264 research outputs found

    Dynamical models of NGC 3115

    Full text link
    We present new dynamical models of the S0 galaxy N3115, making use of the available published photometry and kinematics as well as of two-dimensional TIGER spectrography. We first examined the kinematics in the central 40 arcsec in the light of two integral f(E,J) models. Jeans equations were used to constrain the mass to light ratio, and the central dark mass whose existence was suggested by previous studies. The even part of the distribution function was then retrieved via the Hunter & Qian formalism. We thus confirmed that the velocity and dispersion profiles in the central region could be well fit with a two-integral model, given the presence of a central dark mass of ~10^9 Msun. However, no two integral model could fit the h_3 profile around a radius of 25 arcsec where the outer disc dominates the surface brightness distribution. Three integral analytical models were therefore built using a Quadratic Programming technique. These models showed that three integral components do indeed provide a reasonable fit to the kinematics, including the higher Gauss-Hermite moments. Again, models without a central dark mass failed to reproduce the observed kinematics in the central arcseconds. This clearly supports the presence of a nuclear black hole of at least 6.5 10^8 Msun in the centre of NGC 3115. These models were finally used to estimate the importance of the dark matter in the outer part of NGC 3115, suggested by the flat stellar rotation curve observed by Capaccioli et al. (1993).Comment: 18 pages, 22 figures, accepted for publication in MNRA

    ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy

    Full text link
    We introduce Zurich Atmosphere Purge (ZAP), an approach to sky subtraction based on principal component analysis (PCA) that we have developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. Extensive testing shows that ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources. The method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations the method is generally applicable to many different science cases and should also be useful for other instrumentation. ZAP is available for download at http://muse-vlt.eu/science/tools.Comment: 12 pages, 7 figures, 1 table. Accepted to MNRA

    Restoration of hyperspectral astronomical data from Integral field spectrograph

    Get PDF
    International audienceIn this paper we present a method for hyper-spectral image restoration for integral field spectrographs (IFS) data. It takes advantage of all the spectral and spatial correlations in the observed scene to enhance the spatial resolution. We illustrate this method with simulations coming from the Multi Unit Spectroscopic Explorer (MUSE) instrument. It shows the clear increase of the spatial resolution provided by our method as well as its denoising capability

    Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    Get PDF
    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).Comment: 5 pages, 1 figur

    The Planetary Nebulae Population in the Nuclear Regions of M31: the SAURON view

    Full text link
    Following a first study of the central regions of M32 that illustrated the power of integral-field spectroscopy (IFS) in detecting and measuring the [O III]{\lambda}5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within 80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrowband images obtained with the Hubble Space Telescope. We find the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted toward less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only of few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the metallicity of a stellar population has an impact on the way the horizontal branch is populated and to the loose anticorrelation between the strength of the UV-upturn and the specific number of PNe that is observed in early-type galaxies. Finally, our investigation also serves to stress the importance of considering the same spatial scales when comparing the PNe population of galaxies with the properties of their stellar populations.Comment: 11 pages, 10 figures, accepted for publication on Monthly Notices of the Royal Astronomical Societ

    Probing the stellar populations of early-type galaxies: the SAURON survey

    Get PDF
    The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.Comment: 12 pages, 6 figures. ASP Conference, Galaxies: the Third Dimension, Cozumel. Version with higher resolution figures available at http://www-obs.univ-lyon1.fr/eric.emsellem/papers/cozumel_emsellem.ps.g

    Morphology and kinematics of the ionised gas in early-type galaxies

    Full text link
    We present results of our ongoing study of the morphology and kinematics of the ionised gas in 48 representative nearby elliptical and lenticular galaxies using the SAURON integral-field spectrograph on the 4.2m William Herschel Telescope. Making use of a recently developed technique, emission is detected in 75% of the galaxies. The ionised-gas distributions display varied morphologies, ranging from regular gas disks to filamentary structures. Additionally, the emission-line kinematic maps show, in general, regular motions with smooth variations in kinematic position angle. In most of the galaxies, the ionised-gas kinematics is decoupled from the stellar counterpart, but only some of them present signatures of recent accretion of gaseous material. The presence of dust is very common in our sample and is usually accompanied by gas emission. Our analysis of the [OIII]/Hbeta emission-line ratios, both across the whole sample as well as within the individual galaxies, suggests that there is no unique mechanism triggering the ionisation of the gas.Comment: 8 pages, 2 figures, submitted to "Adaptive Optics-Assisted Integral-Field Spectroscopy", Rutten R.G.M., Benn C.R., Mendez J., eds., May 2005, La Palma (Spain), New Astr. Rev. For full resolution PS, see http://www.strw.leidenuniv.nl/~jfalcon/JFB_AOmeeting_color_hires.ps.g
    corecore