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Abstract 

Excess reactive oxygen species (ROS) generation and inflammation may contribute to obesity-

associated skeletal muscle insulin resistance. Ghrelin is a gastric hormone whose unacylated 

(UnAG) form is associated with whole-body insulin sensitivity in humans and may reduce 

oxidative stress in non-muscle cells in-vitro. We hypothesized that UnAG 1) lowers muscle ROS 

production and inflammation and enhances tissue insulin action in lean rats; 2) prevents muscle 

metabolic alterations and normalizes insulin resistance and hyperglycemia in high-fat diet 

(HFD)-induced obesity. In 12-week-old lean rats, UnAG (4-day, twice-daily subcutaneous 

200µg-injections) reduced gastrocnemius mitochondrial ROS generation and inflammatory 

cytokines while enhancing AKT-dependent signaling and insulin-stimulated glucose uptake. In 

HFD-treated mice, chronic UnAG overexpression prevented obesity-associated hyperglycemia 

and whole-body insulin resistance (insulin-tolerance test), as well as muscle oxidative stress, 

inflammation and altered insulin signalling. In myotubes, UnAG consistently lowered 

mitochondrial ROS production and enhanced insulin signalling, while UnAG effects were 

prevented by siRNA-mediated silencing of the autophagy mediator ATG5. Thus, UnAG lowers 

mitochondrial ROS production and inflammation while enhancing insulin action in rodent 

skeletal muscle. In HFD-induced obesity, these effects prevent hyperglycemia and insulin 

resistance. Stimulated muscle autophagy could contribute to UnAG activities. These findings 

support UnAG as a therapeutic strategy for obesity-associated metabolic alterations. 

  

Page 2 of 41Diabetes



3 
 

Introduction 

Clustered metabolic abnormalities including excess reactive oxygen species (ROS) generation 

and inflammation activation are proposed contributors to the onset of skeletal muscle insulin 

resistance (1-5). Excess muscle ROS production and inflammation are indeed linked at the level 

of IκB/NF-κB activation and may cause insulin resistance by inhibiting insulin signalling 

downstream of insulin receptor (2,3,5). Ghrelin is a peptide hormone predominantly secreted by 

the stomach whose acylated form (AG) is a major hypothalamic orexigenic signal (6,7). 

Sustained AG administration causes weight gain and hyperglycemia despite enhanced muscle 

mitochondrial oxidative capacity (8,9) by increasing food intake, hepatic gluconeogenesis and fat 

deposition in rodents (10,11). A comprehensive understanding of the metabolic impact of ghrelin 

has been however recently allowed by reports of independent more favourable effects of its 

unacylated form (UnAG). Although no specific UnAG receptor has been yet identified, UnAG 

counteracts glucogenic effects of AG as well as AG-induced hyperglycemia (10), and negative 

associations have been reported between circulating UnAG and markers of whole-body insulin 

resistance in humans (12,13). Emerging antioxidant effects have been interestingly reported for 

UnAG in different cell types (14-17) and we recently demonstrated that UnAG stimulates 

autophagy in rodent muscle, thereby also potentially lowering muscle oxidative stress through 

disposal of damaged mitochondria (18). No information is however available 1) on the impact of 

UnAG on skeletal muscle ROS generation, inflammation and insulin action; 2) on whether 

UnAG prevents altered oxidative stress, inflammation and insulin action in obesity and diabetes. 

We therefore studied lean rats and a transgenic mouse model of systemic UnAG overproduction 

(19) to test the hypothesis that UnAG 1) lowers mitochondrial ROS production and inflammation 

and enhances insulin action in lean rodent muscle; 2) normalizes high-fat diet (HFD)-induced 
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muscle metabolic alterations, whole-body insulin resistance and hyperglycemia. In addition, 

effects of UnAG were verified in vitro in myotubes, where we also mechanistically tested the 

hypothesis that UnAG activites are at least partly mediated by positive modulation of autophagy. 
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Research Design and Methods 

Experimental design 

Exogenous UnAG administration Experiments were approved by the Animal Studies Committee 

at Trieste University. Twenty 12-week-old male Wistar rats (Harlan-Italy, San Pietro-al-

Natisone, Udine, Italy) were housed for two weeks in individual cages with a 12-h light–dark 

cycle at the University Animal Facility, with ad-libitum water and standard chow (Harlan 2018, 

14.2 kJ/g). Animals were then randomly assigned to 4-day, twice-daily 200µg-subcutaneous 

injections of UnAG (n=10, Bachem, Bubendorf, CH) or vehicle (Ct, n=10, NaCl 0,9% w/v). 

UnAG dose was based on previous studies in which equimolar AG modulated the same 

parameters (8). Body weight and food intake were monitored daily; after the last injection, food 

was removed for three hours followed by anaesthesia (Tiobutabarbital 100 mg/kg, 

Tiletamine/Zolazepam (1:1) 40 mg/kg IP). Gastrocnemius and extensor digitorum longus (EDL) 

muscles were then surgically isolated and blood collected by heart puncture. 

Transgenic UnAG overexpression Generation and characteristics of transgenic mice 

overexpressing UnAG (Tg Myh6/Ghrl) were previously described (19). Selective ghrelin 

overproduction in the heart, characterized by negligible acylating activity, results in 40-fold 

increment in circulating UnAG without AG modification. 14 Tg Myh6/Ghrl and 14 matched 

wild-type male mice underwent 16-week standard or HFD feeding (10% or 60% calories from 

fat; Research Diets, New Brunswick, NJ), and were sacrificed as described above. Insulin 

tolerance tests (ITT) were performed at 15 weeks of treatment by intraperitoneal insulin injection 

(Humulin-R, Lilly, Indianapolis, IN; 3 nmol/kg) after 4-h fasting. Blood glucose was measured 

from tail blood (AccuCheck Active, Roche, Basel, CH) immediately prior to injection and at 20, 

40, 60, 80 min. 
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Myotube experiments C2C12 myoblasts were differentiated in myotubes (20). After 4-day 

incubation with differentiation medium and 18h-starvation, cells were treated with AG or UnAG 

(0.1, 0.5, 1µmol/l) for 48 h, collected and processed. In additional experiments, the potential role 

of autophagy in effects of UnAG was investigated by genomic silencing of the autophagy 

mediator ATG5 (18). SiRNA knockdown of ATG5 was performed by reverse transfection at 

final 25nM concentration with mouse ATG5 siRNA (M-064838-02-0005; Dharmacon) or with a 

non-targeting control siRNA #4 (D-001210-04-20; Dharmacon) using Lipofectamine 

RNAiMAX (Life Technologies). Twenty-four hours after transfection, culture medium was 

replaced and after thirty-six hours differentiated, treated and processed as above. ATG5 protein 

levels were quantified by western blot. 

Analytical methods 

Plasma insulin and non-esterified fatty acids (NEFA) Plasma insulin concentration was measured 

by ELISA (Ultrasensitive ELISA, DRG, Springfield, NJ). Plasma glucose and NEFA were 

determined by standard enzymatic-colorimetric assays (21,22).  

Ex vivo redox state Mitochondrial H2O2 production was assessed in isolated intact mitochondria 

from tissues and cells using the Amplex Red (10µmol/l, Invitrogen, Carlsbad, CA)-HRP method, 

modified as previously reported and normalised by citrate synthase (CS) activity in the same 

mitochondrial preparation (22,23). Assay substrate concentrations (mmol/l) were: 8 glutamate, 4 

malate (GM); 10 succinate (S); 4 glutamate, 2 malate, 10 succinate (GMS); 0.05 palmitoyl-L-

carnitine, 2 malate (PCM). Superoxide anion production sources in gastrocnemius muscle whole-

tissue homogenate were assessed using the lucigenin chemiluminescent method as described (22) 

and normalised by protein concentration (BCA assay, Pierce, Rockford IL, USA). The impact of 

subsequent addition of specific inhibitors on specific substrate-stimulated production rates was 
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used to evaluate relative superoxide production from each source (Mitochondria: 5µmol/l CCCP 

on Succinate; NOS: 10mmol/l L-NAME on 10mmol/l L-Arginine; NADPH Oxidase: 200µmol/l 

DPI on 1mmol/l NADPH; Xanthine oxidase: 200µmol/l Oxypurinol on 500µmol/l Xanthine) as 

referenced. 

Glutathione and antioxidant enzyme activities Total and oxidised glutathione were determined as 

referenced (24) on ~50mg of gastrocnemius cleaned and homogenised in ice-cold 5% (wt/vol.) 

metaphosphoric acid (20ml/g tissue). Reduced glutathione (GSH) was calculated as total minus 

oxidised fraction (GSSG). Commercial kits were used to measure catalase (Amplex Red Catalase 

Assay, Invitrogen, Carlsbad, CA) and glutathione peroxidase activities (Abcam, Cambridge, 

UK). 

Protein analyses 

-xMAP Cytokine profile and insulin signalling protein phosphorylation at IRY1162/Y1163, IRS-

1S312,  AKTS473, GSK-3βS9, PRAS40T246 and P70S6KT421/S424 levels were measured by xMAP 

technology (Magpix, Luminex Corporation, Austin, TX) using commercial kits, validated by 

manufacturer for multiplexing profiling (LRC0002M; LHO0001M; LHO0002, Life 

Technologies, Carlsbad, CA). Milliplex Analyst software (Millipore, Billerica, MA) was used for 

interpolating data to standard curve. Phosphorylation of each protein is expressed as phospho-

protein units/total pg. 

-Western Blot Western Blots were performed as described (21,22,25). Equal loading was 

checked by Ponceau-S staining and GAPDH reprobing. Primary antibodies dilutions were: anti-

MnSuperoxide Dismutase (SOD) and anti-CuZnSOD (Stressgen, Ann Arbor, MI) 1:5000 and 

1:1000 respectively; anti-IκB (Cell Signaling, Beverly, MA) 1:500; anti-pIRS-1Y612 (Abcam, 
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Cambridge, UK) 1:500; anti-ATG5 (Cell Signaling) 1:2000; anti LC3B (Sigma) 1:1500; anti-b-

Actin (Sigma) 1:25000 and anti-GAPDH (Santa Cruz, Dallas, TX) 1:1000.  

Electrophoretic mobility shift assay (EMSA) NF-κB binding activity was assessed by non-

radioactive EMSA (22) with modifications. Equal amounts of nuclear protein were loaded for 

each sample. After incubation with polydeoxyinosinic-deoxycytidylic acid (0.05µg/µl) and 

double-stranded 3′-biotinylated DNA probe, electrophoretic separation of nuclear extracts was 

performed in 0.8% agarose gel. Band specificity evaluation and identification was performed by 

running a pooled sample pre-incubated for 20 min with excess unlabelled probe (1000x), anti-

p65 (Millipore; 2µg) or anti-p105/p50 (Abcam; 2µg) antibody. Results were calculated from 

optical density of NF-κB specific bands. 

Tissue Glucose uptake Tissue glucose uptake was measured ex-vivo with non-radioactive 2-

deoxyglucose (2-DG) (26). EDL muscle is metabolically largely similar to gastrocnemius (27) 

and was used because of smaller diameter and better exchange with incubation buffer (28). Two 

muscle sections were incubated for 30’ at 37°C under constant oxygenation with or without 

insulin (Humulin-R 600pmol/l) in isotonic buffer, pH=7.4, added with BSA (1mg/ml) and 

pyruvate (2mM). After 20-min incubation with pyruvate substituted with 2-DG (1mM), samples 

were snap frozen and kept at -80°C. After homogenization in ultrapure water followed by NaOH 

addition (0.07N), enzymes and endogenous NAD(P)H and NAD(P) were inactivated by 45-min 

incubation at 85°C. Equinormal quantities of HCl were then added, samples were cleared from 

debris by centrifugation (10000xg, 5min) and transferred to 96-well microplates for incubation 

(37°C, 60min) in assay buffer, added with (Buffer C) β-NADP (0.1mM) and Glucose-6-

phosphate dehydrogenase from L. Mesenteroides (G6PDH, 20U/ml) or (Buffer D) with β-NAD 

0.1mM and G6PDH (0.3U/ml). Concentrations of G6P and G6P+2-DG6P were quantified by 
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fluorimetrically measuring (Infinite F200, Tecan, Männedorf, CH) conversion of Resazurin in 

Resorufin in Buffers C and D, respectively. Values related to 2-DG6P were calculated by 

subtraction, interpolated on a standard curve of 2-DG6P, and normalized by protein 

concentration in sample homogenate. Tissue 2-DG6P uptake was expressed in µmol of 2-DG/mg 

protein/30min. 

ATP synthesis and complex-related ATP production  ATP synthesis rate was measured in tissues 

and cells ex-vivo in freshly isolated mitochondria using a luciferin-luciferase luminometric assay 

(22). Integrity of mitochondria isolated by gentle homogenization was tested by comparison of 

citrate synthase measurements in samples before and after membrane disruption (29). After 

signal stabilization and excess substrates addition a first 10-min kinetic read was performed, 

followed by 100µmol/l ADP addition and 20-min read. Final respiration substrates composition 

and reaction concentrations (mmol/l) were: 0.25 pyruvate, 0.0125 palmitoyl-L-carnitine, 2.5 α-

ketoglutarate, 0.25 malate (PPKM); 0.025 palmitoyl-L-carnitine, 0.5 malate (PCM); 20 succinate, 

0.1 rotenone (SR); 10 glutamate, 5 malate (GM). The impact of complex-related energy flux on 

ATP synthesis was calculated as the difference in production rate induced by the addition, in a 

subsequent 20-min read, of a complex-specific inhibitor during state-3 respiration on excess 

complex-specific substrate. For complex I-related ATP synthesis, substrate and inhibitor were 

GM and rotenone (2µmol/l), while for complex II SR and malonate (1mmol/l). Mitochondrial 

functional integrity in each preparation was confirmed by a >80% and >95% decrease in state 3 

ATP synthesis after addition of CCCP 30µM and oligomycin 2µg/µl respectively. Values were 

then normalized by ATP synthesis rate with the non-specific substrate PPKM, and data presented 

as the ratio between values obtained for complex I-related over complex II-related results. 
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Statistical analysis Groups were compared using Student t-test or one-way ANOVA followed by 

appropriate post-hoc tests. Bonferroni correction for multiple comparisons was applied. p<0.05 

was considered statistically significant. 

Results 

EXOGENOUS UnAG ADMINISTRATION 

Animal characteristics In lean adult rats, exogenous 4-day UnAG did not modify body weight 

(Ct:319.6±3.6g; UnAG:324.1±6.1g), weight gain during treatment (Ct:13.0±1.4g; 

UnAG:11.6±1.1g) or caloric intake (Ct: 76.9±2.3kcal/d; UnAG: 73.5±1.8kcal/d). Plasma glucose 

(Ct: 118.6±6.0mg/dL; UnAG: 120.5±7.5mg/dL), insulin (Ct: 12.8±2.1µU/ml; UnAG: 

14.3±2.9µU/ml) and NEFA (Ct: 0.27±0.06mmol/L; UnAG: 0.21±0.03mmol/L) concentrations 

were comparable among groups. 

UnAG lowers skeletal muscle ROS production UnAG lowered gastrocnemius H2O2 and 

superoxide anion production rate, and this effect involved mitochondrial respiration-dependent 

ROS generation (Figure1A-C). NOS-dependent but not xanthine- or NADPH oxidase-dependent 

superoxide production was also reduced by UnAG (Figure 1D-F). UnAG-treated rats also had 

lower muscle oxidized-over-total glutathione, a marker of tissue redox state (Figure 1G-H). 

Tissue protein levels of SOD isoforms and activities of antioxidant catalase and glutathione 

peroxidase were conversely not modified by UnAG (Figure 1I-L).  

UnAG lowers tissue inflammation Protein expression of the NF-κB inhibitor IκB was higher in 

UnAG- compared to saline-treated rats, with parallel reduction of pro-inflammatory NF-κB 

p65/p50 nuclear binding activity (Figure 2A-B). UnAG also increased p50/p50 homodimer 

binding activity (Figure 2B), a transcription activator for anti-inflammatory IL-10 (30). UnAG 
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treatment consistently resulted in anti-inflammatory changes in muscle cytokine patterns, with 

higher IL-10 expression and lower pro-inflammatory IL-1a and TNFα (Figure 2C-G). 

UnAG enhances insulin signalling and glucose uptake UnAG also led to insulin signaling 

activation with increased phosphorylation of AKTS473, GSK-3βS9, PRAS40T246 and 

P70S6KT421/S424 (Figure 3A-F), consistent with activation of both mTORC complexes kinase 

activity. Changes in insulin signalling were paralleled by higher insulin-stimulated muscle 

glucose uptake (Figure 3G). These effects were further associated with enhanced IRS-1S312 

phosphorylation (Figure 3B), an mTORC-dependent negative feedback mechanism and marker 

for enhanced insulin signaling (31). To determine whether activating IRS-1 phosphorylations 

were also enhanced, we measured pIRS-1Y612 and found no stimulation in UnAG-treated animals 

(Supplementary Figure 1A), further indicating that UnAG-associated activation of insulin 

signalling occurs downstream of mTORC complexes but not at IR-IRS1 level.  

In vivo effects of UnAG are tissue-specific In liver tissue, a non-statistically significant reduction 

in mitochondrial superoxide production was observed. This relatively minor change was not 

associated with altered redox state, inflammation markers or insulin signalling (Supplementary 

Figures 2A-I, 3A-F), as previously shown (32,33).  

TRANSGENIC UnAG OVEREXPRESSION AND HFD-INDUCED OBESITY  

Animal characteristics Up-regulation of circulating UnAG by myocardial overexpression of the 

ghrelin gene (Tg Myh6/Ghrl) (19) did not modify body weight (Control-Diet: Ct: 31.0±2.1g; Tg 

Myh6/Ghrl: 28.7±2.1g; HFD: Ct: 37.9±3.0g; Tg Myh6/Ghrl: 36.6±1.1g) or caloric intake 

(Control-Diet: Ct: 13.5±0.1kcal/d; Tg Myh6/Ghrl: 14.6±0.6kcal/d; HFD: Ct: 17.6±0.1kcal/d; Tg 

Myh6/Ghrl: 17.9±0.5kcal/d) under any dietary regimen (19). Blood glucose (Control Diet: Ct: 
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106.0±7.3mg/dL; Tg Myh6/Ghrl: 98.2±8.0mg/dL), plasma insulin (Control Diet: Ct: 

13.3±1.8µU/ml; Tg Myh6/Ghrl: 14.5±3.1µU/ml;) and NEFA (Control Diet: Ct: 

0.32±0.06mmol/L; Tg Myh6/Ghrl: 0.38±0.08mmol/L) were also comparable among lean groups. 

In contrast, blood glucose (HFD Ct: 161.9±30.7mg/dL; Tg Myh6/Ghrl: 102.7±11.6mg/dL; 

P<0.05 Ct vs Tg Myh6/Ghrl) and plasma insulin (HFD: Ct: 25.1±2.2µU/ml; Tg Myh6/Ghrl: 

16.5±1.6µU/ml; P<0.05 Ct vs Tg Myh6/Ghrl) while not NEFA (HFD: Ct: 0.27±0.05mmol/L; Tg 

Myh6/Ghrl: 0.32±0.10mmol/L; P=NS) were lower in HFD-obese Tg Myh6/Ghrl compared to 

both wild-type HFD animals and lean groups (P=NS HFD Tg Myh6/Ghrl vs lean groups). 

Systemic circulating UnAG up-regulation prevents obesity-associated hyperglycemia, whole-

body insulin resistance and skeletal muscle oxidative stress, inflammation and impaired AKT 

phosphorylation Consistent with exogenous UnAG administration, circulating UnAG up-

regulation in Tg Myh6/Ghrl was characterized by lower muscle oxidized-to-total glutathione, 

less pro-inflammatory tissue cytokine profile and more pronounced phosphorylation of AKTS473, 

GSK-3βS9, PRAS40T246 and P70S6KT421/S424 (Figure 4A-M). These effects were associated with 

higher insulin sensitivity by area-under-the-curve (AUC) for ITT-induced blood glucose changes 

(Figure 4N-P). Obese wild-type animals were expectedly hyperglycemic and insulin resistant 

(Figure 4N-P). The obese wild-type group also had higher oxidized-to-total glutathione, pro-

inflammatory cytokine profile and reduced phosphorylation of AKTS473 and GSK-3βS9 in 

gastrocnemius (Figure 4A-M). Compared to lean Tg Myh6/Ghrl, obese Tg Myh6/Ghrl had 

moderately higher muscle oxidized-to-total glutathione and TNFα, that however remained lower 

(P<0.05) than obese and comparable (P=NS) to lean wild-type animals (Figure 4B,4E). In 

addition, UnAG upregulation prevented obesity-associated increments (P<0.05 vs obese wild-

type) in muscle pro-inflammatory cytokines IL-1α and IL-1β with lower IL-6, and resulted in 
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normalized activating phosphorylation at AKTS473 and GSK-3βS9 levels (P=NS vs lean Tg 

Myh6/Ghrl). Importantly, obese Tg Myh6/Ghrl were protected from obesity-induced 

hyperglycemia and whole-body insulin resistance (Figure 4N-P), with both parameters 

superimposable to lean wild-type animals. Insulin signalling proteins upstream of AKT were not 

activated in Tg Myh6/Ghrl, with patterns of pIRS-1S312 and pIRS-1Y612 comparable to those 

observed in exogenously-treated animals (Figure 4H-I, Supplementary Figure 1B). 

 

IN VITRO MYOTUBE EXPERIMENTS 

UnAG effects on ROS production and insulin signalling are confirmed in C2C12 myotubes 48-

hour UnAG treatment of C2C12 myotubes lowered mitochondrial ROS generation with largely 

dose-dependent effects (Figure 5A). Also consistently with in vivo data, UnAG resulted in 

increased activating phosphorylation of mTORC complexes-dependent insulin signaling proteins 

AKTS473, GSK-3βS9, PRAS40T246 and P70S6KT421/S424. Patterns of pIRY1162/Y1163 and pIRS-1S312 

were also comparable in C2C12 and in-vivo experiments, supporting lack of activation of IR-

IRS1 (Figure 5B-G).  

UnAG effects in vitro are not shared by AG C2C12 myotubes do not appear to express the AG 

receptor GHSR1 (34). To further exclude the possibility that UnAG-induced changes result from 

non-specific activation of additional AG-regulated pathways, C2C12 experiments were 

performed with equimolar AG concentrations. 48-hour AG incubation failed to inhibit ROS 

production and to activate insulin signalling except for less pronounced enhancement of pGSK-

3βS9 (Figure 5A-G).  
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UnAG effects in vitro are abolished by silencing the autophagy mediator ATG5 In additional 

experiments, C2C12 myotubes were incubated with UnAG after genomic silencing of the 

autophagy mediator ATG5. ATG5 silencing abolished UnAG activities on both mitochondrial 

ROS production and insulin signalling (Figure 6A-H). Levels of the autophagy activation marker 

LC3II/LC3I were also higher in HFD-obese Tg Myh6/Ghrl than wild-type mice (Figure 6I). 

 

MITOCHONDRIAL ATP PRODUCTION 

Effects of UnAG are not associated with enhanced skeletal muscle mitochondrial function 

Consistent with previous results (22,35), UnAG-induced changes in redox state, inflammation 

and insulin signalling were not associated with enhanced, but rather with lower or unchanged 

ATP production rate in vivo and in vitro respectively (Figure 7A-C). Higher skeletal muscle 

ATP production was observed in obese mice compared to lean counterparts, but UnAG up-

regulation was associated with lower ATP production rates also in obese animals (Figure 7B). 

UnAG modified muscle respiratory chain complex-related ATP production by shifting ATP 

synthesis towards complex I over complex II both in vivo and in vitro (Figure 7D-E). Differently 

from UnAG, AG enhanced ATP production in C2C12 myotubes (Figure 7C). Liver ATP 

production was not modified by UnAG (Supplementary Figure 3G). 

Discussion 

 
These studies demonstrated that 1) sustained UnAG administration in vivo leads to a) lower 

muscle ROS production and less oxidized tissue redox state; b) anti-inflammatory changes in 

tissue NF-κB activation and cytokine patterns; c) enhanced mTORC-dependent insulin signalling 

with higher insulin-stimulated muscle glucose uptake. 2) Muscle effects of UnAG are 
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reproduced in a model of systemic circulating UnAG up-regulation with HFD-induced obesity, 

resulting in prevention of obesity-associated hyperglycemia and whole-body insulin resistance. 

3) UnAG effects are dose-dependently confirmed in myotubes; differential effects of AG and 

UnAG are observed in vitro, thereby indicating that UnAG acts at least partly directly and 

independently of AG-regulated pathways. Finally, UnAG effects in vitro are abolished by 

autophagy inhibition, thereby indicating mechanistic involvement of autophagy in UnAG 

activities. 

 

The current results show that UnAG negatively regulates skeletal muscle ROS production and 

inflammation, and these effects are indirectly supported by previous in vitro observations in non-

muscle cells (14,16,19). In a recent study, UnAG reduced endothelial oxidative stress in models 

of peripheral artery disease by restoring SOD expression (15,16). Skeletal muscle SOD 

expression and antioxidant enzyme activities were however unchanged by UnAG in the current 

model, indicating lower mitochondrial ROS generation rather than enhanced antioxidant 

defenses as a key mediator of UnAG-induced muscle antioxidant activity. Since we recently 

identified UnAG as a potent inducer of autophagy in cardiomyocytes and myotubes (35), 

enhanced removal of dysfunctional mitochondria could have contributed to lower tissue 

oxidative load in the current experimental setting. This hypothesis was notably confirmed in 

myotubes experiments using siRNA-mediated autophagy inhibition. Among less quantitatively 

relevant ROS sources (36), UnAG selectively inhibited NOS-dependent superoxide production. 

This finding is intriguingly consistent with emerging co-localization and functional interactions 

between NOS, nitric oxide (NO) and muscle mitochondria (37,38). In particular, NO production 

has been reported to enhance mitochondrial ROS generation (37) while UnAG was reported to 
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reduce NO production induced by pro-inflammatory cytokines in various settings (39). Potential 

interactions between UnAG, NO and mitochondrial ROS generation should be directly 

investigated in future studies. 

Sustained UnAG administration enhanced skeletal muscle insulin signalling downstream of 

mTORC complexes while not at IR-IRS-1 level, and these effects were paralleled by increased 

insulin-stimulated muscle glucose uptake. These changes are importantly in excellent agreement 

with, and provide a molecular basis for, clinical observations linking UnAG with preserved 

whole-body insulin sensitivity in humans (12,13). Interestingly, autophagy inhibition in vitro 

abolished UnAG activities on both mitochondrial ROS production and insulin signalling. These 

observations provide further strong support for a causal negative impact of mitochondrial ROS 

production on AKT-dependent insulin signalling, in agreement with previous observations (1-5). 

Intriguingly, UnAG effects were associated with enhanced inhibitory IRS-1S312 phosphorylation. 

This seemingly paradoxical observation is however consistent with recent reports of IRS-1S312 

phosphorylation as a physiological negative feedback modulation following downstream 

signalling activation (31).  

Results in Tg Myh6/Ghrl mice with chronic systemic UnAG over-exposure (19) confirmed 

effects of exogenous UnAG administration, and these results are supported by higher insulin 

sensitivity in a lean UnAG adipose transgenic model (17). Since plasma AG and IGF-1 are 

unchanged in Tg Myh6/Ghrl (19), our findings further confirm that UnAG effects are 

independent of changes in AG and its potential impact on GH-IGF1 through GHSR1 (7,19). 

Most importantly, circulating UnAG upregulation prevented HFD-induced hyperglycemia and 

systemic insulin resistance, while muscle oxidative stress markers, inflammation and impaired 

insulin signalling were overall preserved at levels comparable with lean Tg Myh6/Ghrl or wild-
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type animals. UnAG-dependent stimulation of muscle autophagy was also confirmed in vivo in 

HFD-obese Tg Myh6/Ghrl by higher LC3II/LC3I ratio, and could therefore have potentially 

directly contributed to beneficial effects of UnAG overexpression (40). Interestingly, obese Tg 

Myh6/Ghrl animals showed no increments in pIRS-1S312 compared to wild-type counterparts, 

and lack of effect was associated with lack of stimulation of insulin signalling activation at 

P70S6K levels. These combined observations are consistent with the hypothesis that IRS-1S312 

phosphorylation is at least partly mediated by this feedback loop (31). Potential mechanisms 

underlying differential regulation of PRAS40T246 and P70S6KT421/S424 phosphorylation in obese 

vs lean models of UnAG exposure should be investigated in future studies. Overall, results in the 

HFD-obesity model importantly demonstrate that effects of UnAG translate into beneficial 

metabolic changes in a clinically relevant model of dietary-induced insulin resistance and 

hyperglycemia, thereby providing a strong rationale for therapeutic strategies to increase UnAG 

availability in obese, insulin resistant and type 2 diabetic conditions.  

Myotubes experiments were in excellent agreement with in vivo studies in showing 

superimposable effects of UnAG on ROS production and insulin signalling, that were not 

induced by equimolar AG concentrations. These observations strongly indicate that UnAG 

directly stimulates skeletal muscle insulin signaling and they are consistent with previously-

reported UnAG signaling and anti-atrophic activities in skeletal muscle of both wt and GHSR1 

knockout mice (19). These findings overall provide strong support to the hypothesis that UnAG 

effects in skeletal muscle are independent of GHSR1 and are mediated by alternative, yet-

unidentified UnAG receptor(s). It should also be pointed out that both AG and UnAG stimulate 

differentiation of C2C12 myoblasts (34), and that both ghrelin forms enhance mTORC2-

mediated anti-atrophic signalling under acute experimental conditions in C2C12 myotubes as 
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well as in vivo in skeletal muscle of GHSR KO mice (19, 32). In the current studies with 

prolonged hormone incubation, highest AG doses selectively induced a moderate increase of 

GSK-3βS9 phosphorylation but they failed to reduce ROS generation and to enhance downstream 

insulin signaling. Also consistent with these findings, AG is a weaker autophagy inducer than 

UnAG and it fails to stimulate both mitophagy (35) and ischemia-induced skeletal muscle 

regeneration (15). Based on available knowledge, differential muscle effects of ghrelin forms 

may depend on still uninvestigated acylation-selective and time-dependent AG activities. 

Overall, differential effects of ghrelin forms on muscle insulin signalling are fully consistent with 

clinical observations linking UnAG, but not AG to whole-body insulin sensitivity in humans 

(12,13).  

It should be finally pointed out that UnAG-induced lower ROS production, lower inflammation 

and enhanced insulin signalling were associated with reduced or unchanged ATP production. In 

agreement with previous studies, high-fat fed animals conversely showed higher mitochondrial 

ATP production despite higher oxidative stress markers and insulin resistance (32), and this 

alteration could involve enhanced substrate availability through feed-forward mechanisms (32). 

Our results therefore provide further evidence against a role for low mitochondrial function to 

primarily cause insulin resistance (41-45), conversely indicating UnAG as a novel modulator of 

muscle mitochondrial activity with negative impact on both ATP and ROS production in vivo. 

Unchanged mitochondrial ATP production in vitro however does not support a direct role of 

UnAG to inhibit mitochondrial function, while it further indicates that reduced mitochondrial 

function is not a prerequisite for reduced ROS generation. Interestingly, UnAG modified 

complex-related ATP production by favoring complex I over complex II-related synthesis in 

vitro and in vivo, potentially reflecting preferential glucose over fat-derived substrate oxidation 
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(46). Since glucose-related substrate oxidation may lower mitochondrial ROS generation 

(47,48), this mechanism could also contribute to inhibit ROS production. Further studies on 

interactions between UnAG and muscle mitochondrial function are warranted by the current 

results. 

In conclusion, these studies demonstrated a novel role of UnAG to modulate skeletal muscle 

redox state, inflammation and insulin signalling. UnAG-treated rat muscle is characterized by 

lower mitochondrial ROS production, lower inflammation and enhanced insulin signalling and 

action. These effects are tissue-specific, they appear to be direct and independent of acylated 

hormone, and they could be at least partly mediated by UnAG-dependent stimulation of 

autophagy (Figure 8). UnAG overexpression also prevents obesity-associated hyperglycemia and 

systemic insulin resistance as well as muscle oxidative stress, inflammation activation and 

impaired insulin signalling. The current findings collectively indicate UnAG as a potential novel 

treatment for obesity-associated metabolic alterations. 
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Figure Legends 

Figure 1. UnAG and skeletal muscle redox state. Effects of unacylated ghrelin (UnAG, 200µg 

subcutaneous injection twice per day) vs. saline (Ct) sustained 4-day treatment on overall (A) and 

specific superoxide production from mitochondrial sources in whole tissue homogenate (B), on 

intact isolated mitochondrial H2O2 synthesis rate with different respiratory substrates (C, GMS: 

Glutamate+Succinate+Malate; S: Succinate; GM: Glutamate+Malate; PCM: Palmitoyl-L-

Carnintine+Malate) and on superoxide generation from nitric oxide synthase (D), NADPH oxidase 

(E) and xanthine oxidase (F) in skeletal muscle. Effects of UnAG treatment on total (G) and 

oxidized (GSSG) over total (H, GSH: reduced) tissue glutathione, effects of UnAG on protein 

expression of Cu/ZnSOD (I) and MnSOD (J) with representative blots, and on enzyme activities of 

catalase (K) and glutathione peroxidase (GPx; L). U CS: units of citrate synthase; a.u.: arbitrary 

units. *p<0.05 vs. Ct; mean±SEM, n=8-10/group.  

Figure 2. UnAG and skeletal muscle inflammation. Effects of unacylated ghrelin (UnAG, 200µg 

subcutaneous injection twice per day) vs. saline (Ct) sustained 4-day treatment on the expression of 

IκB (A), on NF-κB binding activity (B) with representative blots, and on tissue expression of IL-1α 

(C), IL-1β (D), TNFα (E), IL-6 (F) and IL-10 (G) measured by xMAP technology in 

gastrocnemious muscle. a.u.: arbitrary units, Ab: antibody. *p<0.05 vs. Ct; mean±SEM; n=8-

10/group. 

Figure 3. UnAG and skeletal muscle insulin action. Effects of unacylated ghrelin (UnAG, 200µg 

subcutaneous injection twice per day) vs. saline (Ct) sustained 4-day treatment on the 

phosphorylation measured by xMAP technology of insulin receptor (IRY1162/Y1163, A), IRS-1S312 (B), 

AKTS473 (C), GSK-3βS9 (D), PRAS40T246 (E), P70S6KT421/S424 (F) and on tissue glucose uptake (G) 
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in gastrocnemious muscle. *p<0.05 vs. Ct; †p<0.05 vs. same treatment Insulin-; ‡p<0.05 vs. other 

treatment Insulin-; mean±SEM, n=8-10/group. 

Figure 4. Impact of systemic overexpression of UnAG on skeletal muscle redox state, 

inflammation, insulin signaling and action in lean and obese mice. Effects of UnAG 

overexpression in transgenic Myh6/Ghrl (Tg) vs. wild type (Wt) mice fed 16 wks with Control- 

(CD) or High Fat- Diet (HFD) on total (A) and oxidized (GSSG) over total (B, GSH: reduced) 

glutathione, on tissue expression of IL-1α (C), IL-1β (D), TNFα (E), IL-6 (F) and IL-10 (G) 

measured by xMAP technology in gastrocnemius muscle. Effects of UnAG overexpression on the 

phosphorylation of insulin receptor (IRY1162/Y1163, H), IRS-1S312 (I), AKTS473 (J), GSK-3βS9 (K), 

PRAS40T246 (L), P70S6KT421/S424 (M) measured by xMAP technology in gastrocnemius muscle. 

Absolute (N), corresponding Area Under the Curve (AUC; O), and relative (P) blood glucose 

values in Insulin Tolerance Test (ITT) experiments. *p<0.05 vs. Ct; †p<0.05 vs. same genotype-

CD; ‡p<0.05 vs. other genotype-CD; mean±SEM, n=7/group. 

Figure 5. In vitro impact of UnAG on cultured myotubes. Effects of 48 h incubation with 

increasing concentrations of acylated (AG) or unacylated ghrelin (UnAG) vs. control (Ct) on 

isolated mitochondria H2O2 synthesis rate with different respiratory substrates (A, GMS: 

Glutamate+Succinate+Malate; S: Succinate; GM: Glutamate+Malate; PCM: Palmitoyl-L-

Carnintine+Malate) and effects of the above treatments on the phosphorylation of insulin receptor 

(IR)Y1162/Y1163 (B), IRS-1S312 (C), AKTS473 (D), GSK-3βS9 (E), PRAS40T246 (F), P70S6KT421/S424 (G) 

measured by xMAP technology in C2C12 myotubes. U CS: units of citrate synthase. *p<0.05 vs. 

Ct; †p<0.05 vs. same hormone 0.1µM; ‡p<0.05 vs. same hormone 0.5µM; § p<0.05 vs. AG, same 

concentration; $p<0.05 vs. other hormone 0.5µM; ¶p<0.05 vs. other hormone 0.1µM; #p<0.05 vs. 

all other groups; mean±SEM, n=3/group. 
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Figure 6. Impact of UnAG on mitochondrial ATP synthesis. Effects on muscle ATP synthesis 

rate with different respiratory substrates (A, PPKM: Pyruvate+Palmitoyl-L-Carnintine+α-

Ketoglutarate+Malate; PCM: Palmitoyl-L-Carnintine+Malate;  GM: Glutamate+Malate;  SR: 

Succinate+Rotenone) in isolated mitochondria from rat gastrocnemious muscle after unacylated 

ghrelin (UnAG, 200µg subcutaneous injection twice per day) vs. saline (Ct) sustained 4-day (A, 

n=8-10/group) treatment, in isolated mitochondria from gastrocnemious muscle of mice with UnAG 

up-regulation (Tg Myh6/Ghrl) vs. wild type (wt) fed 16 wks with Control- (CD) or High Fat- Diet 

(HFD) (B, n=7/group) and in C2C12 myotubes after 48 h incubation with increasing concentrations 

of acylated (AG) or unacylated ghrelin (UnAG) vs. control (Ct) in (C, n=3/treatment).  Complex I 

over complex II related ATP synthesis rate ratio in rat gastrocnemius muscle after sustained 

treatment (D) and in cultured myotubes (E). *p<0.05 vs. Ct or Wt; †p<0.05 vs. same genotype-CD; 

‡p<0.05 vs. other genotype-CD; § p<0.05 vs. AG, same concentration; #p<0.05 vs. all other groups; 

mean±SEM. 

Figure 7. Role of autophagy in UnAG effects on mitochondrial ROS generation and insulin 

signalling. Effects of autophagy mediator ATG5 genomic silencing vs. non targeting NT4 siRNA 

transfection on C2C12 myotubes after 48 h incubation with increasing concentrations of acylated 

(AG) or unacylated ghrelin (UnAG) vs. control (Ct) on isolated mitochondria H2O2 synthesis rate 

with different respiratory substrates (A, GMS: Glutamate+Succinate+Malate; S: Succinate; GM: 

Glutamate+Malate; PCM: Palmitoyl-L-Carnintine+Malate) and cell protein expression of ATG5 

after transfection with the two siRNA (B). Effects of the above treatments on the phosphorylation 

of insulin receptor (IR)Y1162/Y1163 (C), IRS-1S312 (D), AKTS473 (E), GSK-3βS9 (F), PRAS40T246 (G), 

P70S6KT421/S424 (H) measured by xMAP technology. Autophagy activation marker LC3II/LC3I as 

measured by western blot in the gastrocnemious muscle of mice with UnAG up-regulation (Tg 
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Myh6/Ghrl) vs. wild type (wt) fed 16 wks with Control- (CD) or High Fat- Diet (HFD) (I, 

n=7/group) with representative blot. U CS: units of citrate synthase. *p<0.05 vs. NT4, same UnAG 

concentration; †p<0.05 vs. same siRNA, no UnAG; ‡p<0.05 vs. other siRNA, no UnAG; § p<0.05 

vs. same siRNA, UnAG 0.1µM; § p<0.05 vs. other siRNA, UnAG 0.1µM; #p<0.05 vs. all other 

groups; mean±SEM; n=3/group. 

Figure 8: Proposed interactions between UnAG and clustered obesity-associated metabolic 

alterations in skeletal muscle of high-fat diet-induced obese rodents: higher mitochondrial 

production of reactive oxygen species (ROS), higher inflammation and lower insulin signalling 

activation are normalized by chronic UnAG over-exposure. Our findings further demonstrate a 

direct effect of UnAG to lower mitochondrial ROS production through stimulated autophagy, 

which may directly lead to lower inflammation and enhanced insulin signalling. Potential parallel 

UnAG activities to directly lower inflammation and enhance insulin signalling should be further 

investigated. 

 

  

Page 28 of 41Diabetes



29 
 

Supplementary Figure Legends 

Supplementary Figure 1. UnAG and IRS-1
Y612

 phosphorylation in skeletal muscle. Effects 

of unacylated ghrelin (UnAG, 200µg subcutaneous injection twice per day) vs. saline (Ct) 

sustained 4-day treatment (A, n=8-10/group), or of UnAG up-regulation in transgenic 

Myh6/Ghrl (Tg) vs. wild type (Wt) mice fed 16 wks with Control- (CD) or High Fat- Diet (HFD) 

(B, n=7/group) on the phosphorylation of IRS-1Y612 in gastrocnemius muscle with representative 

blots. OD: optical density. Mean±SEM.  

 
Supplementary Figure 2. UnAG and liver redox state and inflammation. Effects of 

unacylated ghrelin (UnAG, 200µg subcutaneous injection twice per day) vs. saline (Ct) sustained 

4-day treatment on overall (A) and specific superoxide production from mitochondrial sources in 

whole tissue homogenate (B), on intact isolated mitochondria H2O2 synthesis rate with different 

respiratory substrates (C, GMS: Glutamate+Succinate+Malate; S: Succinate; GM: 

Glutamate+Malate; PCM: Palmitoyl-L-Carnintine+Malate) and on superoxide generation from 

nitric oxide synthase (D), NADPH oxidase (E) and xanthine oxidase (F) in rat liver. Effects of 

UG treatment on total (G) and oxidized (GSSG) over total (H, GSH: reduced) tissue glutathione, 

and on the binding activity of NF-κB (I), with representative blot, in rat liver. U CS: units of 

citrate synthase; a.u.: arbitrary units, Ab: antibody. Mean±SEM, n=8-10/group.  

Supplementary Figure 3. UnAG and liver insulin action and ATP synthesis. Effects of 

unacylated ghrelin (UnAG, 200µg subcutaneous injection twice per day) vs. saline (Ct) sustained 

4-day treatment on the phosphorylation of insulin receptor (IR)Y1162/Y1163 (A), IRS-1S312 (B), 

AKTS473 (C), GSK-3βS9 (D), PRAS40T246 (E), P70S6KT421/S424 (F) measured by xMAP 

technology, and on isolated mitochondrial ATP synthesis rate with different respiratory 
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substrates (E, PPKM: Pyruvate+Palmitoyl-L-Carnintine+α-Ketoglutarate+Malate; PCM: 

Palmitoyl-L-Carnintine+Malate;  GM: Glutamate+Malate;  SR: Succinate+Rotenone) in rat liver. 

Mean±SEM, n=8-10/group. 

 

 

 

Page 30 of 41Diabetes



150B

ct
io

n
%

 o
f C

t)

15

20

*

C

O
2 C
S/

m
in

)

Figure 1

4

5A

de .) * *

0

50

100 *

S
up

er
ox

id
e 

pr
od

uc
fr

om
 m

ito
ch

on
dr

ia
 (%

5

10

15

*
*

* *

M
ito

ch
on

dr
ia

l H
2O

yn
th

es
is

 ra
te

 (n
m

ol
/U

 

0

1

2

3
*

Ti
ss

ue
 S

up
er

ox
i

ge
ne

ra
ti

on
 (a

.u *
* *

*

* *

Ct UG
0

f

Ct UG Ct UG Ct UG Ct UG
0

GMS S GM PCM

sy

Ct UG
0

Ct            UnAG Ct            UnAG Ct            UnAG Ct            UnAGCt             UnAG Ct             UnAG

150D

on

150E

on of
 C

t) 150F

on of
 C

t)

0 020

0.025H

)0 08

0.10G

/m
g)

50

100

*

S
up

er
ox

id
e 

pr
od

uc
ti

o
fr

om
 N

O
S 

(%
 o

f C
t)

50

100

*

S
up

er
ox

id
e 

pr
od

uc
ti

m
 N

A
D

PH
 o

xi
da

se
 (%

 

50

100

*
S

up
er

ox
id

e 
pr

od
uc

ti
o

Xa
nt

hi
ne

 o
xi

da
se

 (%
 

0.005

0.010

0.015

0.020

*

G
SS

G
/(G

SS
G

+G
SH

)

0.02

0.04

0.06

0.08

ta
l G

lu
ta

th
io

ne
 (µ

m
ol

*
*

Ct UG
0

S

Ct             UnAG Ct UG
0fr

om

Ct             UnAG Ct UG
0

S
fr

om
 

Ct             UnAG Ct UG
0.000

Ct             UnAGCt UG
0.00To

t

Ct             UnAG

I 24kDa
36kDa

24kDa CuZnSOD

GAPDH J 24kDa
36kDa

24kDa MnSOD

GAPDH

0.2

0.3
I

*

24kDa

ei
n 

ex
pr

es
si

on
 (

a.
u.

) Ct UGCt                UnAG

0.04

0.06

0.08
J

*

24kDa

in
 e

xp
re

ss
io

n 
(a

.u
.) Ct UGCt                UnAG

40

60

80K
U

/m
g 

pr
ot

ei
n)

.

10

15

20L

/m
g 

pr
ot

ei
n)

.

Ct UG
0.0

0.1

C
uZ

nS
O

D
 p

ro
te

Ct             UnAG Ct UG
0.00

0.02

M
nS

O
D

 p
ro

te

Ct             UnAG Ct UnAG
0

20

C
at

al
as

e 
(

Ct UnAG
0

5

G
Px

 (m
U

/

Page 31 of 41 Diabetes



p65 supershift

Ct UnAG
0.0

0.5

1.0

1.5

2.0B p105/p50 supershift

Unbound probe

p65/p50








p50/p50

Non-specific band

Un
m

ar
ke

d 
pr

ob
e

p6
5 

Ab

p1
05

/p
50

 A
b Ct UnAG

N
F-
κ B

 p
65

/p
50

bi
nd

in
g 

ac
tiv

ity
 (a

.u
.)

Figure 2 

Ct UG
0

2

4

6

8

*

C

Ti
ss

ue
 IL

-1
α

 (
pg

/m
g 

pr
ot

ei
n)

Ct UG
0

1

2

3D

Ti
ss

ue
 IL

-1
β

 (
pg

/m
g 

pr
ot

ei
n)

Ct UG
0

2

4

6

8

10

*
E

Ti
ss

ue
 T

N
Fα

 (
pg

/m
g 

pr
ot

ei
n)

Ct UG
0.0

0.5

1.0

1.5

2.0

2.5F

Ti
ss

ue
 IL

-6
 (p

g/
m

g 
pr

ot
ei

n)

Ct UG
0

1

2

3

4

*
G

Ti
ss

ue
 IL

-1
0 

(p
g/

m
g 

pr
ot

ei
n)

Ct UG
0.0

0.2

0.4

0.6

0.8

*

40kDaA

Iκ
B

 p
ro

te
in

 e
xp

re
ss

io
n 

(a
.u

.)

36kDa

40kDa IκB

GAPDH

Ct UG

 
 

 

Ct UnAG
0.0

0.5

1.0

1.5

N
F-
κ B

 p
50

/p
50

 h
om

od
im

er
bi

nd
in

g 
ac

tiv
ity

 (a
.u

.)

 Ct             UnAG  Ct             UnAG  Ct             UnAG 

 Ct             UnAG  Ct             UnAG  Ct             UnAG  Ct             UnAG  Ct             UnAG 

 Ct                  UnAG 

* 

* 

* 

* 

* * 

Page 32 of 41Diabetes



Figure 3

1.5A 4 *
B 3

*
C 4 *D

g)* * *

0.5

1.0

R
Y

11
62

/Y
11

63
/IR

 (U
/p

g)

1

2

3

R
S-

1S
31

2 /IR
S-

1 
(U

/p
g)

1

2

pA
K

TS
47

3 /A
K

T 
(U

/p
g)

1

2

3

SK
-3


S
9 /G

SK
-3


 (U
/p

g

1.0
*

F

/p
g)5 *E

g)

Ct UnAG
0.0

pI

Ct UnAG
0

pI
R

Ct UnAG
0

p

Ct UnAG
0

pG
S

1.5

m
in *

EG* * *†‡

0 2

0.4

0.6

0.8
*

6K
T

42
1/

S
42

4 /P
70

S6
K

 (U
/

1

2

3

4

A
S4

0T2
46

/P
R

A
S4

0 
(U

/p
g

0.5

1.0

su
e 

gl
uc

os
e 

up
ta

ke
D

G
6P

/m
g 

pr
ot

ei
n/

30
 m*

†‡

Ct UnAG
0.0

0.2

pP
70

S6

Ct UnAG
0

1

pP
R

A

Ct UG Ct UG
0.0

Ti
ss

µm
ol

 2
-D

Insulin - Insulin +

Ct             UnAGCt             UnAG

Page 33 of 41 Diabetes



Figure 4

5A

m
g)

0.15B 6C

ei
n) 5D

ei
n)

3F

ei
n)

4G

in
)

 .15E

ei
n)

.

* * *† † †‡ ‡ ‡

1

2

3

4

al
 G

lu
ta

th
io

ne
 (µ

m
ol

/m

0.05

0.10
G

SS
G

/(G
SS

G
+G

SH
)

2

4

su
e 

IL
-1


 (
pg

/m
g 

pr
ot

1

2

3

4

su
e 

IL
-1


 (
pg

/m
g 

pr
ot

e

1

2

su
e 

IL
-6

 (p
g/

m
g 

pr
ot

e

1

2

3

ue
 IL

-1
0 

(p
g/

m
g 

pr
ot

e

5

10

ue
 T

N
F

 (
pg

/m
g 

pr
ot

e

*

* *
* *

*

* *
†

†
†

† †

‡

‡ ‡

4E0 6A 10B 3C 2 0D 0 08F g)

0To
ta

Wt Tg Wt Tg
CD  HFD

0.00
Wt Tg Wt Tg
CD  HFD

0Ti
ss

Wt Tg Wt Tg
CD  HFD

0Ti
ss

Wt Tg Wt Tg
CD  HFD

0

Ti
ss

Wt Tg Wt Tg
CD  HFD

0Ti
ss

u

Wt Tg Wt Tg
CD  HFD

H I J K L M

0Ti
ss

u

Wt Tg Wt Tg
CD  HFD

*

1

2

3

4E

*
# $

40
T2

46
/P

R
A

S4
0 

(U
/p

g)

0.2

0.4

0.6A

11
62

/Y
11

63
/IR

 (U
/p

g)

4

6

8

10B
*

#
$

-1
S

31
2 /IR

S-
1 

(U
/p

g)

1

2

3C *

# #$

*
K

TS
47

3 /A
K

T 
(U

/p
g)

0 5

1.0

1.5

2.0D
*

#$

*#

-3


S
9 /G

SK
-3


 (U
/p

g)

0 02

0.04

0.06

0.08F
*

# $

T
42

1/
S

42
4 /P

70
S6

K
 (U

/p
gH I J K L M

*
***

*

*
*

† † †

†

† †
‡

‡ ‡

‡

‡ ‡

Wt Tg Wt Tg
0

1

CD HFD

pP
R

A
S4

Wt Tg Wt Tg
0.0

CD HFD

pI
R

Y
1

Wt Tg Wt Tg
0

2

CD HFD

pI
R

S-

Wt Tg Wt Tg
0

CD HFD

pA
K

Wt Tg Wt Tg
0.0

0.5

CD HFD

pG
SK

-

Wt Tg Wt Tg
0.00

0.02

CD HFD

pP
70

S6
K

T

ca
b

c

ab
10000

15000O

AU
C100

150

N

co
se

 (m
g/

dL
)

50

100
P

oo
d 

gl
uc

os
e 

(%
)

*
*

†‡

b

Wt Tg(UG) Wt Tg(UG)
0

5000

CD HFD

A

0 20 40 60 80
0

50 CD-Wt
CD-Tg
HFD-Wt
HFD-Tg

time (min)

B
lo

od
 g

lu

0 20 40 60 80
0

50

CD-Wt
CD-Tg
HFD-Wt
HFD-Tg

time (min)

R
el

at
iv

e 
bl

o*

Page 34 of 41Diabetes



30

40

50
A

*$ *$ *$# *$#al
 H

2O
2

m
ol

/U
 C

S/
m

in
)

Figure 5

*†§ *†§ *§ *§¶

¶

$¶

¶

0

10

20

30

*$
*$

C
t

AG

Un
AG AG

Un
AG AG

Un
AG C

t

AG

Un
AG AG

Un
AG AG

Un
AG C

t

AG

Un
AG AG

Un
AG AG

Un
AG C

t

AG

Un
AG AG

Un
AG AG

Un
AG

M
it

oc
ho

nd
ri

a
sy

nt
he

si
s 

ra
te

 (n
m

*§
*§$¶
$¶

0.1M 0.5M 1.0M

GMS

0.1M 0.5M 1.0M

S

0.1M 0.5M 1.0M

GM

0.1M 0.5M 1.0M

PCM

0.4

0.5B

U
/p

g)

1.5

*$

C

(U
/p

g) 0.8

1.0
*$

D

U
/p

g)

*†§
*†§
$¶

$¶

0.0

0.1

0.2

0.3

pI
R

Y
11

62
/Y

11
63

/IR
 (

0.0

0.5

1.0

pI
R

S-
1S

31
2 /IR

S-
1 

(
0.0

0.2

0.4

0.6

pA
K

TS
47

3 /A
K

T 
(U

1.5

*$

E

pg
)

0.8

*$

F

/p
g)

0.03
*

G

(U
/p

g)

0.0

0.5µM 1.0µM0.1µM0.0µM

C
t

AG

Un
AG AG

Un
AG AG

Un
AG

0.0

0.5µM 1.0µM0.1µM0.0µM
C

t

AG

Un
AG AG

Un
AG AG

Un
AG

0.0

0.5µM 1.0µM0.1µM0.0µM

C
t

AG

Un
AG AG

Un
AG AG

Un
AG

*†

# #
$¶

0.5

1.0

*$

G
SK

-3


S
9 /G

SK
-3


 (U
/p

0.2

0.4

0.6
*$

R
A

S4
0T2

46
/P

R
A

S4
0 

(U
/

0.01

0.02

S6
K

T
42

1/
S

42
4 /P

70
S6

K
 (#

*†*§

#

0.0

0.5µM 1.0µM0.1µM0.0µM

C
t

AG

Un
AG AG

Un
AG AG

Un
AG

pG

0.0

0.5µM 1.0µM0.1µM0.0µM

C
t

AG

Un
AG AG

Un
AG AG

Un
AG

pP
R

0.00

0.5µM 1.0µM0.1µM0.0µM
C

t

AG

Un
AG AG

Un
AG AG

Un
AG

pP
70

Page 35 of 41 Diabetes



0.4

0.5

a

b b

ab

a
ab

a
a

bH
2O

2
e n)

Figure 6

A
100

120
a

es
si

on
)

55kDa

40kDa

ATG5

-Actin

B‡*
‡$*

*$ *

0 0

0.1

0.2

0.3
c

c
b b a

a
c

b b
b

a
a

ab ab

b

a

M
ito

ch
on

dr
ia

l H
sy

nt
he

si
s 

ra
te

(n
m

ol
/U

 C
S/

m
in

0

20

40

60

80

b

A
TG

5 
pr

ot
ei

n 
ex

pr
e

(%
 o

f c
on

tr
ol

) 40kDa  Actin

siRNA: NT4 ATG5
†‡ †‡$

†‡ †‡

*$ *
* ‡$*

‡

‡

#

*

‡ ‡

*

0.0

GMS S GM PCM

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
siRNA NT4 + - + - + - + - + - + - + - + - + - + - + - + -

0.5
bcb b

abc
5 b

b bb
1.0

cbcC D E 3
cbc)F

NT4 ATG5
0

siRNA:

* ‡
‡ ‡ ‡† † †‡$ †‡$

0 1

0.2

0.3

0.4 a

bc
c

abc

R
Y

11
62

/Y
11

63
/IR

 (U
/p

g)

1

2

3

4 a
b ab

bb
R

S-
1S

31
2 /IR

S-
1 

(U
/p

g)

0 2

0.4

0.6

0.8

a

b

ab

c

ab

pA
K

TS
47

3 /A
K

T 
(U

/p
g)

1

2
a

aba

c
b

bc

SK
-3


S
9 /G

SK
-3


 (U
/p

g‡
†‡$ *

‡ ‡† † †‡$

‡*
†‡ †‡

†‡$

*

0.0

0.1

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+

pI
R

siRNA NT4 + - + - + -
0

1

pI
R

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
siRNA NT4 + - + - + -

0.0

0.2p

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
siRNA NT4 + - + - + -

0

pG
S

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
siRNA NT4 + - + - + -

G

20

30

40

50

a

a
a

c

a

b

T2
46

/P
R

A
S4

0 
(U

/p
g)

0.04

0.06

0.08

0.10

a
a

a

b

a
a

21
/S

42
4 /P

70
S6

K
 (U

/p
g)G H I

0 2

0.4

0.6

15kDa

26kDa

a

a

a

b

GAPDH

LC3-II
LC3-I

C
3-

II 
/ L

C
3-

I

*
*

*†‡

$

#
# #

0

10

pP
R

A
S4

0

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
siRNA NT4 + - + - + -

0.00

0.02

pP
70

S6
K

T
42

UnAG [0.1M]
UnAG [1.0M]

siRNA ATG5
-
-

-
-
-

+
+
-

-
+
-

+
-
+

-
-
+

+
siRNA NT4 + - + - + - Wt Tg Wt Tg

0.0

0.2

CD HFD

CD HFD
Wt Tg Wt TgLC

Page 36 of 41Diabetes



6B $ #

Figure 7

1.5
A †‡

2

4

*

*$ #

$ #

* $ #

A
TP

 s
yn

th
es

is
 ra

te
(µ

m
ol

/U
 C

S/
m

in
)

0.5

1.0

*
* * *A

TP
 s

yn
th

es
is

 ra
te

(µ
m

ol
/U

 C
S/

m
in

)

*
* * * *

*

†‡

†‡
†‡*

Wt Tg(UG) Wt Tg(UG) Wt Tg(UG) Wt Tg(UG)
0

CD HFD

PPKM

CD HFD

PCM

* *

A

Ct UG Ct UG Ct UG Ct UG
0.0

PPKM PCM GM SR

A

Ct     UnAG Ct     UnAG Ct     UnAG Ct     UnAG Wt         Tg Wt         Tg Wt         Tg Wt         Tg

* * *

1.5

2.0
C

* *

*

* * *$

$
$

$es
is

 ra
te

C
S/

m
in

)

1.0

1.5

2.0 *
D

I/I
I r

el
at

ed
he

si
s 

(r
at

io
)

a

b

c c c

1

10E

 I/
II 

re
la

te
d

si
s 

(lo
g 

ra
tio

)*

v v

vvv

§ § §

§ § § §

#

# #
#

§ § §* * *

0.0

0.5

1.0

C
t

0 1 M 0 M 1 0 M 0 1 M 0 5 M 1 0 M 0 1 M 0 5 M 1 0 M 0 1 M 0 5 M 1 0 M

* *
**

$$
$

A
TP

 s
yn

th
e

(µ
m

ol
/U

 C

AG

Un
AG AG

Un
AG AG

Un
AG C

t

AG

Un
AG AG

Un
AG AG

Un
AG C

t

AG

Un
AG AG

Un
AG AG

Un
AG C

t

AG

Un
AG AG

Un
AG AG

Un
AG Ct UG

0.0

0.5

C
om

pl
ex

 
A

TP
 s

yn
t h b b b

Ct             UnAG
0.1

0 5 M 1 0 M0 1 M0 0 M

C
t

C
om

pl
ex

A
TP

 s
yn

th
e

AG

Un
AG AG

Un
AG AG

Un
AG

v v v§ § § § §
§

§ * **

0.1M 0.5M 1.0M

PPKM

0.1M 0.5M 1.0M

PCM

0.1M 0.5M 1.0M

GM

0.1M 0.5M 1.0M

SR

0.5µM 1.0µM0.1µM0.0µM

Page 37 of 41 Diabetes



OBESITY
Skeletal Muscle

Figure 8

ROS

+

AUTOPHAGY

‐

‐
UnAG

AUTOPHAGY

+

+
INFLAMMATION

INSULIN 
SIGNALLING

UnAG

+‐

+

‐

Page 38 of 41Diabetes



Supplementary figure 1
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Supplementary figure 3
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