, but we give the complete 

table to demonstrate the process. 

 

[Insert Table 1 here, “Table 1” in bold TNR, centered with no period, next line with title in 

italics TNR, centered with no period.] 

 

Table 1 

Example 1 

Factor of 

6ad =  

Uses from 
2a d  

Leaves from 
2a d  

Possible triples 

(each a divisor of 6ad = ) 

Obtains 

9?b =  

6 2 3  2 ( )6,2,1  6 2 1 9+ + =  

3 3 22  (3, 2, 2)  no 

2 2 2 3  (2,3,2),  (2,6,1)  considered earlier 

1 1 22 3  (1,6, 2)  considered earlier 

 

Here is what we have so far: We have a triple ( ) ( )1 2 36,2,1 , ,X X X=  with the property that 

1 2 3 9X X X+ + =  and simultaneously 
2

1 2 3 12.X X X a d= =  

We need to verify that the dual divisors relative to 6ad =  sum to 10.c =  The dual divisors are 

 



( ) ( )1 2 3

1 2 3

, , , , 1,3,6 .
ad ad ad

Y Y Y
X X X

 
= = 
 

 

 

Indeed, they satisfy the equation 1 2 3 10.Y Y Y c+ + = =  In the proof, we saw that the equation 

2

1 2 3 18YY Y ad= =  follows automatically from 
2

1 2 3 .X X X a d=  

We proceed by decomposing 
2bx  and cx in order to factor by grouping. Let 

2 2 2 29 6 2 1x x x x= + +  and 10 1 3 6 ;x x x x= + +  it does not matter in what order we choose to write 

the summands: 

 
3 2 2 2( ) 2 6 2 3 6 3.p x x x x x x x x= + + + + + + +  

 

Now pair the first two terms and factor the greatest common factor: 

 
2 2 2( ) 2 ( 3) 2 3 6 3.p x x x x x x x x= + + + + + + +  

 

Now take the next term ( )22x  and strategically pair it with another term ( )6x  to ensure that the 

greatest common factor is ( 3).x +  Afterwards, continue this process of strategically pairing 

terms to ensure an ( 3)x +  greatest common factor: 

 

( )

2 2

2

2

( ) 2 ( 3) 2 ( 3) 3 3

2 ( 3) 2 ( 3) ( 3) 3

2 ( 3) 2 ( 3) ( 3) 1 3 .

p x x x x x x x x

x x x x x x x

x x x x x x x

= + + + + + + +

= + + + + + + +

= + + + + + + +

 

 

Factor out the binomial ( 3)x +  and what remains is a quadratic polynomial that is ready to be 

factored by grouping again: 

 

( )
( )

( )( )
( )( )( )

2( ) ( 3) 2 2 1

( 3) 2 ( 1) 1

( 3) 2 ( 1) 1 1

3 1 2 1 .

p x x x x x

x x x x

x x x x

x x x

= + + + +

= + + + +

= + + + +

= + + +

 

 

This is the final factored form of 
3 22 9 10 3.x x x+ + +  This method is structurally similar to 

the ac-method for factoring quadratics. It removes all of the guess-and-check process and 

connects prior learning of the ac-method to a new concept of factoring cubic polynomials. 

 



A second example will show how well this method works for cubic polynomials with larger 

coefficients. 

 

Example 2 

Factor 3 2( ) 9 39 10 8.p x x x x= + + −  

 

As before, we start by identifying the pertinent items: 

 
3 2

2 2 3 4

2 2 6 2

(9)( 8) ( 1) 2 3

(9) ( 8) ( 1) 2 3

(9)( 8) 2 3 .

ad

a d

ad

= − = −  

= − = −  

= − = 

 

 

Since 
2a d  has fewer prime factors (counting multiples) than 2 ,ad  we will systematically 

search for three factors of ad that multiply to 
2a d  and sum to 39.b =  

 

[Insert Table 2 here, “Table 2” in bold TNR, centered with no period, next line with title in 

italics TNR, centered with no period.] 

 

Table 2 

Example 2 

Factor of 

ad  

Uses from 
2a d  

Leaves from 
2a d  

Possible triples 

 

Obtains 

39?b =  

72 3 22 3  
23  ( ) ( )72,9,1 , 72,3,3  no 

36 2 22 3   
22 3  

( )

( )

(36,18,1), 36

36

,9, 2 ,

,6,3
 

 

36 6 3 39 + − =   

 

We now have a possible triple ( ) ( )1 2 3, , 36,6, 3X X X = −  with the property that 

1 2 3 39X X X b+ + = =  and, simultaneously, 
2

1 2 3 .X X X a d=  

 

We need to verify that the dual divisors relative to 72ad = −  add up to 10.c =  The dual 

divisors are 

 

( ) ( )1 2 3

1 2 3

, , , , 2, 12,24 .
ad ad ad

Y Y Y
X X X

 
= = − − 
 

 

 

Indeed, they satisfy the property 1 2 3 10.Y Y Y c+ + = =  We proceed by decomposing 
239x  and 10x 



and then factor by grouping: 

 

( )

( ) ( ) ( ) ( )

( )( )
( )( )

( )( )( )

3 2

3 2 2 2

2 2 2

2

2

( ) 9 39 10 8

9 36 6 3 2 12 24 8

9 4 6 24 3 12 2 8

9 4 6 4 3 4 2 4

4 9 6 3 2

4 3 (3 2) (3 2)

4 3 2 3 1 .

p x x x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x x

x x x x

x x x

= + + −

= + + − − − + −

= + + + − − − −

= + + + − + − +

= + + − −

= + + − +

= + + −

 

 

Example 3 

Factor 
34 21 10.x x− +  

 

In this situation, we have a zero coefficient: 
3 24 0 21 10.x x x+ − +  However,  the ad-

method can still be applied by taking 0:b =  

 
3

2 2 5

2 2 4 2

(4)(10) 2 5

(4) (10) 2 5

(4)(10) 2 5 .

ad

a d

ad

= = 

= = 

= = 

 

 

We follow our systematic procedure by completing Table 3. 

 

[Insert Table 3 here, “Table 3” in bold TNR, centered with no period, next line with title in 

italics TNR, centered with no period.] 

 

Table 3 

Example 3 

Factor of 

ad  

Uses from 
2a d  

Leaves from 
2a d  

Possible triples 

 

Obtains 

0?b =  

40 32 5  22  ( ) ( )40,4,1 , 40,2,2  no 

20 22 5  32  ( ) ( )20,8,1 , 20,4,2  no 

10 2 5   42  ( ) ( ), 110 0,8,2 ,4,4  10 8 2 0 − − =   

 

We have found a viable triple ( ) ( )1 2 3, , 10, 8, 2 .X X X = − −  As before, the dual equation: 

 



1 2 3

ad ad ad
c

X X X
+ + =  

 

also needs to be verified. In this case it works out nicely: 

 

4 5 20 21.− − = −  

To finish applying our method, we decompose the 
2bx  and the cx terms and then factor by 

grouping: 

 

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )

3 2

3 2 2 2

2

2

( ) 4 0 21 10

4 10 8 2 4 5 20 10

2 (2 5) (2 5) 4 (2 5) 2(2 5)

2 5 2 4 2

2 5 2 1 2 2 1

2 5 2 1 2 .

p x x x x

x x x x x x x

x x x x x x x

x x x x

x x x x

x x x

= +  − +

= + − − + − − +

= + − + − + + +

= + − − +

= + − − −

= + − −

 

 

In all of the previous examples, the initial factors we found satisfied the dual divisor criteria. 

However, in the next example, we demonstrate a case where this does not hold. 

 

Example 4 

Factor 
3 224 22 5 6.x x x− − +  

 

Here, we will explore the situation where we find a triple that satisfies the criteria, but the 

dual divisors of the triple do not. In this case, the triple must be discarded, and the process 

simply continues. 

 
4 2

2 2 7 3

2 2 5 3

(24)(6) 2 3

(24) (6) 2 3

(24)(6) 2 3

ad

a d

ad

= = 

= = 

= = 

 

 

Since 
2ad  has fewer prime factors (counting multiples) than 2 ,a d  we will search for three 

factors of 144ad =  that multiply to 
2ad  and sum to 5.c = −  

 

[Insert Table 4 here, “Table 4” in bold TNR, centered with no period, next line with title in 

italics TNR, centered with no period.] 

 

Table 4 



Example 4 

Factor of 

ad  

Uses from 
2ad  

Leaves from 
2ad  

Possible triples 

 

Obtains 

5?c = −  

144 4 22 3  2 3  ( ) ( )144,6,1 , 144,3,2  no 

72 3 22 3  
22 3  

( ) ( )

( )

72,12,1 , 72,6, 2

72, 4,3
 no 

48 42 3  
22 3  

( ) ( )

( )

48,18,1 , 48,9,2

48,6,3
 no 

36 2 22 3  
32 3  

( ) ( )

( ) ( )

36, 24,1 , 36,12, 2

36,8,3 , 36,6, 4
 no 

24 32 3  
2 22 3  

( ) ( )

( ) ( )

24,18, 2 , 24,12,3

24,9, 4 , 24,6,6
 no 

18 22 3  
42 3  

( ) ( )

( )

18,16,3 , 18,12,4

18,8,6
 18 16 3 5− + − = −   

9 23   
52 3  ( ) ( )9,16,6 , 9,12,8  9 12 8 5 − + − = −   

 

Notice that although ( 18,16, 3)− −  sums to 5,c = −  the dual divisors of ( 18,16, 3),− −  relative 

to 144,ad =  are ( 8,9, 48),− −  and they do not sum to 22.b = −  In this situation, we simply 

discard the triple and continue the process. 

We find a viable triple, ( 9,12, 8),− −  that sums to 5,c = −  and then we verify that the dual 

divisors of ( 9,12, 8),− −  relative to 144,ad =  are ( 16,12, 18),− −  and they satisfy 

16 12 18 22 ,b− + − = − =  as required. 

Now we decompose 
222x−  and 5x−  and factor by grouping: 

 

( )

( ) ( ) ( ) ( )

( )( )
( )( )

( )( )( )

3 2

3 2 2 2

2 2 2

2

2

( ) 24 22 5 6

24 16 12 18 9 12 8 6

8 3 2 12 8 18 12 9 6

8 3 2 4 3 2 6 3 2 3 3 2

3 2 8 4 6 3

3 2 4 (2 1) 3(2 1)

3 2 2 1 4 3 .

p x x x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x x

x x x x

x x x

= − − +

= − + − − + − +

= − + − − + − +

= − + − − − − −

= − + − −

= − + − +

= − + −

 

 

For our last example, we explore how the method terminates without a solution in 

two cases where the cubic polynomial does not factor completely into three, linear 



factors. 

 

Example 5 

Factor 3 2( ) 3 14 12 6p x x x x= + + +  and 3 2( ) 3 8 10 4.q x x x x= + + +  

 

In this example, p(x) and q(x) do not factor completely. For both of these polynomials, the ad-

method terminates without satisfying the required criteria, but for different reasons. We first note 

that the polynomial p(x) does not factor over the integers; that is, it is prime, while the 

polynomial q(x) splits into a linear factor and a prime quadratic. 

First, we apply the ad-method to 3 2( ) 3 14 12 6:p x x x x= + + +  

 
2

2 2 3

2 2 2 3

(3)(6) 2 3

(3) (6) 2 3

(3)(6) 2 3 .

ad

a d

ad

= = 

= = 

= = 

 

 

We fill in Table 5 using our systematic procedure. Notice that when a row contains a number 

in column 2 that matches a previous number in column 3, all subsequent rows will contain 

repeats of previous triples. 

 

[Insert Table 5 here, “Table 5” in bold TNR, centered with no period, next line with title in 

italics TNR, centered with no period.] 

 

Table 5 

Example 5 

Factor of 

ad  

Uses from 
2a d  

Leaves from 
2a d  

Possible triples 

 

Obtains 

14?b =  

18 22 3  3 ( )18,3,1  18 3 1 14− − =  

9 23  2 3  ( ) ( )9,6,1 , 9,3,2  9 3 2 14+ + =   

6 2 3  23  ( )6,3,3  no 

 

The triples ( )18, 3, 1− −  and (9,3,2)  are unacceptable. Although they sum to 14,b =  the 

dual divisors relative to 18ad =  are the triples (1, 6, 18)− −  and (2,6,9),  and neither of these 

sum to 12.c =  

At this point, we know that we have exhausted all possible triples, and therefore conclude 

that the polynomial 3 2( ) 3 14 12 6p x x x x= + + +  does not factor into three linear terms. If we 

wanted to verify whether p(x) was prime, or if it had any linear factors, the rational roots 



theorem could be used. 

Finally, we apply the ad-method to 3 2( ) 3 8 10 4q x x x x= + + +  with 

 
2

2 2 2 2

2 2 4

(3)(4) 2 3

(3) (4) 2 3

(3)(4) 2 3.

ad

a d

ad

= = 

= = 

= = 

 

 

We begin our systematic procedure. 

 

[Insert Table 6 here, “Table 6” in bold TNR, centered with no period, next line with title in 

italics TNR, centered with no period.] 

 

Table 6 

Example 6 

Factor of 

ad  

Uses from 
2a d  

Leaves from 
2a d  

Possible triples 

 

Obtains 

8?b =  

12 22 3  3 ( )12,3,1  12 3 1 8− − =  

6 2 3  2 3  ( ) ( )6,6,1 , 6,3,2  no 

4 22  
23  ( )4,3,3  no 

 

The dual divisors of the triple ( )12, 3, 1− −  relative to 12ad =  are (1, 4, 12),− −  and they do not 

sum to 10.c =  This exhausts all of the possible triples, and so we can conclude that q(x) does not 

factor into three linear factors. If we wanted to go further, to verify whether q(x) was prime, we 

could use the rational roots theorem to find a root at 2 3,x = −  which leads to a factor of 3 2.x+  

Polynomial division then gives the expected factorization 

 

( )( )2( ) 3 2 2 2 .q x x x x= + + +  

 

Teaching the ad-Method 

After our collegial exploration of the ad-method, we decided to present it to intermediate 

algebra students. This extension is natural and ties together the concepts of intermediate 

algebra with concepts traditionally taught in the next course. The lesson was prepared and 

presented with the help of undergraduate teaching assistants, who are preservice teachers. 

Previous extension projects used the Rip Van Winkle character, so we continued to use him. 

( See Appendix A for the handout that we created at 

http://c.ymcdn.com/sites/www.amatyc.org/resource/resmgr/educator_sept_2017/Barnsley-



appen.pdf.) At this point, most of the students were competent with the ac-method. Students 

worked in small groups of three to five, while the teaching assistant and instructor circulated. 

Students were not given the background or rational for this method; they were guided through 

the process much like our introductory example. The students were overwhelmingly successful. 

Teaching concepts beyond the minimal competency has many benefits. Challenging 

problems, such as factoring cubic polynomials, engage all students. The advanced students are 

ripe for the challenge and understand some of the deeper subtleties of the process, while less 

proficient students gain confidence with the success of a more difficult concept. Student-

opinion surveys at the end of the semester mentioned this as one of the most fun lessons of the 

semester. The teaching assistants were so enthused about this project that they created a set of 

sample problems with full solutions (see Appendices B and C). 

 

Rewards of Teaching of the ad-Method 

As with the ac-method, the order of the decomposition of middle terms does not matter. When 

factoring by grouping, we can immediately pick the first two terms, factor out the greatest 

common factor, and then scan the remaining terms for the one to partner with the third term so that 

the remaining binomial matches the first binomial, and so forth. This is the same process we use 

for the ac-method. More advanced students pick up on this subtlety. The ad-method is an 

advanced topic that provides exercise on skills needed for competency on the ac-method. When 

students are exploring the possible triples that sum to either b or c, they practice seeing the terms 

as either positive or negative. 

Initially, students benefit from seeing every possible signed combination written out, but as 

they mature mathematically, they are able to see triples without specific signs and determine if the 

numbers sum to the required integer. Teaching factoring of cubic polynomials by the ad-method 

provides a concrete connection to prior knowledge, provides practice with skills that are 

required for intermediate algebra, and builds confidence by having success with really difficult 

problems. 
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