142 research outputs found

    Political economy of Elinor Ostrom: institutional analysis, commons and polycentric governance

    Get PDF
    Social sciences have experienced the return of institutions into the main research agenda, and a new institutionalism has been developed to understand the role of institutions. The award of the 2009 Nobel Prize in Economics to the political scientist Elinor Ostrom for her “analysis of economic governance, especially the commons” has promoted the recognition of modern institutional analysis and resized contemporary political economy. This paper is an integral approach to Ostrom’s contributions and analyzes the evolution of her thinking throughout the major advances of her work over time. Her early contributions on public policy and polycentric systems, her seminal study on social norms in the governance of the commons, the focus on social capital and her multi-level framework of socio-ecological systems are her main contributions on polycentric governance

    Molecular control of winter dormancy in establishment in trees

    Get PDF
    Dormancy is an adaptive mechanism that enables woody plants to survive the freezing temperatures of winter. This complex process is characterized by the cessation of meristem activity, which is accompanied by winter bud set, extensive metabolic remodelling, an acquired high tolerance to cold and, in deciduous trees, by leaf senescence and abscission. The induction of dormancy occurs in response to seasonal environmental signals. In most woody plants, shortening of the photoperiod induces growth cessation, bud set, and some degree of cold acclimation. The subsequent drop in temperature then leads to a greater tolerance to cold and leaf fall. Experimental evidence indicates that the phytochrome system plays an important role as a day length sensor, and it has been recently reported that in poplar (Populus tremula x tremuloides), the photoperiodic control of dormancy induction is driven by a molecular mechanism that shares components with the mechanism of the photoperiodic control of flowering time in Arabidopsis. In contrast, the effects of low temperatures are less well understood. Nonetheless, it has been established that the chestnut (Castanea sativa Mill.) circadian molecular clock is disrupted both during winter and in response to cold, with presumable consequences on the general physiology of the plant. However, there is no direct evidence so far for its role in dormancy regulatio

    Scaling approach to order-parameter fluctuations in disordered frustrated systems

    Full text link
    We present a constructive approach to obtain information about the compactness and shape of large-scale lowest excitations in disordered systems by studying order-parameter fluctuations (OPF) at low temperatures. We show that the parameter GG which measures OPF is 1/3 at T=0 provided the ground state is unique and the probability distribution for the lowest excitations is gapless and with finite weight at zero-excitation energy. We then apply zero-temperature scaling to describe the energy and volume spectra of the lowest large-scale excitations which scale with the system size and have a weight at ze ro energy P^v(0)∼l−θ′\hat{P}_v(0)\sim l^{-\theta'} with v=ldv=l^d. A low-temperature expansion reveals that, OPF vanish like L−θL^{-\theta}, if θ>0\theta> 0 and remain finite for space filling lowest excitations with θ=0\theta=0. The method can be extended to extract information about the shape and fractal surface of the large-scale lowest excitations.Comment: 4 pages, REVTeX. Some modifications; final version accepted for publication in J. Phys. A: Math. and General (Letters

    Local delivery of optimized nanobodies targeting the PD-1/PD-L1 axis with a self-amplifying RNA viral vector induces potent antitumor responses

    Get PDF
    Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for antiPD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect

    Reimagining the language of engagement in a post-stakeholder world

    Get PDF
    Language matters in shaping perceptions and guiding behaviour. The term stakeholder is widely used, yet little attention is paid to the possibility that its use may inadvertently perpetuate colonial narratives and reinforce systemic inequities. In this article, we critically examine the limitations of the stakeholder concept and its ambiguity, normativity, and exclusionary implications. We emphasise the importance of using language that gives a voice to marginalised groups, promotes inclusion and equity, and fosters meaningful and reflexive participation in decision-making processes. In critiquing the use of the term and calling for alternative practices, we aim to contribute to the decolonisation of research norms and the creation of more inclusive and equitable societies. Therefore, rather than advocating a single alternative term, we suggest a focus on the people, places, and species affected by decisions, interventions, projects, and issues

    The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications

    Get PDF
    Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m22). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas

    Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    Get PDF
    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem

    Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques

    Get PDF
    Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally
    • …
    corecore