12 research outputs found

    NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration

    Get PDF
    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space

    In-Space Propulsion Solar Electric Propulsion Program Overview of 2006

    Get PDF
    The primary source of electric propulsion development throughout NASA is implemented by the In-Space Propulsion Technology Project at the NASA MSFC under the management of the Science Mission Directorate. The Solar Electric Propulsion technology area's objective is to develop near and mid-term SEP technology to enhance or enable mission capture while minimizing risk and cost to the end user. Major activities include developing NASA s Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development, advanced cathode testing and xenon recovery testing. Progress on current investments and future plans are discussed

    Fifteen Years of Chandra Operation: Scientific Highlights and Lessons Learned

    Get PDF
    NASA's Chandra X-Ray Observatory, designed for three years of operation with a goal of five years is now entering its 15-th year of operation. Thanks to its superb angular resolution, the Observatory continues to yield new and exciting results, many of which were totally unanticipated prior to launch. We discuss the current technical status, review recent scientific highlights, indicate a few future directions, and present what we feel is the most important lesson learned from our experience of building and operating this great observatory

    Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    NASA's In-Space Propulsion Technology Program: Overview and Status

    No full text
    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program

    NASA In-Space Propulsion Technology Program: Overview and Update

    No full text
    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program

    The Imaging X-Ray Polarimetry Explorer (IXPE): Pre-Launch

    Get PDF
    International audienceLaunched on 2021 December 9, the Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer Mission in collaboration with the Italian Space Agency (ASI). The mission will open a new window of investigation—imaging x-ray polarimetry. The observatory features three identical telescopes, each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at the focus. A coilable boom, deployed on orbit, provides the necessary 4-m focal length. The observatory utilizes a three-axis-stabilized spacecraft, which provides services such as power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets

    The Imaging X-Ray Polarimetry Explorer (IXPE): technical overview IV

    Get PDF
    Scheduled to launch in late 2021 the Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission designed to open up a new window of investigation -- X-ray polarimetry. The IXPE observatory features 3 identical telescope each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at its focus. An extending beam, deployed on orbit provides the necessary 4 m focal length. The payload sits atop a 3-axis stabilized spacecraft which among other things provides power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets. IXPE is a partnership between NASA and the Italian Space Agency (ASI)
    corecore