110 research outputs found

    Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes

    Get PDF
    Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA\u2009+\u2009FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA\u2009+\u2009FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA(-/-), EDA(+/+) (constitutively lacking and expressing EDA\u2009+\u2009FN respectively), and of wild-type mice (EDA(wt/wt)), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ\u2009+\u2009EDA(-/-) mice exhibited increased endothelial dysfunction compared with STZ\u2009+\u2009EDA(+/+) and with STZ\u2009+\u2009EDA(wt/wt). Analysis of the underlying mechanisms revealed that STZ\u2009+\u2009EDA(-/-) mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-\u3b21, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ\u2009+\u2009EDA(+/+) vessels is counteracted by increased eNOS coupling and function. Although EDA\u2009+\u2009FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress

    Poor nutritional status but not cognitive or functional impairment per se independently predict 1 year mortality in elderly patients with hip-fracture

    Get PDF
    Hip fractures are strongly associated with mortality in the elderly. Studies investigating predisposing factors have suggested a negative impact of poor nutritional, cognitive and functional status on patient survival, however their independent prognostic impact as well as their interactions remain undefined. This study aimed to determine whether poor nutritional status independently predicts 1 year post-fracture mortality after adjusting for cognitive and functional status and for other clinically relevant covariates. METHODS: 1211 surgically treated hip fracture elderly (age 65 65) patients consecutively admitted to the Orthopaedic Surgery Unit of the "Azienda Sanitaria Universitaria Integrata Trieste" (ASUITs), Cattinara Hospital, Trieste, Italy and managed by a dedicated orthogeriatric team. Pre-admission nutritional status was evaluated by Mini Nutritional Assessment (MNA) questionnaire, cognitive status by Short Portable Mental Status Questionnaire (SPMSQ) and functional status by Activity of Daily Living (ADL) questionnaire. All other clinical data, including comorbidities, type of surgery, post-operative complications (delirium, deep vein thrombosis, cardiovascular complications, infections, need for blood transfusions) were obtained by hospital clinical records and by mortality registry. RESULTS: Poor nutritional status (defined as MNA 6423.5), increased cognitive and functional impairment were all associated with 3-, 6- and 12 month mortality (p < 0.001). Both cognitive and functional impairment were associated with poor nutritional status (p < 0.001). Logistic regression analysis demonstrated that the association between nutritional status and 3-, 6- and 12- month mortality was independent of age, gender, comorbidities, type of surgery and post-operative complications as well as of cognitive and functional impairment (p < 0.001). In contrast, the associations between mortality and cognitive and functional impairment were independent (p < 0.001) of demographic (age, gender) and clinical covariates but not of malnutrition. Kaplan-Meier analysis showed a lower mean survival time (p < 0.001) in patients with poor nutritional status compared with those well-nourished. CONCLUSIONS: In hip fracture elderly patients, poor nutritional status strongly predicts 1 year mortality, independently of demographic, functional, cognitive and clinical risk factors. The negative prognostic impact of functional and cognitive impairment on mortality is mediated by their association with poor nutritional statu

    Predictors of short- and long-term mortality among acutely admitted older patients: role of inflammation and frailty

    Get PDF
    Frailty, demographic and clinical variables linked to incident diseases (e.g., dehydration, inflammation) contribute to poor outcomes in older patients acutely hospitalized. Their predictivity on short-, intermediate- and long-term mortality in a comprehensive model has been scarcely investigated

    High-Fat Diet with Acyl-Ghrelin Treatment Leads to Weight Gain with Low Inflammation, High Oxidative Capacity and Normal Triglycerides in Rat Muscle

    Get PDF
    Obesity is associated with muscle lipid accumulation. Experimental models suggest that inflammatory cytokines, low mitochondrial oxidative capacity and paradoxically high insulin signaling activation favor this alteration. The gastric orexigenic hormone acylated ghrelin (A-Ghr) has antiinflammatory effects in vitro and it lowers muscle triglycerides while modulating mitochondrial oxidative capacity in lean rodents. We tested the hypothesis that A-Ghr treatment in high-fat feeding results in a model of weight gain characterized by low muscle inflammation and triglycerides with high muscle mitochondrial oxidative capacity. A-Ghr at a non-orexigenic dose (HFG: twice-daily 200-µg s.c.) or saline (HF) were administered for 4 days to rats fed a high-fat diet for one month. Compared to lean control (C) HF had higher body weight and plasma free fatty acids (FFA), and HFG partially prevented FFA elevation (P<0.05). HFG also had the lowest muscle inflammation (nuclear NFkB, tissue TNF-alpha) with mitochondrial enzyme activities higher than C (P<0.05 vs C, P = NS vs HF). Under these conditions HFG prevented the HF-associated muscle triglyceride accumulation (P<0.05). The above effects were independent of changes in redox state (total-oxidized glutathione, glutathione peroxidase activity) and were not associated with changes in phosphorylation of AKT and selected AKT targets. Ghrelin administration following high-fat feeding results in a novel model of weight gain with low inflammation, high mitochondrial enzyme activities and normalized triglycerides in skeletal muscle. These effects are independent of changes in tissue redox state and insulin signaling, and they suggest a potential positive metabolic impact of ghrelin in fat-induced obesity

    Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease

    Get PDF
    Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG-induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 \ub5g twice a day) normalizes CKD-induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA-mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD-induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.-Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease

    Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet-induced hyperglycemia and whole-body insulin resistance in rodents

    Get PDF
    Excess reactive oxygen species (ROS) generation and inflammation may contribute to obesity-associated skeletal muscle insulin resistance. Ghrelin is a gastric hormone whose unacylated form (UnAG) is associated with whole-body insulin sensitivity in humans and may reduce oxidative stress in nonmuscle cells in vitro. We hypothesized that UnAG 1) lowers muscle ROS production and inflammation and enhances tissue insulin action in lean rats and 2) prevents muscle metabolic alterations and normalizes insulin resistance and hyper-glycemia in high-fat diet (HFD)-induced obesity. In 12-week-old lean rats, UnAG (4-day, twice-daily subcutaneous 200-mg injections) reduced gastrocnemius mitochondrial ROS generation and inflammatory cytokines while enhancing AKT-dependent signaling and insulinstimulated glucose uptake. In HFD-treated mice, chronic UnAG overexpression prevented obesity-associated hyperglycemia and whole-body insulin resistance (insulin tolerance test) as well as muscle oxidative stress, inflammation, and altered insulin signaling. In myotubes, UnAG consistently lowered mitochondrial ROS production and enhanced insulin signaling, whereas UnAG effects were prevented by small interfering RNA-mediated silencing of the autophagy mediator ATG5. Thus, UnAG lowers mitochondrial ROS production and inflammation while enhancing insulin action in rodent skeletal muscle. In HFD-induced obesity, these effects prevent hyperglycemia and insulin resistance. Stimulated muscle autophagy could contribute to UnAG activities. These findings support UnAG as a therapeutic strategy for obesity-associated metabolic alterations

    Decreased VLDL-Apo B 100 fractional synthesis rate despite hypertriglyceridemia in subjects with type 2 diabetes and nephropathy

    Get PDF
    Subjects with Type 2 Diabetes Mellitus (T2DM) and diabetic nephropathy (DN) often exhibit hypertriglyceridemia. The mechanism(s) of such an increase are poorly known. OBJECTIVE: We investigated VLDL-Apo B 100 kinetics in T2DM subjects with and without DN, and in healthy controls. DESIGN: Stable isotope 13C-leucine infusion, and modelling analysis of tracer-to-tracee ratio dynamics in the protein product pool in the 6-8 hr period following tracer infusion, were employed. SETTING: Male subjects affected by T2DM, either with (n=9) or without (n=5) DN, and healthy male controls (n=6), were studied under spontaneous glycemic levels in the post-absorptive state. RESULTS: In the T2DM patients with DN, plasma triglyceride (TG) (2.2\ub10.8 mmol/L, Mean\ub1SD) and VLDL-Apo B 100 (17.4\ub110.4 mg/dl) concentrations, and VLDL-Apo B 100 pool (0.56\ub10.29 g), were 3e60-80% greater (p<0.05 or less) than those of the T2DM subjects without DN (TG: 1.4\ub10.5 mmol/L; VLDL-Apo B 100: 9.9\ub12.5 mg/dl; VLDL-Apo B 100 pool: 0.36\ub10.09 g), and 3e80-110% greater (p<0.04 or less) than those of nondiabetic controls (TG: 1.2\ub10.4 mmol/L; VLDL-Apo B 100: 8.2\ub11.7 mg/dl; VLDL-Apo B 100: 0.32\ub10.09 g). In sharp contrast however, in the subjects with T2DM and DN, VLDL-Apo B 100 FSR was 6550% lower (4.8\ub12.2 pools/day) than that of either the T2DM subjects without DN (9.9\ub14.3 pools/day, p<0.025) or the control subjects (12.5\ub19.1 pools/day, p<0.04). CONCLUSIONS: The hypertriglyceridemia of T2DM patients with DN is not due to hepatic VLDL-Apo B 100 overproduction, which is decreased, but it should be attributed to decreased apolipoprotein removal

    Unacylated ghrelin does not alter mitochondrial function, redox state and triglyceride content in rat liver in vivo

    Get PDF
    Summary Changes in liver mitochondrial function with more oxidized redox state and enhanced inflammation may contribute to the onset of obesity- and insulin resistance-associated hepatic complications, including non-alcoholic fatty liver disease and steato-hepatitis. Unacylated ghrelin (UnAG) is a gastric hormone reported to be associated with lower oxidative stress in different cell types, but its potential effects on liver mitochondrial function, redox state and inflammation in vivo remains undetermined. We investigated the impact of chronic UnAG overexpression (Tg Myh6/Ghrl) leading to systemic upregulation of circulating hormone on mitochondrial ATP production, redox state (oxidized-to-total glutathione) and inflammation markers in lean mice. Compared to wild-type animals (wt), Tg Myh6/Ghrl had superimposable liver weight, triglyceride content and plasma lipid profile. Liver mitochondrial enzyme activities and ATP production as well as oxidized-to-total glutathione were also similar in the two groups. In addition, no differences were observed in tissue inflammation marker TNF-alpha between wild-type and Tg Myh6/Ghrl animals. Thus, chronic systemic UnAG upregulation does not alter liver triglyceride content, mitochondrial function, redox state and inflammation markers in lean mice. These findings do not support a major role of UnAG as a physiological modulator of in vivo liver oxidative-lipid metabolism and inflammation

    Sarcopenic Obesity: Time to Meet the Challenge

    Get PDF
    The prevalence of overweight and obesity has reached epidemic proportions worldwide due to increasingly pervasive obesogenic lifestyle changes. Obesity poses unprecedented individual, social, and multidisciplinary medical challenges by increasing the risk for metabolic diseases, chronic organ failures, and cancer as well as complication rates in the presence of acute disease conditions. Whereas reducing excess adiposity remains the fundamental pathogenic treatment for obese individuals, complex metabolic and lifestyle abnormalities as well as weight reduction therapies per se may also compromise the ability to preserve muscle function and mass, especially when chronic disease co-exists with obesity. Emerging evidence indicates that low muscle mass and quality have a strong negative prognostic impact in obese individuals and may lead to frailty, disability, and increased morbidity and mortality. Awareness of the importance of skeletal muscle maintenance in obesity is however low among clinicians and scientists. The term ‘sarcopenic obesity' has been proposed to identify obesity with low skeletal muscle function and mass, but its utilization is largely limited to the aging patient population, and consensus on its definition and diagnostic criteria remains insufficient. Knowledge on prevalence of sarcopenic obesity in various clinical conditions and patient subgroups, on its clinical impacts in patient risk stratification, and on effective prevention and treatment strategies remain therefore dramatically inadequate. In particular, optimal dietary options and medical nutritional support strategies to preserve muscle mass in obese individuals remain largely undefined. The European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) recognize and indicate obesity with altered body composition due to low skeletal muscle function and mass (sarcopenic obesity) as a scientific and clinical priority for researchers and clinicians. ESPEN and EASO therefore call for coordinated action aimed at reaching consensus on its definition, diagnostic criteria, and optimal treatment with particular regard to nutritional therapy. We are convinced that achievement of these goals has a strong potential to reduce the burden of morbidity and mortality in the rapidly increasing obese patient population

    Global Leadership Initiative on Malnutrition (GLIM):Guidance on Validation of the Operational Criteria for the Diagnosis of Protein-Energy Malnutrition in Adults

    Get PDF
    Background The Global Leadership Initiative on Malnutrition (GLIM) created a consensus-based framework consisting of phenotypic and etiologic criteria to record the occurrence of malnutrition in adults. This is a minimum set of practicable indicators for use in characterizing a patient/client as malnourished, considering the global variations in screening and nutrition assessment, and to be used across different healthcare settings. As with other consensus-based frameworks for diagnosing disease states, these operational criteria require validation and reliability testing, as they are currently based solely on expert opinion. Methods Several forms of validation and reliability are reviewed in the context of GLIM, providing guidance on how to conduct retrospective and prospective studies for criterion and construct validity. Results There are some aspects of GLIM that require refinement; research using large databases can be employed to reach this goal. Machine learning is also introduced as a potential method to support identification of the best cut points and combinations of indicators for use with the different forms of malnutrition, which the GLIM criteria were created to denote. It is noted as well that validation and reliability testing need to occur in a variety of sectors and populations and with diverse persons using GLIM criteria. Conclusion The guidance presented supports the conduct and publication of quality validation and reliability studies for GLIM
    • …
    corecore